@inproceedings{yang-etal-2022-apeach,
title = "{APEACH}: Attacking Pejorative Expressions with Analysis on Crowd-Generated Hate Speech Evaluation Datasets",
author = "Yang, Kichang and
Jang, Wonjun and
Cho, Won Ik",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/2022.findings-emnlp.525/",
doi = "10.18653/v1/2022.findings-emnlp.525",
pages = "7076--7086",
abstract = "In hate speech detection, developing training and evaluation datasets across various domains is the critical issue. Whereas, major approaches crawl social media texts and hire crowd-workers to annotate the data. Following this convention often restricts the scope of pejorative expressions to a single domain lacking generalization. Sometimes domain overlap between training corpus and evaluation set overestimate the prediction performance when pretraining language models on low-data language. To alleviate these problems in Korean, we propose APEACH that asks unspecified users to generate hate speech examples followed by minimal post-labeling. We find that APEACH can collect useful datasets that are less sensitive to the lexical overlaps between the pretraining corpus and the evaluation set, thereby properly measuring the model performance."
}
Markdown (Informal)
[APEACH: Attacking Pejorative Expressions with Analysis on Crowd-Generated Hate Speech Evaluation Datasets](https://preview.aclanthology.org/fix-sig-urls/2022.findings-emnlp.525/) (Yang et al., Findings 2022)
ACL