Attention weights accurately predict language representations in the brain
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Abstract

In Transformer-based language models (LMs)
the attention mechanism converts token embed-
dings into contextual embeddings that incorpo-
rate information from neighboring words. The
resulting contextual hidden state embeddings
have enabled highly accurate models of brain
responses, suggesting that the attention mech-
anism constructs contextual embeddings that
carry information reflected in language-related
brain representations. However, it is unclear
whether the attention weights that are used to
integrate information across words are them-
selves related to language representations in
the brain. To address this question we ana-
lyzed functional magnetic resonance imaging
(fMRI) recordings of participants reading En-
glish language narratives. We provided the nar-
rative text as input to two LMs (BERT and GPT-
2) and extracted their corresponding attention
weights. We then used encoding models to de-
termine how well attention weights can predict
recorded brain responses. We find that atten-
tion weights accurately predict brain responses
in much of the frontal and temporal cortices.
Our results suggest that the attention mecha-
nism itself carries information that is reflected
in brain representations. Moreover, these re-
sults indicate cortical areas in which context
integration may occur.

1 Introduction

The attention mechanism has enabled Transformer-
based language models (LMs) to achieve state-of-
the-art performance on many NLP tasks (Vaswani
et al., 2017; Radford et al., 2018; Devlin et al.,
2018). In these LMs the attention mechanism itera-
tively computes weighted sums of the embeddings
of neighboring tokens in order to transform token
embeddings into contextual representations. The
resulting contextual representations have been used
to produce predictions of brain responses that are
more accurate than predictions derived from (static)
lexical embeddings or from RNN-based contextual

embeddings (Schrimpf et al., 2021; Toneva and
Wehbe, 2019; Caucheteux et al., 2021). These find-
ings show that the attention mechanism produces
contextual hidden state embeddings that contain
more information reflected in brain responses than
lexical embeddings alone. However, prior work has
not determined whether the mechanism by which
hidden state embeddings are constructed (i.e., the
weights computed by the attention mechanism) is
itself reflected in brain representations.

To address this question, we used voxelwise
encoding models (VM), a powerful data-driven
method for determining what information is rep-
resented in the brain (Wu et al., 2006; Naselaris
et al., 2011). In encoding models, brain responses
to stimuli are modeled as a linear combination of
feature spaces that each represent properties of the
stimuli. These encoding models are used to deter-
mine where each feature space is represented in
the brain. Encoding models have previously been
used to determine how variables such as lexical
and contextual semantics are represented in brain
responses (Huth et al., 2016; de Heer et al., 2017;
Deniz et al., 2019; Jain and Huth, 2018). However,
previous work did not directly use attention weights
in encoding models to study whether and how the
attention weights are reflected in brain responses.
Understanding the relationship between attention
weights and brain representations would provide
insight into where information integration across
context occurs in the brain, and whether attention
weights contain information relevant for human
language processing.

In this work, we use attention weights in encod-
ing models to determine whether weights computed
by the attention mechanism of Transformer-based
LMs are represented in brain responses. We mod-
eled functional magnetic resonance (fMRI) data
recorded from six human participants while they
read a set of English natural language narratives.
We presented the same stimuli as input to BERT
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and GPT-2 and extracted their corresponding atten-
tion weights. We investigated how well attention
weights predict brain responses, compared to other
stimulus features such as lexical and contextual se-
mantic word embeddings. We found that, across
many cortical areas that have previously been asso-
ciated with language processing, attention weights
better predict brain responses than lexical embed-
dings. In a subset of these cortical areas, atten-
tion weights better predict brain responses than
contextual embeddings, suggesting that the mecha-
nism of context integration (attention weights) in
Transformer-based LMs reflects aspects of brain
responses that are not captured by the resulting
contextual embeddings. Moreover, these findings
suggest cortical areas that could be involved in the
integration of information from context words.

2 Related work

2.1 NLP features for neurolinguistics

Features extracted from NLP models have been
previously used in encoding models to study how
language is represented in the human brain. Prior
work used lexical word embeddings to show that
semantic information is represented across the cere-
bral cortex (Huth et al., 2016) and that these repre-
sentations are similar during listening and reading
(Deniz et al., 2019). Others used RNNs (Wehbe
et al., 2014) or contextual word embeddings (Jain
and Huth, 2018) to study where linguistic context
is integrated in the brain. Most recently, studies
showed that the hidden states of Transformer-based
LMs predict brain activity more accurately than
lexical embeddings or RNN-based contextual em-
beddings (Schrimpf et al., 2021; Caucheteux et al.,
2021; Toneva and Wehbe, 2019). However, it re-
mains unclear whether the Transformer model’s
attention weights contain relevant information to
represent language-related information in the brain
that is not captured in the resulting contextual em-
beddings. Recent concurrent work investigated the
similarity between brain representations and the
activity of the attention heads in BERT (Kumar
et al., 2022). From each attention head, the au-
thors extracted the “transformation” vector which
is used to update the hidden states. This trans-
formation vector is the sum of the value vectors
of each token weighted by the attention weights.
They used the transformation vector and its norm
as features of encoding models to predict brain
responses. Both of these features contain infor-

mation about the attention weights, but are also
dependent on the value vectors, which addition-
ally encode semantic information. In our work, we
predict brain responses directly from the attention
weights in order to more clearly distinguish be-
tween the representations of attention weights and
semantic embeddings. In addition, we analyze the
attention weights of two Transformer-based LMs
(BERT and GPT-2) to determine whether attention
weights from bidirectional and unidirectional LMs
are reflected differently in brain responses.

2.2 Attention analysis in NLP

Several studies have investigated whether the at-
tention mechanism can be analyzed to improve
interpretability of Transformer-based LMs (Rogers
et al., 2020; Vashishth et al., 2019; Galassi et al.,
2020). Because attention defines how much a word
will be weighted to compute the next representa-
tion of its neighbors, some have claimed that atten-
tion is naturally interpretable (Clark et al., 2019).
However, whether attention weights actually ex-
plain the behavior of LMs has been subject to de-
bate (Jain and Wallace, 2019; Wiegreffe and Pinter,
2019). Nevertheless, there is evidence that atten-
tion weights do carry relevant information. At a
qualitative level, the network structure of LMs can
be used with attention weights to improve inter-
pretability (Abnar and Zuidema, 2020). Moreover,
a quantitative analysis of BERT’s 144 attention
heads showed that attention weights in some atten-
tion heads correspond to linguistic functions such
as syntactic or coreference relations (Clark et al.,
2019). For example in a particular head, direct ob-
jects consistently give the highest attention weight
to their verbs. This analysis showed that linguisti-
cally specialized heads are primarily found in the
middle layers of BERT. Similar findings were re-
ported for GPT-2 (Vig and Belinkov, 2019).

3 Methods

To investigate whether attention weights predict
brain responses, we analyzed functional magnetic
resonance imaging (fMRI) recordings of brain re-
sponses to English language narratives (Section
3.1). We used the voxelwise encoding modeling
(VM) framework (Wu et al., 2006; Naselaris et al.,
2011) to determine where attention weights are
reflected in the recorded brain responses (Section
3.2). We identified how well attention weights
can predict brain responses relative to lexical se-
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Figure 1: Voxelwise encoding modeling approach. (a) Natural language narratives were used as stimuli. b) Brain
responses were recorded using functional MRI while participants read the stimuli. (c) Attention feature spaces were
constructed by extracting attention weights from Transformer-based language models, BERT or GPT-2. Additional
feature spaces (not shown) were constructed to reflect semantic information and low-level sensory features. (d)
Separate train and test sets were created from the feature spaces and from the brain responses. (e) Regularized
regression was used to fit an encoding model that predicts brain responses from the extracted feature spaces, in each
voxel and participant separately. Model prediction performance was quantified as the Pearson correlation coefficient
between predicted brain responses and the recorded brain responses of the test set.

mantic features, and compared the performance of
attention weights across layers and across two LMs
(BERT and GPT-2). Then, to study whether atten-
tion weights contain additional information to LM
hidden states, we determined how well attention
weights extracted from BERT can predict brain
responses relative to contextual embeddings ex-
tracted from the hidden states of BERT. We further
did a focused analysis on cortical regions that have
previously been associated with language represen-
tations: the high-level auditory cortex (AC), the
superior temporal sulcus (STS), Broca’s area and
the superior ventral premotor speech area (sPMv)
(Fedorenko et al., 2011; Huth et al., 2016; de Heer
etal., 2017; Deniz et al., 2019). While the attention
mechanism in Transformer-based LMs and the con-
cept of attention in cognitive neuroscience are dis-
tinct, the two share a conceptual relationship (Lind-
say, 2020). Therefore, we also inspected brain
representations in areas of the human attention net-
work: the middle temporal visual area (MT), the
intraparietal sulcus (IPS) and the frontal eye field
(FEF) (Chen et al., 2019). We visualize the results
on cortical maps made with pycortex (Gao et al.,
2015).

3.1 Recording brain responses to naturalistic
language stimuli

Functional magnetic resonance imaging (fMRI)
was used to record brain activity in healthy par-
ticipants while they read a set of English language
narratives. fMRI measures the blood-oxygen-level
dependent (BOLD) signal, which indirectly mea-

sures the intensity of neural activity. Each fMRI
image consists of approximately 80,000 cortical
voxels, and each voxel corresponds to an approx-
imately 8 mm3 cube of the brain. The repetition
time (TR) of acquisition is about 2 seconds.

The stimulus narratives were originally recorded
for the Moth Radio Hour. The words were pre-
sented one-by-one at the center of a screen for the
same duration that they are heard in the audio ver-
sion. Each stimulus narrative contained between
1547 and 3313 words over 10-15 minutes. Over-
all, the stories contained 24744 total words (2977
unique words). We refer the reader to the original
study for details about fMRI data acquisition and
preprocessing (Deniz et al., 2019)!. In this study
we used ten of the stimulus narratives to estimate
encoding models, and we used the eleventh held-
out narrative to evaluate the estimated models.

3.2 Voxelwise encoding models fitting and
evaluation

In the VM framework, stimuli are first nonlinearly
transformed into sets of features (also called “fea-
ture spaces”) hypothesized to be represented in
brain activity. These feature spaces X; € R%**
are linearly combined to describe brain responses
Y € RY*!, where d; is the dimension of each fea-
ture space, ¢ is the number of timesteps and v is
the number of voxels. For each feature space X,
a set of weights B; € RV*% is estimated to map
from the feature space to brain responses. This set

'This dataset is openly available: https://berkeley.
box.com/v/Deniz-et-al-2019.
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of estimated model weights describes how infor-
mation in a given feature space modulates BOLD
responses in each voxel. In order to account for
variance in brain responses that can be explained
by multiple feature spaces, the weights for multi-
ple feature spaces are jointly estimated. To jointly
estimate these weights, banded ridge regression
is used. Banded ridge regression is a variant of
standard ridge regression that allows different reg-
ularization parameters for each feature space, and
therefore can avoid biases caused by differences in
feature distributions (Nunez-Elizalde et al., 2019).
Mathematically, banded ridge regression estimates
the weights for each feature space by solving:

B = argmin[||Y — BX||3 + [[ACBI[3],
B

where C'is a diagonal matrix containing the regular-
ization level. The estimated weights form a joint en-
coding model that describes brain responses as the
linear combination of multiple feature spaces. To
evaluate the encoding model, the estimated model
weights are used to predict brain responses to a
held-out stimulus. The prediction performance of
the encoding model is computed as the Pearson cor-
relation coefficient () between the predicted and
recorded brain responses to the held-out stimulus
for each voxel. Model prediction performance de-
scribes how well the feature spaces can jointly pre-
dict the time-course of brain responses. In order to
determine how well each individual feature space
can predict brain responses, the split-prediction
performance is used. The split-prediction perfor-
mance is a model interpretation metric that decom-
poses the prediction performance of the joint en-
coding model into the contribution of each feature
space while taking into account variation in brain
responses that can be explained by other feature
spaces. Formally, for a given feature space, the
split-prediction performance r; is defined as:

~

> (Y[t~ Y)(Yilt] - Vi)
V(YT = V)2 32, (Yilt] - Vi)?

where Y is the brain response and Y; is the pre-
diction of the feature space. This metric has the
advantage that it determines the contribution of
each feature space in light of other potential ex-
planatory variables, and is more computationally
efficient and less conservative than other methods
such as variance partitioning. For more details, see

Ty =

>

St-Yves and Naselaris (2018); la Tour et al. (2022).
The statistical significance of the prediction perfor-
mance r for each voxel is determined by a permu-
tation test with 10000 iterations (Deniz et al., 2019;
Lescroart and Gallant, 2019; Jain et al., 2020; Ra-
makrishnan and Deniz, 2021). In each permutation
iteration, the timecourse of voxel responses in the
held-out dataset is shuffled in blocks of 10 TRs,
and the Pearson correlation is computed between
the timecourse of predicted voxel responses and
the timecourse of shuffled voxel responses. The
resulting correlation coefficients form an empirical
null distribution of r for each voxel, which is used
to determine the p-value of the observed r for that
voxel. This p-value is computed for each voxel
separately. A false discovery rate (FDR) correction
(Benjamini and Hochberg, 1995) is then applied to
the resulting p-values, and voxels with a corrected
p-value of < 0.05 are considered to be statistically
significant.

3.3 Feature spaces

We categorized our variables of interest into three
types of feature spaces: attention weights (ex-
tracted from BERT or GPT-2), semantic representa-
tions (lexical or contextual embeddings), and low-
level sensory features. Each type of feature space
is detailed in the following subsections.

Attention features The attention feature space
reflects the weights computed by the attention
mechanism in order to form contextual hidden state
representations. We computed the attention fea-
ture space either from BERT-base or GPT-2 small
(Devlin et al., 2018; Radford et al., 2019). For
both models, we used pretrained models available
from the HuggingFace library (Wolf et al., 2020).
To construct an attention feature space, we first
extracted the attention maps from the attention
heads of the LM. An attention map is a matrix
M € R™™ where n is the number of tokens in
the input sequence. Each entry m; ; represents
the attention weight from token ¢ to token j. For
each input sequence, we used a sliding window
with 10 prior context words, because it has been
previously shown to yield to better prediction per-
formance than other context lengths (Toneva and
Wehbe, 2019). BERT requires special tokens [CLS]
and [SEP] to be appended to the beginning and end
of each input sequence. This input procedure re-
sulted in a 11 x 11 matrix M for GPT-2, and a
13 x 13 matrix M for BERT. To convert the atten-
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Figure 2: Prediction performance of BERT attention weights, lexical semantic and low-level features across
the cerebral cortex. Attention weights extracted from BERT, lexical embeddings, and low-level sensory features
were jointly used in an encoding model to predict brain responses. Voxel hue indicates the feature space that
best explains voxel responses (green for attention weights, red for semantic features, blue for low-level features).
Voxel opacity indicates the split-prediction performance of the best performing model. Voxels shown in gray were
not significantly predicted (p < 0.05, FDR-corrected). Attention weights best predict brain responses in most
frontal and temporal language-related regions, including Broca’s area, high-level auditory cortex (AC), the superior
temporal sulcus (STS), superior ventral premotor speech area (sSPMv), and the middle temporal visual area (MT).
Lexical embeddings predict best in some frontal and parietal areas. Low-level features predict well mainly in the

early visual cortex and the intraparietal sulcus (IPS).

tion maps into a feature vector that reflects the av-
erage attention to each word in the input sequence,
we took the mean over columns of M. When ex-
tracting attention weights from BERT, we excluded
the first and last column that represent the special
tokens. For words that are split into multiple tokens
during tokenization, we summed over the attention
to each of the tokens of the word, following Clark
et al., 2019. For each stimulus word, this proce-
dure resulted in a vector of dimension 11 for each
attention head. For each layer, the attention feature
space contains weights from each of 12 attention
heads, resulting in a 132-dimensional feature space.
Across all 12 layers, the attention feature space con-
sists of a 1584-dimensional vector for each word.

Semantic features The semantic feature spaces
were constructed either from lexical or contextual
word embeddings. To construct the lexical seman-
tic feature space we used embeddings from En-
¢lish1000, a 985-dimensional lexical embedding
space that has previously been shown to explain
variance in brain responses across the cerebral cor-
tex (Huth et al., 2016; Deniz et al., 2019; Vaidya
et al., 2022; LeBel et al., 2021; Tang et al., 2021).
English1000 is constructed from the co-occurrence
statistics in a large corpus of text composed of the
Moth stories, 604 popular books available through
Project Gutenberg, 2,405,569 Wikipedia pages and

36,333,459 reddit.com user comments. The vo-
cabulary of English1000 includes all the words of
the stimulus narratives. To construct the contextual
semantic feature space, we used the hidden state ac-
tivation of the eighth layer of BERT. To construct a
contextual embedding of each word, we computed
the mean across the embeddings of each token of
the word. We used embeddings from the eighth
layer of BERT because it produced more accurate
predictions of BOLD responses than other layers
(Figure 6 in Appendix). This is in accordance with
prior work (Schrimpf et al., 2021; Caucheteux et al.,
2021; Toneva and Wehbe, 2019).

Sensory-level features To account for brain rep-
resentations of low-level sensory information, we
created eight feature spaces that reflect visual char-
acteristics of the text stimulus: word presentation
rate (1 dimension), word length (1 dimension),
letter identity (26 dimensions), phoneme rate (1
dimension), phoneme identity (39 dimensions),
pauses (1 dimension), word length standard de-
viation (1 dimension) and motion energy (6555 di-
mensions). These feature spaces were constructed
based on prior work (Huth et al., 2016; de Heer
etal., 2017; Deniz et al., 2019). We refer the reader
to those studies for additional details.

Feature space preprocessing In order to match
the sampling rate of the fMRI recordings, we ap-
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Figure 3: Layer-wise comparison of BERT atten-
tion weights prediction performance. To determine
how well attention weights in different layers of BERT
predict brain responses, a separate encoding model
was estimated for each layer. Each encoding model
consisted of the attention weights from one layer of
BERT, lexical embeddings, and low-level features. The
split-prediction performance of the attention features
is shown for each encoding model. The dotted line
shows the performance of attention weights from each
layer separately. Each cross (“x”) shows the per-layer
performance for one participant. The solid line shows
the prediction performance of attention weights from
all 12 layers together. The dash-dotted line shows the
performance of attention weights from middle layers (5
to 10) only. The dashed line shows the performance of
attention weights from early (1 to 4) and late (11 to 12)
layers only. Attention weights extracted from layers 5 to
10 best predict brain responses, suggesting that the atten-
tion weights in middle layers carry more brain-relevant
information than attention weights in other layers.

plied a low-pass Lanczos filter with three lobes
with a cut-off frequency at 0.25 Hz to each of the
feature spaces (following e.g., Huth et al., 2016;
Deniz et al., 2019; Jain and Huth, 2018; Jain et al.,
2020). In order to account for the hemodynamic
response function of each voxel, which delays the
BOLD signal measured by fMRI relative to neu-
ral activity, we use a finite impulse response (FIR)
model (following Huth et al., 2016; Deniz et al.,
2019; Jain and Huth, 2018; Jain et al., 2020). The
FIR model was implemented by copying and de-
laying each feature space by 2, 4, 6, and 8 seconds.

4 Results

To study the role of the attention mechanism in ex-
plaining brain responses, we tested how well atten-
tion weights can predict brain responses to natural
language stimuli. We analyzed fMRI recordings

that were taken while human participants read a
set of English narratives. We provided the text
of the stimulus narratives to a Transformer-based
language model (BERT or GPT-2) and extracted at-
tention weights from each attention head. We used
voxelwise encoding models to determine how well
these attention weights can predict brain responses
compared to semantic features and low-level sen-
sory features.

4.1 Across many brain areas, attention
weights explain more variance in brain
responses than lexical semantic
embeddings

In order to determine how well attention weights
extracted from BERT explain brain responses com-
pared to lexical semantic embeddings and sensory-
level features, we estimated an encoding model that
maps lexical embeddings, BERT attention weights
and low-level features to brain responses. In Figure
2, we show the prediction performance of this joint
model for one representative participant. Results
for five additional participants are qualitatively sim-
ilar (see Section C in the Appendix). Voxel hue
denotes the feature space that best predicted brain
response in that voxel: green for attention weights,
red for lexical semantic embeddings and blue for
low-level features. Voxel opacity denotes the split-
prediction performance of the corresponding fea-
ture space. The split-prediction performance de-
notes the contribution of a specific feature space in
explaining the variance in the brain response. Vox-
els shown in gray were not significantly predicted
(FDR corrected, p < 0.05). Attention weights bet-
ter predict brain responses in voxels located across
the temporal and prefrontal cortices that have pre-
viously been associated with language processing:
high-level AC, STS, Broca’s area and sPMv. These
results suggest that, in many language-related cor-
tical areas, brain representations reflect more in-
formation about integration across words, than the
lexical representation of the words themselves.

4.2 Attention weights from middle layers of
BERT explain the most variance in brain
responses

In order to determine how well attention weights
from different layers of BERT represent informa-
tion in brain responses, we computed the prediction
performance of attention weights extracted from
each layer. For each layer, we estimated an en-
coding model mapping from attention weights in
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Figure 4: Region-level comparison of BERT and GPT-2 attention weights.We fit two encoding models, each
consisting of attention weights, lexical embeddings, and low-level features. We used attention weights from BERT
in one encoding model, and from GPT-2 in the other encoding model. The split-prediction performance of each
feature space is shown for each LM and cortical region. Average split-prediction performance of attention weights
across participants is shown by green bars (dark green for BERT and light green for GPT-2). Average split-prediction
performance of lexical embeddings across participants is shown by red bars. Average split-prediction performance
of low-level features across participants is shown by blue bars. Each cross “x” represents one participant. BERT
and GPT-2 perform very similarly in all regions. Attention weights predict well in language-related regions (AC,

Broca’s, sPMv) and in the visual attention area MT.

that layer, lexical embeddings and low-level fea-
tures to brain responses. In Figure 3, we show
the prediction performance of attention weights
in this layer-wise comparison. The dotted green
line shows the prediction of each layer averaged
across participants. Each cross (“x”) represents one
participant. Attention weights extracted from inter-
mediate layers (layers 5 to 10) best predict brain
responses. Subsequently, we compared encoding
models with two equally-sized groups of layers:
an encoding model with the attention weights of
the six intermediate layers grouped (layers 5 to 10,
intermediate layers model) and an encoding model
with the six early (1 to 4) and late layers (11 to
12) grouped (early and late layers model). The in-
termediate layers model (dash-dotted green line)
performs almost as well as the full model with all
the layers (solid green line). The early and late lay-
ers model (dashed green line) performs worse than
the full model with all the layers (solid green line).
The fact that using only half of the layers hardly
hurts the performance of the model is consistent
with literature on BERT pruning (Voita et al., 2019;
Michel et al., 2019). Moreover, the intermediate
layers are the ones where linguistically relevant
attention heads were found (Clark et al., 2019). In
contrast, the attention heads in early and late layers
were shown to mostly attend uniformly to every
token in the input sequence. This suggests that the
attention weights that are linguistically relevant are
better at predicting brain responses.

4.3 The attention weights of BERT and GPT-2
accurately predict brain responses

In order to determine whether the contribution of
attention in explaining brain responses is consistent
across Transformer-based LMs, we additionally es-
timated an encoding model using features extracted
from GPT-2 attention weights, lexical embeddings
and low-level features. In Figure 4, we show the
split-prediction performance of GPT-2 attention
weights, lexical embeddings and sensory-level fea-
tures for selected cortical regions. We also show the
split-prediction performance of a joint model with
BERT attention weights, lexical embeddings and
sensory-level features. Each cross (“x”) represents
a participant and the height of the bar is the aver-
age across participants. The attention weights of
both BERT and GPT-2 accurately predict brain re-
sponses in the language-related areas such as high-
level AC, Broca’s area and sPMv. Interestingly,
attention weights predict brain responses also well
in the visual attention area MT. However, brain re-
sponses in other areas of the attention circuit such
as FEF or IPS are not well predicted. Overall, the
prediction performance of BERT and GPT-2 at-
tention weights are very similar. This similarity
suggests that when only the preceding context is
provided to a LM, attention weights from unidi-
rectional and bidirectional models may perform
similarly well in terms of cognitive fit.
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Figure 5: Prediction performance of BERT attention weights, contextual embeddings and low-level features
across the cortex. BERT attention weights, contextual semantic embeddings (hidden state embeddings from BERT
layer 8), and low-level features were used to estimate an encoding model. Voxel hue indicates the feature space that
best explains voxel responses (green for attention weights, red for semantic features, blue for low-level features).
Voxel opacity indicates the split-prediction performance of the best performing feature space. Voxels shown in
gray were not significantly predicted (p < 0.05, FDR-corrected). The attention features best predict some voxels in
high-level AC along superior temporal sulcus, Broca’s area, and sPMv. Most MT voxels are well predicted by the
attention weights. Contextual embeddings best predict voxels in most frontal, temporal and parietal areas. Low-level
features predict best in visual cortex. In most cortical areas, contextual embeddings better predict brain responses
than attention weights, but attention weights predict better in some language-related regions and in visual area MT.

4.4 Across specific temporal and frontal areas,
attention weights explain more variance in
brain responses than contextual
embeddings

Contextual embeddings in the hidden states of
Transformer-based LMs carry information about
attention weights as well as lexical embeddings.
Prior work showed that these hidden state embed-
dings produce highly accurate predictions of brain
responses (Schrimpf et al., 2021; Toneva and We-
hbe, 2019). To determine whether attention weights
capture information reflected in brain representa-
tions that is not present in the contextual embed-
dings, we compared the prediction performance of
attention weights and of hidden state embeddings.
We used hidden state embeddings from the eighth
layer of BERT, because hidden state embeddings
from this layer produced more accurate predictions
of brain responses than other layers (see Figure 6 in
Appendix). We estimated an encoding model map-
ping from contextual embeddings from the eighth
layer of BERT, BERT attention weights and low-
level features to brain responses. In Figure 5, we
show the split-prediction performance of each fea-
ture space for one representative participant. Re-
sults for five additional participants were qualita-
tively similar and are shown in the Section C of
the Appendix. Voxel hue denotes the feature space

that best predicted brain response in that voxel:
green for attention weights, red for contextual em-
beddings and blue for low-level features. Voxel
opacity denotes the split-prediction performance
of the corresponding feature space. Voxels shown
in gray were not significantly predicted. Contex-
tual embeddings best predict brain responses in the
majority of temporal and prefrontal areas. Yet, at-
tention weights explain most of the brain responses
in some of these areas, such as portions of high-
level AC, Broca’s area and sPMv. This supports
findings that linguistic information in BERT can be
found not only in the hidden states, but also in the
attention weights (Clark et al., 2019).

5 Conclusion

In this work, we examined how well attention
weights from Transformer-based LMs predict brain
responses to linguistic stimuli. We find that at-
tention weights from BERT and GPT-2 produce
accurate predictions across many cortical areas that
have previously been associated with language pro-
cessing (high-level auditory cortex, superior tempo-
ral sulcus, Broca’s area, superior ventral premotor
speech area). Attention weights better predict brain
responses than lexical embeddings in most of these
areas. Attention weights are also better at predict-
ing brain responses than contextual embeddings
in portions of the language related areas. These
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findings show that attention weights capture infor-
mation that is not contained in lexical or contextual
embeddings, and indicate cortical areas that could
be involved in integrating context across words.
Moreover, attention weights from the middle lay-
ers of the LM, that have been previously identified
as linguistically relevant, contribute strongest to the
predictions. While our results showed consistency
between unidirectional and bidirectional models in
terms of how well attention weights predict brain
responses, more work is needed to understand the
impact of model directionality on cognitive fit. In
the future, comparing the results of our method of
computing attention weights with more cognitively-
inspired methods could provide more specific in-
sights into how attention weights in Transformer-
based LMs relate to processes in the human brain.

Limitations

Some limitations of our work arise from the nature
of fMRI data. The temporal resolution of fMRI
(2s) does not capture all the rapid changes in hu-
man speech. Using encoding models with another
neuroimaging technique with higher temporal res-
olution, such as MEG, could provide complemen-
tary results. Our analyses were limited to English
language comprehension, but it could be the case
that the nature of contextual language integration
differs between different languages. In the future,
we hope to apply our methods to other languages
in order to obtain a more comprehensive under-
standing of context integration in the brain and
in artificial neural networks. Lastly, note that our
analyses demonstrate the similarity of representa-
tions between Transformer-based LMs and brain
responses, but we caution that these analyses do not
directly prove the existence of similar underlying
computational mechanisms.
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A Computing infrastructure

We ran the encoding models on a NVIDIA RTX
A5000 GPU. The average training runtime was
around 150 minutes. We used the himalaya library
(la Tour et al., 2022). The hyperparameters are
searched over 1000 iterations.

B Layer-wise comparison of predictions
from BERT and GPT-2 hidden state
embeddings

In order to determine in which layer of BERT the
hidden states produced the best predictions of brain
responses, we estimated encoding models for each
layer. We chose the 8th layer as it performed best
(see Figure 6). We ran the same models with the
hidden states of GPT-2.

C Cortical maps of other participants

Figure 7 through Figure 12 show cortical maps for
additional models and other participants. These
figures are analogous to Figure 2 and Figure 5.
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Figure 6: Layer-wise comparison of prediction performance of contextual embeddings extracted from BERT
and GPT-2 hidden states. The average performance across participants with BERT embeddings and GPT-2
embeddings are shown with the red and blue lines, respectively. Each dot represents a participant. This comparison

led us to choose the hidden states from layer 8 of BERT as contextual embeddings for our experiments.
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