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Abstract

We present a self-supervised pre-training ap-
proach for learning rich visual language rep-
resentations for both handwritten and printed
historical document transcription. After su-
pervised fine-tuning of our pre-trained en-
coder representations for low-resource docu-
ment transcription on two languages, (1) a
heterogeneous set of handwritten Islamicate
manuscript images and (2) early modern En-
glish printed documents, we show a mean-
ingful improvement in recognition accuracy
over the same supervised model trained from
scratch with as few as 30 line image transcrip-
tions for training. Our masked language model-
style pre-training strategy, where the model is
trained to be able to identify the true masked
visual representation from distractors sampled
from within the same line, encourages learning
robust contextualized language representations
invariant to scribal writing style and printing
noise present across documents.

1 Introduction

Document transcription is the task of converting
images of handwritten or printed text into a sym-
bolic form suitable for indexing, searching, and
computational analysis.1 Historical documents,
whether they were (re)produced via handwriting
or the early printing press, confound current sta-
tistical document transcription models due to (1)
extremely varied style and content across domains,

1We use the generic term document transcription to refer
to both the task of optical character recognition (OCR), which
is typically reserved for printed documents, and handwritten
text recognition (HTR) for manuscripts.

Figure 1: Example page image crops from an Islamicate
manuscript dated to 1842 (Top, ref: Leiden Or. 669),
showcasing its dense, visual complexity with extensive
marginalia, and printed proceedings of London’s Old
Bailey Courthouse (Bottom, c. 18th century) (Shoe-
maker, 2005).

(2) the presence of noise, and (3) a dearth of la-
beled data.

First, historical printed documents, such as
books produced from early modern England (c.
16th–18th centuries; bottom of Fig. 1), use non-
standardized spacing and fonts (Shoemaker, 2005)
and can contain code-switching that confuses lan-
guage models (Garrette et al., 2015). However,
this variation pales in comparison to their hand-
written counterparts. For instance, pre-modern
Islamicate manuscripts (i.e., Persian and Arabic
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handwritten documents from c. 7th–19th centuries;
top of Fig. 1), differ in script family, scribal hand-
writing style, and symbol inventory/vocabulary. As
a result, a large degradation in performance is ob-
served when evaluating HTR models on unseen
manuscripts (Jaramillo et al., 2018).

Production and imaging noise also present a
problem for historical document transcription mod-
els. Whether it be uneven inking from a printing
press, inconsistent text baselines, or holes resulting
from insect damage to ancient pages, techniques
must be designed to cope with the noise (Berg-
Kirkpatrick and Klein, 2014; Goyal et al., 2020).

While neural networks have a demonstrated ca-
pability to model complex data distributions, they
typically require large amounts of supervised train-
ing data to do so, which is infeasible for historical
documents. Unsupervised, non-neural transcrip-
tion models with fewer parameters alleviate the
need to create labeled data (Berg-Kirkpatrick et al.,
2013), but struggle with complex handwriting vari-
ation. For Islamicate manuscripts, ground truth
transcription often requires paleography experts to
decipher the ancient writing systems as they appear
in each scribal writing style.

In this paper, we propose a self-supervised learn-
ing framework designed to overcome these three
challenges presented by historical documents. In-
spired by the astounding success of self-supervised
pre-training techniques for masked language mod-
eling (MLM) in NLP (Devlin et al., 2019), visual
models (Chen et al., 2020; Radford et al., 2021),
and speech recognition (Baevski et al., 2020), our
approach pre-trains a neural text line-image en-
coder by learning to distinguish masked regions of
unlabeled line images from other distractor regions.
Specifically, our contribution is the following:

• we show that the recent pre-train/fine-tune
paradigm is particularly advantageous for low-
resource historical document transcription,
obtaining large improvements in both printed
and handwritten documents in both English
and Arabic-script languages.

• we motivate the self-supervised contrastive
loss for document transcription through the
lens of “lacuna reconstruction”, where blank
parts of a document called lacuna must be
inferred by human readers.

In doing so, we argue that our approach to pre-
training implicitly incentivizes the model to dis-
cover and encode discrete character classes in its
internal representations, while ignoring style dif-
ferences occurring in lines using different fonts or
languages, or authored by other scribes.

2 Related Work

Masked Pre-training Our approach to self-
supervised pre-training follows a growing body
of work in both NLP and speech that leverages
mask-predict objectives for learning useful, task-
agnostic language representations from unlabeled
data. In the self-supervised pre-train/supervised
fine-tune paradigm, these representations can then
be updated on the task of interest using in-domain
labeled data. Past work covers learning representa-
tions for NLP from monolingual and multilingual
text (Devlin et al., 2019; Yang et al., 2019), speech
(Baevski et al., 2019; Jiang et al., 2019; Song et al.,
2020; Wang et al., 2020), and images grounded
with text (Radford et al., 2021). Representations
can be learned through either reconstruction-type
objectives (Jiang et al., 2019; Song et al., 2020;
Wang et al., 2020) or probabilistic contrastive loss
functions (Oord et al., 2018; Baevski et al., 2019,
2020). Most similar to our work is the speech
recognition system wav2vec2.0 (Baevski et al.,
2020), which uses the same two phase training
setup with a self-supervised contrastive loss dur-
ing pre-training and Connectionist Temporal Clas-
sification (CTC) loss on transcribed speech data
during fine-tuning. Talnikar et al. (2020) presents
that the self-supervised loss regularizes the super-
vised loss during joint learning of both objectives.
Follow up work has shown the usefulness of the
pre-trained speech representations for exploring
speech variation (Bartelds et al., 2020). In this pa-
per, we show that the same learning paradigm can
also be successfully applied to very low resource
document transcription settings.

Islamicate HTR While machine recognition
of handwritten, historic English/German docu-
ments can range from 5–12% character error
rate (CER) on a sufficient amount of in-sample
manuscript training data (Sánchez et al., 2019),
performance on Arabic-script languages is much
more challenging, leading to substantially higher
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CER. Pre-modern Islamicate manuscripts (i.e.,
Persian and Arabic handwritten documents from
c. 7th–19th centuries), often differ in script fam-
ily, scribal handwriting style, and symbol inven-
tory/vocabulary. In the top of Figure 1, we present
an extreme example of some of the problematic vi-
sual variation that can be observed. Even a model
trained in a supervised fashion on such a com-
plex document sees a large degradation in perfor-
mance when evaluating HTR models on unseen
manuscripts (Jaramillo et al., 2018) . Until re-
cently, OCR performance on Arabic-script printed
texts was still poor, typically above 25% CER (Al-
ghamdi and Teahan, 2017), which is too high for
downstream users (i.e., researchers and librarians).

Recent studies involving Islamicate manuscripts
found that state-of-the-art systems are only able
to achieve 40 to mid-20% CER using pro-
prietary software (e.g., Google Cloud Vision,
RDI, Transkribus) (Clausner et al., 2018; Keinan-
Schoonbaert, 2020, 2019). However, results from
these studies only report in-domain performance—
an unrealistic scenario where considerable amounts
of labeled data can be obtained to enable both train-
ing and testing on the same manuscript. In contrast,
out-of-domain performance tends to suffer consid-
erably, supported by Romanov et al. (2017)’s study
of neural OCR for printed Arabic-script documents.
Our work aims to address such performance is-
sues for both in-domain and out-of-domain Islami-
cate HTR settings by learning general, content-rich
pre-trained language representations from large
amounts of heterogeneous unlabeled data.

Historical OCR Closely related to manuscript
transcription, OCR is another task involving lan-
guage recognition from images. However, OCR
operates on documents that have been printed by a
machine with regular, re-used character fonts ex-
hibiting much less superficial glyph variation than
human handwriting. OCR is far from a solved
problem in the case of documents printed on early
modern (c. 16th–18th centuries; see bottom of
Fig. 1), movable-type printing presses, where hu-
mans would manually set metal type casts with
non-standard spacing and fonts (Shoemaker, 2005).
In this setting, inking noise and historical font
shapes confuse OCR models trained on modern,
computer-generated documents (Arlitsch and Her-
bert, 2004). Berg-Kirkpatrick et al. (2013)’s Ocular

explicitly uses a generative probabilistic model in-
spired by historical printing processes to model
such noise. Later work has extended it to handle
more typesetting noise (Garrette et al., 2015), and
produce both diplomatic and normalized transcrip-
tions (Garrette and Alpert-Abrams, 2016). Sep-
arately, OCR post-correction models have been
proposed to resolve OCR outputs in historical doc-
uments (Hämäläinen and Hengchen, 2019; Dong
and Smith, 2018) and other low-resource settings
(Rijhwani et al., 2020, 2021). In contrast, our ap-
proach pre-trains the visual language recognition
model’s encoder, which produces better contextual-
ized representations in order to reduce the amount
of errors the model itself makes. Unlike Ocular, our
proposed method does not use a language model
and is not fully unsupervised as we require 1–3
pages of transcribed data for learning to transcribe
during fine-tuning.

3 Approach

When human readers encounter a lacuna, a
blank information gap in a portion of a book or
manuscript, they must infer its latent meaning us-
ing nearby context like in a cloze test (Taylor,
1953). We argue that the most useful information
for inference lies in the ability to reason about the
identities of the missing characters in the lacuna us-
ing the identities of the surrounding characters. In-
deed, MLM-style pre-training techniques are also
motivated by the idea of the cloze test, and recent
research indicates that language representations
learned through the prediction of missing content
using surrounding sentential context are useful for
many downstream tasks (Devlin et al., 2019; Clark
et al., 2019, 2020). Our approach combines the
ideas of lacuna inference and masked pre-training
to provide a useful learning signal for downstream
historical document transcription, a setting with
massive digitized collections but few transcribed
examples.

Specifically, we introduce a self-supervised pre-
training method that randomly masks lacuna-like
regions of document line images and learns to re-
construct them by distinguishing them from nearby
line image segments, or foils. While lacuna can be
reconstructed in a generative way, we find that a
discriminative contrastive loss works better in prac-
tice. By leveraging a diverse set of unlabeled data
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Figure 2: Our proposed two-stage approach for low-resource document transcription first pre-trains a line image encoder using
a self-supervised contrastive loss on unlabeled data (left), followed by a fine-tuning phase, in which the pre-trained encoder
learns to transcribe 1–3 pages of supervised data using a CTC loss (right).

for pre-training, the model is forced to infer the
identities of masked text regions in the presence of
scribal writing variation or typesetting noise ubiq-
uitous in historical documents. In the next sections,
we describe our model/masking strategy in detail.

3.1 Model

In Figure 2, we show our two-stage pre-train/fine-
tune modeling approach. First, we describe the
document line image encoder that is shared be-
tween stages. For simplicity of description, we
assume that each document line image, X , is n
pixels tall and m pixels wide, and that pixels are
binary-valued. Thus, the space of input text line
images can be denoted as X = {0, 1}n×m. We
first process the input with a convolutional fea-
ture extractor, f : X 7→ H, that maps the input,
X , to an encoding matrix, H , using a deep convo-
lutional neural network followed by a reshaping of
the image height dimension into the channels di-
mension. Next, a contextual encoder, g : H 7→ C,
computes a contextualized representation matrix,
C, from H using a neural sequence model, param-
eterized by a bidirectional LSTM (Hochreiter and

Schmidhuber, 1997). We describe both the design
of f , which determines the output size of the con-
volutional encoding space H, and g in Section 5.1.
Together, both the convolutional and contextual
layers form the encoder of text line images used
for downstream document transcription. Ideally,
f will capture the underlying visual appearance
of distinct character classes, while g will discover
linguistic correlations between these classes.

3.2 Masking

During pre-training, we replace randomly sampled,
non-overlapping segments of H with a learned
mask embedding vector prior to computing con-
textualized representation matrix C. We train the
model to distinguish the masked region from a foil
using the contrastive loss presented in Section 3.3.

3.3 Pre-training Objective

We use the following self-supervised contrastive
loss whose variants have demonstrated success in
self-supervised representation learning (Oord et al.,
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2018; Baevski et al., 2020):

LU (ct) = − log
exp

(
s(ct, ht)

)
∑

t′ exp
(
s(ct, ht′)

)

Here, ct (depicted in Figure 2) is the contextual
encoder’s output representation of the masked line
image at position t. Similarly, ht (also depicted
in Figure 2) is the convolutional encoder’s output
representation of the masked region itself. Further,
s(c, h) represents a scoring function that computes
the similarity between representation vectors c and
h. We use the cosine similarity similar to Baevski
et al. (2020), but compute it using only raw vec-
tors, instead of the raw vectors and quantized vec-
tors. The cross-entropy loss requires the model to
distinguish the representation of the true masked
region, ht, from distractor representations: the con-
volutional encodings of other segments, ht′ with
t′ ̸= t.

3.4 Fine-tuning Objective
After learning pre-trained representations, we add
the randomly initialized, fully connected character
vocabulary projection layer to the top of our con-
text encoder network (top right of Fig. 2) and per-
form supervised training using the Connectionist
Temporal Classification (CTC) objective (Graves
et al., 2006; Graves, 2012; Baevski et al., 2020)
with transcribed data. CTC is a commonly used
loss function for supervised training in speech and
handwriting recognition systems. In this case, CTC
is used to marginalize over all monotonic align-
ments between the sequence of input visual rep-
resentations and the observed ground truth output
sequence of characters.

4 Datasets

In this section, we describe the unlabeled pre-
training and labeled fine-tuning/testing datasets
used in our experiments. Representative line im-
ages from five of the datasets are exhibited in Fig-
ure 3.

4.1 Islamicate Manuscripts
First, we introduce a variety of pre-modern Islami-
cate manuscript datasets (i.e., Persian and Arabic
handwritten documents from c. 7th–19th centuries)
selected for both their uniquely different domain

Figure 3: Assortment of cropped, grayscale line im-
ages from a selection of our datasets, as extracted by
annotators. From top to bottom, RASM 2019 (Keinan-
Schoonbaert, 2020), Attar-Mubhij, H. uliyya, Trove (Hol-
ley, 2010), Old Bailey (Shoemaker, 2005). The Islami-
cate line images are shown pre-binarization, while the
English line images come binarized.

content (e.g., scientific to legal to religious) and
their visually distinct scribal handwriting style. All
but the first pre-train dataset are professionally tran-
scribed by Islamicate manuscript scholars.

HMML Pre-train Through a collaboration
with the Hill Museum and Manuscript Library
(HMML), we obtain about 100 early modern,
mostly Syrian, naskh2 manuscripts dating from
1600–1775 with some voweling, but with ornamen-
tally voweled texts excluded (i.e., texts in which
every single vowel and orthographic feature is in-
cluded, usually for ornamental reasons). We filter
out manuscripts with extensive marginalia, figures,
or tables, though some marginal notes and other
elements (e.g., seals, interlinears) are still present.
This results in a dataset containing roughly 750,000
unlabeled line images.

HMML Fine-tune We obtain transcriptions for
115 line images from a 4-page held-out subset
of the HMML Pre-train dataset. This dataset is
designed for in-domain fine-tuning/testing experi-
ments with our pre-trained models.

RASM 2019 For the ICDAR 2019 Competi-
tion on Recognition of Historical Arabic Scien-
tific Manuscripts, the British Library released
2,164 transcribed line images from scientific
manuscripts written in various scribal hands
(Keinan-Schoonbaert, 2020). RASM 2019 has
become a popular benchmark for Arabic-script

2https://en.wikipedia.org/wiki/Naskh_
(script)
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handwriting recognition due to its relatively large
amount of supervised data for the task.

Attar-Mubhij An Arabic-language legal text
with 190 transcribed line images obtained from
OpenITI.3

H. uliyya A 229-line Persian, nasta’lı̄q4 devo-
tional text written by an early modern scholar con-
taining mostly prayers (also obtained from Open-
ITI).

4.2 Early Modern English Printed Works
Next, we describe several English book and news-
paper datasets used in our experiments that were
originally printed in early modern England and
Australia.

EEBO Pre-train We harvest 750,000 unlabeled
line images from a randomly sampled collection
of document images from Early English Books
Online (EEBO),5 which contains “almost every
work printed in the British Isles and North America,
as well as works in English printed elsewhere from
1470-1700.”

Trove A dataset of historic Australian newspa-
pers (c. 1803–1954) from the National Library
of Australia (Holley, 2010). We use the manu-
ally transcribed version totaling 450 lines (Berg-
Kirkpatrick et al., 2013).

Old Bailey A manually transcribed set of 20 doc-
uments printed 1716–1906, consisting of 30 lines
per document, taken from Berg-Kirkpatrick and
Klein (2014). Shoemaker (2005) compiled the doc-
uments, which describe proceedings of London’s
Old Bailey Courthouse.

4.3 Line Extraction
Since our model processes individual line im-
ages of a document, we use Kiessling (2020)’s
line extraction method to automatically segment
page images into their component text line images
for at-scale collection of the pre-training datasets.
We find and discard poorly extracted line images
outside an empirically determined pixel width-to-
height ratio range of 6–23.

3https://openiti.org
4https://en.wikipedia.org/wiki/

Nastaliq
5https://www.proquest.com/eebo

5 Experiments

In this section, we describe our experimental setup,
including architectural details and hyperparameters
for the neural line image encoder, pre-train/fine-
tune specifics, dataset splits, and the baseline sys-
tems we compare against.

5.1 Experimental Details
Encoder For all experiments, we binarize the
line images and scale them to a height of 96 pixels,
but allow them to vary in width. We base our CNN
architecture on the Kraken OCR system (Kiessling,
2019): two rectangular 4× 2 kernels first process
the input image, each followed by a Leaky ReLU
activation and Group Norm. Two max pooling
operations are applied, one before and one after the
final 3× 3 convolutional layer kernel, with kernel
sizes/strides of 4×2/1×2 for both. The first kernel
uses a stride of 4 × 2 and the final two both use
1×1. The convolutional hidden dimensions are 64,
128, and 256. We use a 3-layer BiLSTM for our
contextual encoder with a hidden size of 512. This
results in 6,408,000 trainable parameters. Models
are implemented in PyTorch (Paszke et al., 2019)
and Fairseq (Ott et al., 2019). Code is available at
https://github.com/nvog/lacuna.

Pre-training During pre-training, we perform a
grid search over masking probability and length
using 75k lines of data and select the best model
based on lowest fine-tuned CER on HMML Fine-
tune. We determine p = 0.5/p = 0.65 to perform
best for Islamicate manuscript/English print with a
non-overlapping segment length of 12 time steps.
We ensure that 8 time steps are between each non-
overlapping segment. A maximum of 100 time
steps are sampled and used as foils in the denomi-
nator of the loss from Sec. 3.3. We use the same
learning rate scheduler and Adam optimizer from
Baevski et al. (2020) that warms up for the first 8%
of updates to a learning rate of 5e-4 and linearly
decays it afterwards. Models are pre-trained for
3–5 days on 4 RTX 2080 Ti cards.

Fine-tuning During fine-tuning, we use a tri-
stage learning rate schedule with the Adam op-
timizer, which warms up the learning rate to 5e-4
during the first 10% of updates and decays it lin-
early by a factor of 0.05 for the final 50% of train-
ing. We only update the fully connected layer for
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Test Dataset CER (↓)

System HMML-F RASM Attar-Mubhij H. uliyya

Google Cloud OCR 49.0 57.0 61.2 71.4

30 Lines for Supervised Fine-tuning

Fine-tune/Test Dataset CER (↓)

# Lines Pre-train HMML-F RASM Attar-Mubhij H. uliyya

0 51.0 68.9 60.4 70.3
75k 22.7 46.1 30.4 52.9
750k 14.8 36.2 23.7 45.5

90 Lines for Supervised Fine-tuning

Fine-tune/Test Dataset CER (↓)

# Lines Pre-train HMML-F RASM Attar-Mubhij H. uliyya

0 36.9 61.7 36.8 52.5
75k 15.2 34.4 20.8 37.5
750k 10.0 25.9 15.0 28.3

Table 1: Document transcription results on
Islamicate manuscripts. Character error
rate (CER) is reported on held-out test sets
introduced in Section 4.1. For baselines,
we compare against the current Google
Cloud OCR via the API, and the state-of-
the-art, neural network-based architecture
from Kraken (Kiessling, 2019), which does
not use self-supervised pre-training (i.e., 0
lines pre-train). With access to the same
amount of 30 and 90 lines of supervised
fine-tuning data as this system, our pro-
posed self-supervised pre-training regime
(using 75k and 750k lines of unlabeled
manuscript data) shows a large improve-
ment across all datasets.

the first 200 epochs of training and then proceed
to update the contextual encoder as well. These
optimization choices are inspired by Baevski et al.
(2020). We use a small batch size of 8 and train
for a maximum of 700 epochs with the CTC loss
(Sec. 3.4). We use greedy decoding after removing
the CTC’s blank token and do not use any external
language model. For Islamicate manuscript exper-
iments we perform NFD unicode normalization.
Character Error Rate (CER) is computed using
Kraken OCR (Kiessling, 2019).

5.2 Fine-tune/Test Splits

For Islamicate manuscript datasets, we hold out
10% of RASM 2019 for testing and the final
page each of HMML Fine-tune, Attar-Mubhij, and
H. uliyya. For English print datasets, we use the
same test splits as Berg-Kirkpatrick and Klein
(2014) for fair comparison and fine-tune on the
validation set of each dataset.

5.3 Baselines

For our first baseline, we use the proprietary
Google Cloud OCR API (Fujii et al., 2017; Ingle
et al., 2019), which provides state-of-the-art results
on multilingual handwritten and printed modern
documents. In contrast to our system’s unlabeled
pre-training procedure for historical documents,
this system uses synthesized handwriting strokes
and data perturbation to obtain more supervised
data for improved performance.

For our second baseline, we use the pop-
ular, state-of-the-art open-source Kraken OCR
(Kiessling, 2019), which consists of a CNN-LSTM
encoder trained in a supervised fashion with the
same segmentation-free Connectionist Temporal
Classification (Graves et al., 2006) loss function
we use during our method’s fine-tuning stage. We
provide the encoder’s implementation details in
Section 5.1.

For early modern English print experiments, we
also compare to the fully unsupervised Ocular
(Berg-Kirkpatrick et al., 2013), which is a gen-
erative probabilistic model purpose-built for the
historical printing process, yet unable to handle
complex glyph variation observed in handwriting.

6 Results

In this section, we present document transcription
results for both Islamicate manuscripts and early
modern English works introduced in Section 4. We
compare performance against supervised and un-
supervised prior work, and investigate the impact
of pre-training/fine-tuning dataset sizes.

6.1 Islamicate Manuscripts

In Table 1, we present single-run supervised fine-
tuning results on in-domain subsets of each dataset
limited to 30 and 90 lines for low-resource set-
ting evaluation. These two settings are roughly
equivalent to 1 and 3 pages of transcribed data
for each manuscript. Each row represents a dif-
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Baselines

Test Dataset CER (↓)

System Trove Old Bailey

Google Tesseract 37.5 -
ABBYY FineReader 22.9 -
Ocular 14.9 14.9
Ocular Beam 12.9 10.9
Ocular Beam-SV 11.2 10.3
Google Cloud OCR 13.3 8.5

30 Lines for Supervised Fine-tuning

Test Dataset CER (↓)

# Lines Pre-train Trove Old Bailey

0 70.5 60.0
75k 20.3 26.5
750k 19.6 12.2

90 Lines for Supervised Fine-tuning

Test Dataset CER (↓)

# Lines Pre-train Trove Old Bailey

0 38.7 28.6
75k 12.2 9.4
750k 10.4 7.6

Table 2: Document transcription results on early mod-
ern English printed works. Character error rate (CER) is
reported on held-out test sets introduced in Section 4.2.
First 5 baselines are taken from Berg-Kirkpatrick and
Klein (2014). Similar to Table 1, supervised data is
limited to 30 and 90 line settings.

ferent set of encoder parameters, which we use
to initialize the fine-tuning experiments. The 0 #
lines pre-train row represents a randomly initial-
ized Kraken-style encoder, while 75k and 750k set-
tings use the encoder parameters pre-trained with
our lacuna reconstruction objective on different or-
ders of magnitude of unlabeled HMML Pre-train
line images. We also compare to the Google Cloud
OCR introduced in Section 5.3.

The first thing we can observe is the extremely
high character error rates for both the commer-
cial Google Cloud OCR system and the randomly
initialized 0k pre-train models, especially in the
30-line setting. Access to about 2 more pages of
data (in the 90-line setting) improves results for
this setting in the Arabic-language legal text Attar-

Mubhij, but does not seem to help much for RASM
2019, a larger collection of scientific manuscripts.
This is probably due to the higher amount of diver-
sity in content and style in this benchmark dataset
for Arabic-language HTR. Seemingly, without any
signal from pre-training and only tens of lines of
transcribed data, the model is unable to learn a suf-
ficient visual encoder for the large variety of scribal
hands and scripts observed in the manuscripts (ex-
amples shown in Fig. 3). Pre-training on just 75k
lines halves the error rate for Attar-Mubhij in the
30-line setting. Furthermore, 750k pre-train re-
duces the Attar-Mubhij CER from 60.4 to 23.7.

The HMML Fine-tune dataset (HMML-F in Ta-
ble 1) has the largest relative error rate difference
between the pre-trained models and models with-
out pre-training. Errors are reduced by about 55%
for 75k-30, 70% for 750k-30, 58% for 75k-90, and
73% for 750k-90, which is at least 10 points higher
than other datasets on average. Since manuscripts
in HMML-F are sourced from the same library as
the HMML Pre-train dataset, the results suggest
that in-domain pre-training data provides an ad-
vantage over the other documents from different
collections. Regardless, our approach’s improved
performance on 30-line settings compared to the su-
pervised 90-line results trained from scratch across
all datasets is impressive and shows promising gen-
eralization ability.

6.2 Early Modern English Printed Works

In Table 2, we present supervised fine-tuning re-
sults on in-domain subsets of each dataset limited
to the same 30 and 90 line settings as in the Islami-
cate manuscript experiments. Our first observation
is that the randomly initialized encoder from the
0-line pre-train setting sees a much larger improve-
ment from 30 to 90 lines of supervised fine-tuning
data than the Islamicate manuscript experiments.
We speculate this is due to the more similar and
repeated glyph shapes on printed data compared
to handwritten data, which makes learning of the
visual encoder easier. Still, pre-training the visual
encoder cuts CER across both datasets, though we
do see a slightly bigger relative error rate reduction
when fine-tuning on Trove versus Old Bailey.

In Figures 4 & 5, we show comparisons across
predicted transcriptions from different systems and
datasets for illustrative purposes. First, we observe
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Figure 4: Comparison of results on the Old Bailey test set with errors highlighted. Pre-trained results are from the
90-line fine-tuning setting.

Figure 5: Comparison of results on the Trove test set with errors highlighted. Pre-trained results are from the
90-line fine-tuning setting.

that Google Cloud OCR, the best baseline system
on Old Bailey, consistently struggles with inking
variation. For example, the bleeding ink on the ini-
tial ‘s’ of each line image is mistaken for a ‘B’, the
‘n’ in ‘not’ in Fig. 4 is mistaken for a ‘D’ due to
the subtle connection of the glyph’s legs from over-
inking, and the ‘m’ in ‘Sportsman’ in Fig 5 is
confused for the characters ‘in’ because of under-
inking. However, the 0k pre-train baseline clearly
makes the most insertion/deletion/substitution er-
rors since it must learn how to transcribe noisy line
images from a randomly initialized encoder using
only 90 transcribed line images for supervised pa-
rameter learning. Initializing the visual encoder
with parameters learned from our self-supervised
regime on 75k unlabeled line images from EEBO
reduces a lot of these nonsensical errors to only
superficial glyph recognition issues. By increasing
the pre-training amount by an order of magnitude
to 750k, we obtain our best results. Future work
could integrate a language model during decod-
ing to address the unlikely sequences of charac-
ters/words still output by our best system, like the
words ‘Apaley’ and ‘Sportsmon’.

7 Conclusion

In this paper, we proposed a two-phase pre-
train/fine-tune approach for document transcrip-

tion and applied it to historical documents in
low-resource settings. Our pre-training strategy,
inspired by reconstructing missing information,
or lacuna, in documents uses hundreds of thou-
sands of unlabeled line images to learn rich vi-
sual language representations. After supervised
fine-tuning on tens of transcribed line images, we
showed large character error rate reduction on Is-
lamicate manuscripts exhibiting major script and
style variation and we improved over several state-
of-the-art OCR systems on early modern English
printed works. We estimate that our approach
could save human annotators significant amounts
of time and enable more distant readings of library
collections.

Ethical Considerations

While more accurate transcription of printed and
handwritten documents in low-resource settings
can expand research access for language and his-
tory scholars, it could also potentially facilitate
government surveillance of marginalized commu-
nities. Separately, bad actors could more easily
scan and digitize document images containing sen-
sitive information and use them for nefarious pur-
poses.
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