
Findings of the Association for Computational Linguistics: NAACL 2022, pages 1559 - 1571
July 10-15, 2022 ©2022 Association for Computational Linguistics

Hierarchical Transformers Are More Efficient Language Models

Piotr Nawrot∗1, Szymon Tworkowski∗1, Michał Tyrolski1, Łukasz Kaiser2,
Yuhuai Wu3, Christian Szegedy3, Henryk Michalewski3

1University of Warsaw, 2OpenAI, 3Google Research
{p.nawrot99, szy.tworkowski, michal.tyrolski, lukaszkaiser}@gmail.com,

{yuhuai, szegedy, henrykm}@google.com

Abstract

Transformer models yield impressive results
on many NLP and sequence modeling tasks.
Remarkably, Transformers can handle long se-
quences, which allows them to produce long
coherent outputs: entire paragraphs produced
by GPT-3 or well-structured images produced
by DALL-E. These large language models are
impressive but also very inefficient and costly,
which limits their applications and accessibil-
ity. We postulate that having an explicit hierar-
chical architecture is the key to Transformers
that efficiently handle long sequences. To ver-
ify this claim, we first study different ways to
downsample and upsample activations in Trans-
formers so as to make them hierarchical. We
use the best performing upsampling and down-
sampling layers to create Hourglass - a hier-
archical Transformer language model. Hour-
glass improves upon the Transformer baseline
given the same amount of computation and can
yield the same results as Transformers more
efficiently. In particular, Hourglass sets new
state-of-the-art for Transformer models on the
ImageNet32 generation task and improves lan-
guage modeling efficiency on the widely stud-
ied enwik8 benchmark.

1 Introduction

Transformer models (Vaswani et al., 2017) are ca-
pable of solving many sequence modeling tasks,
including classical NLP tasks (Devlin et al., 2019),
summarization (Zhang et al., 2020), language mod-
eling (Radford et al., 2019; Brown et al., 2020),
code generation (Chen et al., 2021), or even mu-
sic generation (Huang et al., 2018; Dhariwal et al.,
2020) and image generation (Parmar et al., 2018;
Chen et al., 2020; Ramesh et al., 2021). One com-
pelling feature of Transformers is their ability to
handle long contexts given as part of the input.
This is particularly visible in tasks where the out-
put depends on parts of the context that may not be

*Equal contribution. Order determined by coin toss.

close-by in the generated sequence, like in summa-
rization, where the summary may need to refer to
information scattered across the context, or in large-
scale image generation, where pixels belonging to
the same object may be far apart in the generation
order. Transformers excel at such tasks thanks to
self-attention, and they are used with longer and
longer contexts.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Seconds per one training step

1.08

1.10

1.12

1.14

1.16

1.18

Bi
t p

er
 c

ha
ra

ct
er

 o
n

en
wi

k8
 v

al
id

 se
t

6@1

8@1

10@1

12@1

14@1

2@1 8@4 2@1

2@1 4@4 2@1

2@1 4@3 2@1

2@1 8@3 2@1

2@1 16@3 2@1

3@1 8@4 3@1

4@1 8@4 4@1

4@1 3@3 4@6 3@3 4@1
5@1 8@2 5@1

Transformer-XL
Hourglass

Figure 1: Bits-per-character vs. training cost for base-
line (orange) and hierarchical Transformers (green). We
observe significant perplexity improvements on enwik8
over the vanilla Transformer–XL baseline, see text for
details.

The ability of Transformers to handle long con-
texts comes at a price: each self-attention layer, at
least in its original form, has complexity quadratic
in the length of the context. When a stack of n
Transformer layers is used, both memory and time
complexity is equal to O(L2n) where L is a se-
quence length and n number of decoder blocks.
Due to this limitation, vanilla transformers are in-
feasible to train on tasks with very long input se-
quences, for instance, on high-resolution images.
This issue has been studied extensively, and a num-
ber of techniques were introduced that modify at-
tention mechanism without changing overall trans-
former architecture (Child et al., 2019; Roy et al.,
2020; Ren et al., 2021). These sparse attention
mechanisms reduce the complexity of self-attention

1559

but still force the model to operate on the sequence
of the same length as the input.

For generative Transformer models, operating at
the original scale of the input sequence is necessary,
at least in the early and final layers, as the input
must be processed at first and generated at the end
(Section 4.3). But forcing the models to operate at
this granularity throughout the layer stack has both
fundamental and practical shortcomings:

• Fundamentally, we aim for the models to cre-
ate high-level representations of words, enti-
ties, or even whole events – which occur at
a very different granularity than single letters
that the model receives on input.

• On the practical side, even layers with linear
complexity can be slow and memory-intensive
when processing very long sequences.

To alleviate these issues, we propose to change
the Transformer architecture to first shorten the in-
ternal sequence of activations when going deeper
in the layer stack and then expand it back before
generation. We merge tokens into groups using a
shortening operation (Section 2.1) and so reduce
the overall sequence length, and then up-sample
them again combining with the sequence from ear-
lier layers (Section 2.3), The first part is analogous
to the Funnel-Transformer architecture (Dai et al.,
2020), and the whole architecture takes inspiration
from U-Nets (Ronneberger et al., 2015). In contrast
to both these architectures, the model we present is
autoregressive, which is harder to ensure in hierar-
chical models than in vanilla Transformers.

The resulting model – which we call Hourglass –
is an autoregressive Transformer language model
that operates on shortened sequences. It yields
significant performance improvements for different
attention types (Fig. 6,7). We tested Hourglass with
Transformer-XL (Dai et al., 2019) and Reformer
(Kitaev et al., 2020) blocks on enwik8 dataset. In
both cases, it is not only better in terms of perplex-
ity, but it is faster and uses less memory during
training. We also propose a regularization tech-
nique for hierarchical Transformers called shorten
factor dropout which improves perplexity upon
baselines trained with fixed shorten factor (see Sec-
tion 4.1). Finally, Hourglass achieves the new state-
of-the-art among Transformer models for image
generation of ImageNet32 (see Tab. 3).

2 Model

Standard self-attention mechanism uses full token-
level sequence representations. In the Hourglass,
we bring efficiency to the model by utilizing short-
ening, which allows us to use the Transformer lay-
ers on inputs with significantly smaller lengths. A
high-level overview of our proposed model archi-
tecture is shown in figures 2 and 3.

Attention type in the vanilla layers and shortened
layers is a configurable parameter. By default we
use relative attention defined in Transformer-XL
(Dai et al., 2019). Any attention module can be
used - we show significant efficiency gains when
applying Hourglass also for LSH (Kitaev et al.,
2020) attention (see Section 3.2 and Fig. 7).

2.1 Methods of shortening the input sequence

Shortening can be defined as any function S that
accepts a tensor x of shape (l, d) and returns a ten-
sor x′ of shape (l

k , d), where k is a hyperparameter
called shorten factor.

A simple shortening method is 1D average pool-
ing with stride k and pool size k, applied along the
sequence dimension l. Another way of shortening
is what we will further call linear pooling (l and d
denote sequence length and dmodel):

Algorithm 2 LinearPooling

x′ ← Reshape(x, (l
k , k · d))

x′ ← LinearProjection(x′)

Shortening can be also performed by attention,
as was introduced in (Dai et al., 2020): x′ = S(x)+
Attention(Q = S(x),K = V = x) where S
is shortening function, originally S = AvgPool.
Directly after this attention operation, a position-
wise feed-forward with a residual is performed, so
that these two layers form a Transformer block
(Vaswani et al., 2017). In this work we also try
S = LinearPool and find it more effective on
image tasks (see Tab. 8).

2.2 Shortening and autoregressive property

Information leaks Shortening interferes with the
standard causal masking used in Transformer de-
coders. Namely, in any shortened representation
by a factor of k each shortened token contributes
to predicting up to the next k tokens in the finest
scale, that is if e is the shortened sequence and x is
the sequence on the finest scale, e0 is not only used

1560

Sh
or

te
ni

ng
, s

f =
 k

1

L tokens

In
pu

t t
ok

en
s

sf
 =

 k
2

O
ut

pu
t t

ok
en

s

sf
=k

2

U
ps

am
pl

in
g,

 s
f =

 k
1

L/k1 tokens L/k1 tokens

L tokens

L/k1k2 tokens

Pre Vanilla Layers

Shortened1 Layers Shortened1 Layers

Shortened2 Layers

Post Vanilla Layers

Figure 2: Hourglass - a high-level architecture overview. The arrows denote residual connections.

to generate x0; in fact, the same embedding is used
to generate tokens x0, ..., xk−1.

Therefore, we need to guarantee that e0 and any
other ei cannot access information about tokens
they will implicitly predict. To ensure that, we
apply another shift right by k − 1 tokens, directly
before any shortening by a factor of k (Fig. 4). The
shift is the smallest that does not cause an informa-
tion leak (see Fig. 5 for an example of a shifting
that leads to a leak). We included a more detailed
analysis of this fact in the Appendix (Section A.2).

Reduced expressivity Let us consider an Hour-
glass model with shortening by a factor of k and
no transformer blocks operating on the finest scale
(that is, a model without vanilla layers).

In this situation
P (x) =

∏n−1
i=0 P (xi|e0, ..., e⌊ i

k⌋) =
∏n−1

i=0 P (xi|x0, ..., x⌊ i
k⌋·k−1)

because for predicting xi we combine the pro-
cessing done on shortened representations e with
token-independent operations. This means token
xi is generated independently from the tokens
x⌊ i

k⌋·k, ..., xi−1. This situation is detrimental to
the model’s capabilities, though including at least
one vanilla layer solves this issue. In the Appendix
we provide a detailed example illustrating this prob-
lem (Section A.1).

2.3 Upsampling methods

Upsampling is a crucial part of the Hourglass ar-
chitecture since we need to convert shortened rep-
resentations back to the full token-level sequence
in order to perform language modeling.

A method proposed in (Dai et al., 2020) is re-
peating each shortened vector shorten factor times.
This method is computationally efficient, but it
does not distinguish tokens with respect to position
inside the group.

Another method is linear upsampling which
works analogously to linear pooling – it projects
vectors of shape (l

k , d) to (l
k , k · d) and then re-

shapes to l vectors, each of dimension d. This
method is fast and allows to project shortened em-
beddings differently for each position in the group.
This happens because the (k · d)× d projection ma-
trix can be thought of as k separate d× d matrices,
one per each position.

We also investigated a method which we further
call attention upsampling. It is similar to atten-
tion pooling (Dai et al., 2020) and to the aggre-
gation layer from (Subramanian et al., 2020). It
works as follows: x = U(x, x′)+Attention(Q =
U(x, x′),K = V = x′) where x are embeddings
from just before the shortening, x′ are final short-
ened embeddings and U is an arbitrary upsampling
function. After the attention operation there is also
a residual with a feed-forward layer.

Linear upsampling learns a fixed pattern that
is the same for each shortened token. Attention
upsampling has the advantage of being content-
based – each token can extract relevant infor-
mation from the shortened embeddings. We set
U(x, x′) = x + LinearUpsampling(x′) which
allows to explicitly inject group-level information
into the attention queries. We experimentally show
that variants of attention upsampling lead to the
best results for our model across different datasets
(see Tab. 7).

1561

Algorithm 1 HourglassLM
procedure HOURGLASS(x, [k, ...s_factors])
x← PreV anillaLayers(x)
x′ ← Shortening(ShiftRight(x, k−1), k)

if EMPTY(s_factors) then
x′ ← ShortenedLayers(x′)

else
x′ ← HOURGLASS(x′, s_factors)

end if
x← x+ Upsampling(x, x′, k)
x← PostV anillaLayers(x)
return x

Figure 3: The architecture starts with pre vanilla layers
– a stack of Transformer blocks operating on the full
token-level sequence. After them we insert shortening
layer where k is the shorten factor parameter (Fig. 4).
The sequence is shifted right before shortening to pre-
vent information leak (Fig. 5). Then we recursively
insert another Hourglass block operating on k times
smaller scale. On the final level of shortening, we apply
shortened layers – Transformer blocks operating on the
smallest scale. Upsampling layer brings the resulting
activations x′ back to the original resolution. After up-
sampling and residual, the activations are processed by
token-level post vanilla layers.

3 Experiments

In this section, we present experimental results of
Hourglass. We start with a quick analysis of time
and memory complexity of the approach (Section
3.1). Then we investigate the efficiency gains of
applying Hourglass to Transformers with different
attention types (Section 3.2). Finally, we use Hour-
glass with relative attention parametrization from
Transformer-XL (Dai et al., 2019), evaluate it on
three language modeling tasks, and compare the
results with other models. (Sections 3.3, 3.4)

To show cross-domain generalization of our
method, we train our model on one dataset related
to Natural Language Processing and two from the
Computer Vision field.

To ensure consistency in presenting config-
urations of our model, we introduce a nota-
tion describing hierarchy of our architecture:
(N1@f1, . . . , Nk@fk) where each entry (Nj@fj)
means Nj layers shortened by factor fj .

Our model implementation is open source.1

1github.com/google/trax/blob/master/trax/models/research/hourglass.py

Initial
ShiftRight(1)

Shortening

ShiftRight(sf-1)

Figure 4: An overview of our shortening approach. Dif-
ferent colors denote token positions. Initially, we shift
right by one, which is a standard step in TransformerLM.
Then, just before performing shortening, we additionally
shift the tokens right by shorten factor− 1 to preserve
the autoregressive property of the model.

Shortening

ShiftRight(sf-2)

Upsampling

Figure 5: An example of information leak. If the shift
right factor is too small, after upsampling the knowledge
from the next tokens leaks to previous ones violating
autoregressiveness and making decoding impossible.

3.1 Computational cost analysis

In vanilla Transformers, the number of parameters
can indicate the computation required to train the
model. This is not true for Hourglass – for instance,
it can have 128 layers operating on a sequence
shortened by 32 and still fit into the memory of
a single GPU. A weak correlation between true
Hourglass’ computational cost and its number of
parameters can be observed in Table 1.

Hourglass achieves the biggest speedup with
the standard O(l2) attention. In that case, a
single shortening by a shorten factor k reduces
the complexity to O(l2

k2
) so by a factor of k2.

For more recent linear-time attention mechanisms
(Katharopoulos et al., 2020; Choromanski et al.,
2021) the reduction would be smaller – but still by
a factor of k. Feed-forward layers also have linear
complexity so shortening reduces it by a factor of
k.

In Table 1 we show an empirical efficiency com-
parison between Hourglass and Transformer-XL.

1562

Hierarchy BPC GB Speed #Param
6@1 (Baseline) 1.182 4.53 0.95 21M
2@1 1@3 2@1 1.163 4.41 1.11 24M
2@1 4@4 2@1 1.143 4.41 1.10 34M
8@1 (Baseline) 1.151 5.75 0.73 28M
2@1 4@3 2@1 1.128 4.88 1.00 34M
2@1 8@4 2@1 1.128 4.98 0.99 48M
2@1 1@2 4@4 1@2 2@1 1.115 4.69 0.86 48M
2@1 8@3 2@1 1.111 5.50 0.88 48M
10@1 (Baseline) 1.128 6.99 0.56 34M
3@1 8@4 3@1 1.109 6.14 0.76 55M
12@1 (Baseline) 1.115 8.12 0.47 41M
4@1 8@4 4@1 1.098 7.20 0.62 62M
2@1 16@3 2@1 1.096 5.89 0.71 75M
14@1 (Baseline) 1.102 9.35 0.40 48M
5@1 8@2 5@1 1.079 9.57 0.45 69M

Table 1: Efficiency comparison between Hourglass vari-
ants and Transformer-XL baseline on enwik8 – we re-
port validation set perplexity (BPC), running memory
(GB) and number of training steps per second (Speed).
We observe significant perplexity gains over the baseline
for a matching computation cost. It is also visible that
for Hourglass the number of model parameters (#Param)
correlates poorly with true computational cost.

3.2 Impact of Hourglass

To demonstrate the efficiency of Hourglass, we
measured how computational cost decreases and
perplexity improves, purely adding the technique
to Transformer-XL (Dai et al., 2019) and Re-
former (Kitaev et al., 2020) backbones (results de-
picted in Figures 6 and 7, respectively).

In both cases, models are implemented under
the same codebase and the only difference between
Hourglass and its corresponding baseline is the us-
age of shortening and upsampling layers. We show
that by incorporating a single shortening of the in-
put, we can train larger models with the same mem-
ory requirements and training speed and achieve
better perplexity than baselines.

3.3 Enwik8

Enwik8 (Mahoney, 2011) is a byte-level language
modeling benchmark containing the first 100M
bytes of unprocessed English Wikipedia text, split
into 90M train, 5M valid, and 5M test sets.

Similarly to (Dai et al., 2019) and (Beltagy
et al., 2020), we evaluate our model on the test
set, splitting it into overlapping sequences of size
l = 4096 with a step size of 128 and calcu-
late the test loss only over the last 128 tokens.
With a (4@1, 8@3, 4@1) hierarchy, dmodel = 768,
dff = 3072 and 8 heads, we reach 0.98 test bits-
per-character.

5 6 7 8 9
Maximum observed memory during training [GB]

1.08

1.10

1.12

1.14

1.16

1.18

Bi
t p

er
 c

ha
ra

ct
er

 o
n

en
wi

k8
 v

al
id

 se
t

6

8

10

12

14

2@1 8@4 2@1

3@1 8@4 3@1

2@1 16@3 2@1

4@1 3@3 4@6 3@3 4@1
5@1 8@2 5@1

Transformer-XL
Hourglass

Figure 6: Comparison between Transformer-XL base-
line and Hourglass on Enwik8 valid set w.r.t. maximum
memory used during training. All models are trained
for 200k steps with the same hyperparameters.

0.6 0.8 1.0 1.2 1.4 1.6
Seconds per one training step

1.125

1.150

1.175

1.200

1.225

1.250

1.275

Bi
t p

er
 c

ha
ra

ct
er

 o
n

en
wi

k8
 v

al
id

 se
t

6

9

12

16

20

2@1 6@3 2@1

3@1 9@3 3@1

4@1 12@3 4@1

6@1 15@3 6@1

Baseline (LSH)
Hourglass (LSH)

Figure 7: Comparison between Reformer baseline and
Hourglass, both with LSH attention, on Enwik8 valid
set w.r.t. cost of one training step in seconds.

3.4 Image Generation

We use datasets introduced in (van den Oord et al.,
2016a) which are downsampled versions of the pop-
ular ImageNet. In the autoregressive image genera-
tion setup, they consist of respectively 32×32×3
and 64× 64× 3 tokens, corresponding to RGB
channels, per image. As the only preprocessing
step we flatten the images.

3.4.1 ImageNet32

For our main result the following hierarchy is
used: (3@1, 24@3, 3@1). We use dmodel = 512,
dff = 2048, 8 attention heads and 0.01 dropout rate.
With this configuration we achieve 3.741 bits/dim,
yielding the new state-of-the-art among autoregres-
sive (Transformer-based) models on this dataset,
compared to the previous state-of-the-art of 3.758
bpd by (Ho et al., 2019).

1563

Enwik8 #Param BPC
Transformer-XL (2019) 24L 277M 0.99
Hourglass 146M 0.98
Adaptive-Span (2019) 24L 209M 0.98
Transformer-LS (2021) 110M 0.97
Feedback Transformer (2021) 77M 0.96
Expire-Span (2021) 24L 277M 0.95

Table 2: Enwik8 Results. We report bits-per-character
(BPC) on the test set and number of model parameters.
Hourglass applied to Transformer-XL significantly out-
performs its baseline. Our technique could be also used
with other more performant attention methods which
we leave for future work.

Completions

Input

Completions

Input

Figure 8: Examples of our model completions, where
bottom half of each image was generated by our model,
prompted by the upper half.

3.4.2 ImageNet64
The sequence length that our model can handle is
limited mainly by the computational complexity of
used attention module. We replace relative atten-
tion in vanilla layers by LSH attention (Kitaev et al.,
2020), which allows us to handle 12288-long se-
quences. To achieve relative attention parametriza-
tion, the LSH attention is combined with rotary
positional embeddings (Su et al., 2021). In short-
ened layers, standard relative attention is used. For
LSH attention, we set chunk length to 128 and use
2 hashes, which results in small memory complex-
ity in our full-size layers. In this setup, we reach
a score of 3.443 bpd with a (3@1, 12@3, 3@1) ar-
chitecture. All attention layers had dmodel = 768,
dff = 3072 and 8 heads. No dropout was used.

3.4.3 CIFAR-10
CIFAR-10 (Krizhevsky, 2009) is an image dataset
consisting of 60000 images of size 32x32. We use
this dataset primarily for our ablations (Section 4).
Due to the relatively small number of examples
compared to ImageNet, models reach convergence
after 100k steps.

4 Ablations

In this section, we start by introducing a training
technique called shorten factor dropout (Section
4.1), and then analyze Hourglass’s components de-

ImageNet32 BPD
PixelCNN (van den Oord et al., 2016b) 3.83
Image Transformer (Parmar et al., 2018) 3.77
Axial Transformer (Ho et al., 2019) 3.76
Hourglass 3.74
VDM (Kingma et al., 2021) 3.72
DenseFlow (Grcić et al., 2021) 3.63
ImageNet64 BPD
Reformer (Kitaev et al., 2020) 3.65
Performer (Choromanski et al., 2021) 3.64
Hourglass 3.44
Sparse Transformer (Child et al., 2019) 3.44
Routing Transformer (Roy et al., 2020) 3.43
Combiner (Ren et al., 2021) 3.42
VDM (2021) 3.40
DenseFlow (2021) 3.35

Table 3: Bits per Dimension (BPD) on downsampled
imagenet. Autoregressive models are separated by a
horizontal line from non-autoregressive ones. On Ima-
geNet32, our model yields new state-of-the-art for au-
toregressive models.

scribed above. We show that shortened layers be-
have similarly to full token-level layers in terms
of scalability (Section 4.2). Then we study the ef-
fect of different distributions of (pre, post) vanilla
layers on Hourglass’ accuracy (Section 4.3). We
further analyze the performance of various upsam-
pling and downsampling methods (Sections 4.4 and
4.5). Finally, we discuss different shorten factors
and multi-stage shortening in Section 4.6.

We conduct the ablations on both text and image
generation to show applicability across different
domains. We report bits per character (BPC) on
the enwik8 validation (dev) set evaluated without
context (sequence length 2048) and bits per dim
(BPD) on the CIFAR-10 test set. For the exact
hyperparameter setup refer to the Appendix.

4.1 Shorten factor dropout

Different shorten factors can be used for the same
model when using parameterless pooling methods.
We propose a training procedure where the shorten
factor is randomly sampled with uniform distribu-
tion from a predefined set in each step. We observe
that such a training regime improves validation
loss compared to a baseline trained with a single,
fixed shorten factor. For example, a model trained
with shorten factor randomly sampled from {2, 3}
performs better when evaluated with any of these
shorten factors, compared to models trained with a
corresponding fixed shorten factor (Tab. 4).

We hypothesise that such a technique promotes
a more uniform distribution of information over
the sequence of tokens. It may be essential for
fixed-size pooling techniques as they do not ac-

1564

count for variable length constituents like words.
By spreading information uniformly, we prevent a
situation where we lose content by shortening three
information-dense tokens or lose available capacity
by merging three low information ones.

Shorten factor dropout is not limited to our ar-
chitecture and can be applied to any model that
utilizes shortening, particularly (Dai et al., 2020).

Hierarchy Train k Val k = 2 Val k = 3
2@1 8@k 2@1 {2, 3} 1.104 1.116

2 1.116
3 1.124

4@1 12@k 4@1 {2, 3} 1.086 1.094
2 1.098
3 1.101

5@1 10@k 5@1 {2, 3} 1.082 1.087
2 1.096
3 1.095

Table 4: Comparison between models trained with
shorten factor dropout (Train k = {2, 3}, Section 4.1)
and fixed shorten factor baselines on enwik8.

4.2 Scaling shortened layers

In this study, we show that layers operating on
the shortened sequence contribute significantly to
Hourglass’s accuracy. In Table 5 we measure the
impact of scaling the depth of the shortened part of
the model with a fixed number of vanilla layers.

We also check if scaling laws of Transformers,
described in (Kaplan et al., 2020), hold by com-
paring a regression line fitted to various Hourglass
configurations and one fitted to Transformer-XL
baseline. We observe in Figure 1 that the slopes are
very similar, which indicates that the laws hold.

Number of shortened layers enwik8 CIFAR-10
Baseline (n = 1) 1.164 3.28
n = 4 1.134 3.16
n = 8 1.111 3.07
n = 16 1.096 3.03

Table 5: Impact of increasing the number of shortened
layers on perplexity. Vanilla layers: (1, 1) for CIFAR-
10 and (2, 2) for enwik8, shorten factor 3 used in both.

4.3 Impact of vanilla layers

We observe a significant contribution to Hourglass’
performance with increasing the number of vanilla
layers. One reason is that we perform more compu-
tations as in vanilla layers we process the sequence
in token-level - no shortening is applied. We also
see that the distribution of vanilla layers before
shortening and after shortening does impact the
training (see Tab. 6), and equal distribution leads
to the best perplexity.

Vanilla layers enwik8 CIFAR-10
(0, 0) 1.460 3.429
(0, 2) 1.176 3.108
(2, 0) 1.189 3.035
(1, 1) 1.171 3.012
(2, 2) 1.128 2.966

Table 6: Impact of the distribution of vanilla layers on
enwik8 (BPC) and CIFAR-10 score (BPD). We see that
equal distribution of layers before and after shortening
leads to better results on both datasets.

4.4 Upsampling method
In Table 7 we investigate different possibilities of
choosing the upsampling method. For attention-
free methods, linear upsampling performs better
on images, while repeat upsampling works well for
text. Attention upsampling works well regardless
of the function U and has the lowest perplexity.

Upsampling method enwik8 CIFAR-10
Repeat 1.148 3.062
Linear 1.163 3.020
U(x, x′) = x 1.145 2.967
U(x, x′) = x+ Linear(x′) 1.132 3.012

Table 7: Upsampling method ablation - baseline config-
urations are (2@1, 24@4, 2@1) and (1@1, 8@3, 1@1)
for enwik8 and CIFAR-10, respectively.

4.5 Pooling method
Table 8 presents impact of pooling method on
both enwik8 (BPC) and CIFAR-10 (BPD). Atten-
tion pooling reaches the lowest perplexity for both
datasets. Average pooling performs well on text
among attention-free methods, while linear pool-
ing works better for images. Both of these methods
perform significantly worse for the other modality.
Attention pooling demonstrates small differences
with respect to chosen shortening function S (Sec-
tion 2.1), still preserving the preference towards
linear pooling on images and average pooling on
text.

Pooling method enwik8 CIFAR-10
AvgPool 1.129 3.116
Attention, S = AvgPool 1.124 3.012
Attention, S = LinearPool 1.142 2.998
LinearPool 1.159 2.998

Table 8: Ablation of pooling methods. Attention pool-
ing achieves the best perplexity on both datasets.

4.6 Shortening strategies
While the analysis above gives a clear indication of
what methods to choose for shortening and upsam-
pling, we are still left with the question of which
shorten factors to use and whether to do single-
stage or multi-stage shortening.

1565

Consistently, it is beneficial to do at least one
shortening and by a factor of at least 3, while keep-
ing 2-3 vanilla layers. Beyond that, a number of
different configurations can yield similar results. In
Table 1 we present the different hierarchical con-
figurations that we tested on enwik8 and plotted in
Figure 1. It can be seen that configurations with
similar computation costs perform similarly. The
sequence length used in these experiments is 2048
– we hypothesise that more hierarchy may be bene-
ficial with even longer sequences.

5 Related Work

Shortening in Transformers Shortening in our
work is inspired by Funnel-Transformer (Dai et al.,
2020). The key difference is that they train an en-
coder model for text classification, where our work
is entirely focused on language modeling, which
provides additional challenges we had to solve re-
garding shortening in the autoregressive setup (Sec-
tion 2.2). Another difference is that they use repeat
upsampling method while we use attention. There
are also a few works related to character-level mod-
eling which use shortening, namely (Clark et al.,
2021) and (Tay et al., 2021). However, the authors
of these works focused mainly on shortening se-
quence in encoder part of the transformer, whereas
we focused on applying shortening in decoder.

The idea of shortening is also discussed in (Sub-
ramanian et al., 2020). However, proposed architec-
tures either focus on downsampling or upsampling,
while Hourglass is a U-Net-like architecture and
is symmetric in these terms. Their models use
transformer layers on the finest scales when post-
processing final representations. We do these also,
in the beginning, to preprocess tokens on the finest
scale, and we have found it essential to the score
(Section 4.3). Our attention upsampling method is
similar to their aggregation layer in the bottom-up
model, however we use one upsampling for each
scale change while they combine different scales
to create one global upsampling.

Relative positional encoding Our work is pri-
marily built on the backbone of Transformer-XL
(Dai et al., 2019) - we use the same relative at-
tention parametrization. Instead of the segment-
level recurrence mechanism, we use shortening
to make our model more efficient and feasible to
train on longer sequences. Another relative atten-
tion parametrization is RoFormer (Su et al., 2021)
where rotary positional embeddings are introduced.

We find this work particularly relevant because the
method is compatible with any attention type, in-
cluding efficient attention, and can be combined
with our model (Section 3.4.2).

Sparse Attention A well-known approach ad-
dressing the memory bottleneck is utilizing sparsity
patterns in the attention matrix - Routing (Roy et al.,
2020) and Sparse Transformer (Child et al., 2019)
are examples of such methods. Our solution is dif-
ferent in the sense that it uses full attention - just
with shortened sequence length. Combiner (Ren
et al., 2021) makes a step further and provides full
attention capabilities with similar computational
complexity to Routing and Sparse transformers by
leveraging structured factorization. This work, sim-
ilarly to papers mentioned above on efficient trans-
formers, concentrates on speeding up the attention
component, while the most important feature of
the Hourglass architecture is that it can use any
attention module as a drop-in.

Image generation on downsampled ImageNet
VDM (Kingma et al., 2021) and DenseFlow (Grcić
et al., 2021) are recently proposed state-of-the-art
methods for density estimation on this dataset. The
difference between these methods and Transformer-
based methods (Parmar et al., 2018; Ho et al., 2019)
including this work is that the former, unlike Trans-
formers, are non-autoregressive.

6 Conclusion

In this paper, we show how hierarchy can improve
the efficiency of Transformers in a language mod-
eling setup. Our proposed architecture, Hourglass,
significantly outperforms the baseline both in terms
of perplexity reached at a given computation cost
(Figure 1) and empirical metrics like running mem-
ory (Figure 6). Hourglass achieves state-of-the-art
results among autoregressive models on the Ima-
geNet32 generation task and competitive results
on other image generation and language modeling
tasks.

Hourglass can be used with any attention type,
which opens many directions for future research re-
lated to Transformers capable of processing longer
sequences. Another line of future work might be
related to advances in the shortening mechanism
itself, for example, involving a dynamic pooling
operation that could explicitly handle the problem
of fixed-size groups in multi-stage shortening. We
also leave open the problem of choosing the best hi-

1566

erarchy for a task. We conjecture that experiments
with much longer contexts will provide better guid-
ance for this choice and will benefit even more
from the Hourglass architecture.

7 Acknowledgments

Some experiments were performed using the
Entropy cluster funded by NVIDIA, Intel, the
Polish National Science Center grant UMO-
2017/26/E/ST6/00622, and ERC Starting Grant
TOTAL. The work of Henryk Michalewski was sup-
ported by the Polish National Science Center grant
UMO-2018/29/B/ST6/02959. The authors would
like to thank Marek Cygan and Kamil Wilczek for
their help with cluster setup, and Grzegorz Grudz-
iński, Dawid Jamka and Sebastian Jaszczur for
helpful discussions. This article describes a Team
Programming Project completed at the University
of Warsaw in the academic year 20/21. We are
grateful to Janusz Jabłonowski, the head of Team
Programming Projects, for his support and open-
mindedness.

References
Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.

Longformer: The long-document transformer.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu,
Heewoo Jun, David Luan, and Ilya Sutskever. 2020.
Generative pretraining from pixels. In Proceedings
of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine
Learning Research, pages 1691–1703. PMLR.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen

Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, David Belanger, Lucy Colwell, and
Adrian Weller. 2021. Rethinking attention with per-
formers.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2021. Canine: Pre-training an efficient
tokenization-free encoder for language representa-
tion.

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc V. Le.
2020. Funnel-transformer: Filtering out sequential
redundancy for efficient language processing.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019.
Transformer-xl: Attentive language models beyond a
fixed-length context.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Prafulla Dhariwal, Heewoo Jun, Christine Payne,
Jong Wook Kim, Alec Radford, and Ilya Sutskever.
2020. Jukebox: A generative model for music.

Angela Fan, Thibaut Lavril, Edouard Grave, Armand
Joulin, and Sainbayar Sukhbaatar. 2021. Address-
ing some limitations of transformers with feedback
memory.

Matej Grcić, Ivan Grubišić, and Siniša Šegvić. 2021.
Densely connected normalizing flows.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and
Tim Salimans. 2019. Axial attention in multidimen-
sional transformers.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszko-
reit, Noam Shazeer, Ian Simon, Curtis Hawthorne,
Andrew M. Dai, Matthew D. Hoffman, Monica Din-
culescu, and Douglas Eck. 2018. Music transformer.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models.

1567

http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/2005.14165
https://proceedings.mlr.press/v119/chen20s.html
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/2009.14794
http://arxiv.org/abs/2009.14794
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/2006.03236
http://arxiv.org/abs/2006.03236
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2005.00341
http://arxiv.org/abs/2002.09402
http://arxiv.org/abs/2002.09402
http://arxiv.org/abs/2002.09402
http://arxiv.org/abs/2106.04627
http://arxiv.org/abs/1912.12180
http://arxiv.org/abs/1912.12180
http://arxiv.org/abs/1809.04281
http://arxiv.org/abs/2001.08361

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and François Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear
attention.

Diederik P. Kingma, Tim Salimans, Ben Poole, and
Jonathan Ho. 2021. Variational diffusion models.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer.

Alex Krizhevsky. 2009. Learning multiple layers of
features from tiny images.

Matt Mahoney. 2011. Large text compression bench-
mark.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin
Tran. 2018. Image transformer.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. 2021. Zero-shot text-to-image gener-
ation.

Hongyu Ren, Hanjun Dai, Zihang Dai, Mengjiao Yang,
Jure Leskovec, Dale Schuurmans, and Bo Dai. 2021.
Combiner: Full attention transformer with sparse
computation cost.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
2015. U-net: Convolutional networks for biomedical
image segmentation.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2020. Efficient content-based sparse
attention with routing transformers.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng
Liu. 2021. Roformer: Enhanced transformer with
rotary position embedding.

Sandeep Subramanian, Ronan Collobert, Marc’Aurelio
Ranzato, and Y-Lan Boureau. 2020. Multi-scale
transformer language models.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bo-
janowski, and Armand Joulin. 2019. Adaptive at-
tention span in transformers.

Sainbayar Sukhbaatar, Da Ju, Spencer Poff, Stephen
Roller, Arthur Szlam, Jason Weston, and Angela Fan.
2021. Not all memories are created equal: Learning
to forget by expiring.

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin, Simon
Baumgartner, Cong Yu, and Donald Metzler. 2021.
Charformer: Fast character transformers via gradient-
based subword tokenization.

Aaron van den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. 2016a. Pixel recurrent neural net-
works. CoRR, abs/1601.06759.

Aaron van den Oord, Nal Kalchbrenner, Oriol
Vinyals, Lasse Espeholt, Alex Graves, and Koray
Kavukcuoglu. 2016b. Conditional image generation
with pixelcnn decoders.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization.

Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad
Shoeybi, Tom Goldstein, Anima Anandkumar, and
Bryan Catanzaro. 2021. Long-short transformer: Ef-
ficient transformers for language and vision.

1568

http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2107.00630
http://arxiv.org/abs/2001.04451
http://arxiv.org/abs/1802.05751
http://arxiv.org/abs/2102.12092
http://arxiv.org/abs/2102.12092
http://arxiv.org/abs/2107.05768
http://arxiv.org/abs/2107.05768
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/2003.05997
http://arxiv.org/abs/2003.05997
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2005.00581
http://arxiv.org/abs/2005.00581
http://arxiv.org/abs/1905.07799
http://arxiv.org/abs/1905.07799
http://arxiv.org/abs/2105.06548
http://arxiv.org/abs/2105.06548
http://arxiv.org/abs/2106.12672
http://arxiv.org/abs/2106.12672
http://arxiv.org/abs/1601.06759
http://arxiv.org/abs/1601.06759
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/2107.02192
http://arxiv.org/abs/2107.02192

A Autoregressive shortening

In Section 2.2 we address two problems of short-
ening in an autoregressive setup: information leaks
and reduced expressivity. Here we study these is-
sues in more detail.

A.1 Motivation behind using vanilla layers

At first sight, it may be tempting to create hier-
archical models that directly shorten the input to
maximize the efficiency gains. In this section, we
explain why vanilla layers are crucial for modeling
at least some sequences, especially due to autore-
gressivity.

Consider a sequence modeling task where the
input is a random sequence with repeats, such
as A#AC#CD#DB#B. The sequence consists of
chunks L#L where L is a random uniform letter
and # is a special symbol. A vanilla Transformer
language model can achieve 66% sequence accu-
racy on this task – it cannot predict the token at the
beginning of the chunk, but it can predict the last
token of the chunk by simply copying the token at
2 positions earlier, which is possible using a vanilla
self-attention layer.

It is however not easy to learn this task in a short-
ening setup when there are no vanilla layers operat-
ing on the finest scale – this is the situation defined
in Reduced expressivity subsection of Section 2.2.
Assume shorten factor is k = 3 and the input is
A#AB#BC#C. To avoid information leak, we shift
the input sequence right by 1, and then by k−1 = 2
directly before shortening. Then the sequence
is 000A#AB#B. Our shortened embeddings are
as follows: e0 = S(emb0, emb0, emb0), e1 =
S(embA, emb#, embA) where emb is input em-
bedding matrix and S is a shortening function.

Shortened embeddings [000][A#A][B#B]
Shifted input embeddings 0A# AB# BC#
Target sequence A#A B#B C#C

Positions 123 456 789

Table 9: Example input sequence which is difficult to
model without vanilla layers. The model can use only
input embeddings shifted by one from the residual and
shortened embeddings (shorten factor is 3) to predict
the target sequence. Note that it is impossible to predict
tokens at positions divisible by 3 using only that infor-
mation.

Because no vanilla layers are used, for predic-
tion we can use only shortened embeddings and
input token embeddings shifted right by 1 from

the residual connection. Note that to predict the A
token at position 3 we can use only embedding of
emb# and e0 - both of these contain no informa-
tion so we are unable to predict this token better
than randomly (see Table 9). An analogous situa-
tion occurs for prediction of any tokens at positions
divisible by 3, which makes the model unable to
achieve more than 50% accuracy when the task has
vocabulary size of at least 2.

This issue can be solved by adding at least one
vanilla layer to the model, so that it can attend
within the neighborhood of k previous tokens. For
this particular problem, it is sufficient to use local
attention with context size k in vanilla layers which
is significantly more efficient than full attention.

A.2 Information leaks – analysis
A.2.1 Definition of autoregressive model
Formally, given a target sequence, x = x1, ..., xn,
an autoregressive model (e.g. transformer
decoder) models the sequence as P (x) =∏n

i=1 P (xi|x1, ..., xi−1) and

∀iP (xi|x1, ..., xn) = P (xi|x1, ..., xi−1)

namely xi token depends only on previous tokens,
never on itself nor next ones.

A.2.2 Definition of information leak
We say that a leak was caused by function
Fn : An −→ An transforming sequence of
input tokens (x1, x2, ..., xn) into another
sequence (u1, ..., un) = F ((x1, ..., xn))
when ∃i<j<nP (xi|x1, ..., xi−1, xj) ̸=
P (xi|x1, ..., xi−1), namely there exists j ≥ i
that token xi depends on xj which violates the
autoregressive property.

A.2.3 Model representation
Let Rk : A

n −→ An be a shift right function which
reindexes tokens by shifting each of them right by
k positions:

Rk((x1, x2, ...xn)) = (0, ..., 0︸ ︷︷ ︸
k

, x1, ..., xn−k)

Sk : A∗ −→ A∗ shortening function with factor
k which takes on input x1, ..., xn sequence and
returns s1, ..., sm where m = n

k , Uk upsampling
function which works in similar way but upsamples
Uk((u1, ..., um)) = u1, ..., un.

Between them there is also applied D decoder
function, D = D1 ◦ · · · ◦Dl, where each Di is a

1569

function representing decoder block. Due to causal
attention masking in the decoder block, there is no
risk of information leak caused by function D.

A.2.4 Leak description
Because of mentioned attention mask, we will omit
the flow of information between tokens caused by
the influence of attention mechanism because this
mask keeps the autoregressive property.

Now, let (x1, ..., xn) be an input sequence and
(u1, ..., un) = U(D(Sk(Ts((x1, ..., xn))))) = F .
In order to preserve autoregressive property, it is
obligatory that no leak occurs.

We will show that shift by any value 0 < s <
k − 1 where k is the shorten factor will cause a
leak.
To start with, consider input sequence (x1, ..., xn)
and perform operation F . Rs((x1, ..., xn)) =
(0, ..., 0︸ ︷︷ ︸

s

, x1, ..., xn−s) = r. Assuming that n is

divisible by s, we have Sk(r) = (v1, ..., vn
k
) = v

where each vi consists of information obtained in
(r(i−1)·k+1, ..., rik). Now let see that operation D
preserves autoregressive property, let d = D(t).
Now, U(d) = (u1, ..., un) and each ui depends on
d⌊ i−1

k ⌋+1.
Now consider s ≤ k − 2 and let (u1, ..., un) =

F ((x1, ..., xn)) will be a result of our Transformer
part. Let take u1 which depends on d1 and d1
depends on (r1, ..., rk) = (0, ..., 0, x1, ..., xk−s).
For that reason d1 depends on x1, x2, ..., xk−s, so
we have

P (x1|xk−s) ̸= P (x1)

which violates the autoregressive property.

B Experimental setup

B.1 Common parameters
Here we list common hyperparameters used for all
experiments mentioned in the paper. We use Adam
optimizer with β1 = 0.9, β2 = 0.98 and ϵ = 1e−9.
Weight decay and gradient clipping is not used.

In terms of model details, we decided to use a
Pre-Norm architecture and FastGelu activation in
feed-forward layers.

B.2 Enwik8
We use dmodel = 512, dff = 2048 and 8 attention
heads. Models in ablation study are trained for
200k steps with cosine learning rate schedule, set-
ting cycle length for 200k steps and linear warmup
of 4000 steps.

For the main result achieving 0.98 bpc with
4@1, 8@3, 4@1 hierarchy, we set dmodel = 768,
dff = 3072 and nheads = 8 which results in 146M
parameters. It is trained for a total number of 350k
steps with one cycle of cosine schedule. Linear
warmup of 20k steps is used.

At the beginning of our work on this paper, we
have performed grid search over following hyper-
parameters for enwik8:

• batch size: {8, 16, 32}, finally chosen 8

• dropout: {0.05, 0.1, 0.15, 0.20}, finally cho-
sen 0.15

• learning rate:
{1e−4, 2e−4, 3e−4, 4e−4, 5e−4},
finally chosen 4e−4

All next experiments were conducted using these
parameters without additional searching.

B.3 Downsampled ImageNet - common
parameters

For ImageNet32 and ImageNet64 experiments we
use inverse square root learning rate decay from
(Vaswani et al., 2017), setting warmup steps to
8000 in both experiments. Total batch size is 64.

B.4 ImageNet32
In this dataset, we operate on input sequence length
of 3072. We use dmodel = 512, dff = 2048, 8
attention heads and 0.01 dropout rate. We perform
400k training steps with linear warmup and inverse
square root decay and then we train for additional
70k steps with cosine learning rate decay, starting
from the learning rate from the previous schedule
at 400k and decreasing it to 0 at 470k steps.

B.5 ImageNet64
As an input we receive a sequence of 12288 tokens
representing 64× 64× 3 images. We set dmodel =
768, dff = 3072, 8 attention heads and dropout
equal to 0. We perform 300k steps with linear
warmup and inverse square root decay.

B.6 CIFAR-10
All the ablation studies are run for 100k training
steps, unless otherwise specified. Input sequence
has length 3072 and model parameters are as fol-
lows: dmodel = 512, dff = 2048, 8 attention heads
and dropout equal to 0. Total batch size is 8. Co-
sine learning rate decay with linear warmup of
5000 steps and 100k cycle length is used.

1570

C Environment setup

C.1 Hardware
Experiments are conducted on several setups.

• Ablation Study and short training sessions
were computed on nodes consisting of 4x Ti-
tan V with 12GB memory each, 64GB RAM,
Intel Xeon E5-2660 v4 CPU

• longer trainings were completed on 8x RTX
2080 Ti with 11GB memory each, 128GB
RAM and Intel Xeon E5-2660 v4 CPU.

• Few longest trainings were conducted on 8×8
TPUv3 units, each with 16GB memory.

C.2 Software
All experiments were performed on Linux operat-
ing system using Trax library version 1.3.9 along
with all its dependencies from this particular re-
lease date. Additionally, to run shorten factor
dropout experiments we modified the Transformer-
XL codebase in PyTorch.

D Reproducibility

To ensure the reproducibility of this work
and to support open science principles,
we made our code publicly available at
github.com/google/trax. In this reposi-
tory, we also provide Google Colab notebooks
where the evaluation of our main Enwik8 and
ImageNet32/64 results can be reproduced.23

D.1 Randomness
Seeds in all experiments were chosen randomly,
however each experiment contains history which
allows retrieving all randomly set parameters for
reproductions.

For each ablation described in the ablation study
section, we rerun the baseline 3 times to calculate
standard deviation. All other experiments are run
only once due to costs and since the variance we
noticed was minimal.

D.2 Experiment representation
Each experiment is represented by a configuration
file that unambiguously determines the whole setup
– all hyperparameters and training details like spe-
cific optimizers, data preprocessing functions, or
batch size per device.

2https://github.com/google/trax/blob/master/trax/models/research/examples/hourglass_enwik8.ipynb

3https://github.com/google/trax/blob/master/trax/models/research/examples/hourglass_downsampled_imagenet.ipynb

1571

https://colab.research.google.com/github/google/trax/blob/master/trax/models/research/examples/hourglass_enwik8.ipynb
https://colab.research.google.com/github/google/trax/blob/master/trax/models/research/examples/hourglass_downsampled_imagenet.ipynb

