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Abstract

The task of converting a natural language ques-
tion into an executable SQL query, known as
text-to-SQL, is an important branch of seman-
tic parsing. The state-of-the-art graph-based
encoder has been successfully used in this task
but does not model the question syntax well.
In this paper, we propose S2SQL, injecting
Syntax to question-Schema graph encoder for
Text-to-SQL parsers, which effectively lever-
ages the syntactic dependency information of
questions in text-to-SQL to improve the perfor-
mance. We also employ the decoupling con-
straint to induce diverse relational edge em-
bedding, which further improves the network’s
performance. Experiments on the Spider and
robustness setting Spider-Syn demonstrate that
the proposed approach outperforms all existing
methods when pre-training models are used,
resulting in a performance ranks first on the
Spider leaderboard.

1 Introduction

Relational databases are ubiquitous and store a
great amount of structured information. The in-
teraction with databases often requires expertise
on writing structured code like SQL, which is not
friendly for users who are not proficient in query
languages. Text-to-SQL aims to automatically
translate natural language questions into executable
SQL statements (Zelle and Mooney, 1996; Zettle-
moyer and Collins, 2005; Wong and Mooney, 2007;
Zettlemoyer and Collins, 2007; Berant et al., 2013;
Li and Jagadish, 2014; Yaghmazadeh et al., 2017;
Iyer et al., 2017).

Recently, a large-scale, multi-table, realistic text-
to-SQL benchmark, Spider (Yu et al., 2018), has
been released. The most effective and popular en-
coder architecture on Spider is the question-schema
interaction graph (Wang et al., 2020). Built on that,
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Figure 1: A typical bad case of the current graph-based
methods. If the structure of question (dependencies) are
not considered, the wrong SQL will be generated even
if the linking is correct.

many state-of-the-art models have been further de-
veloped (Chen et al., 2021; Cao et al., 2021). It
jointly models natural language question and struc-
tured database schema information, and uses some
pre-defined relationships to carve out the interac-
tion between them. However, we observed that
the current graph-based model yet has two major
limitations.

Syntactic Modelling. Jointly modeling syntax
and semantics is a core problem in NLP. In the
paradigm of deep learning, the role of syntax
should be better understood for tasks in which syn-
tax is a central feature (Ge and Mooney, 2005;
Michalon et al., 2016; Zhang et al., 2019b; Zan-
zotto et al., 2020), including the text-to-SQL task.
For example, Figure 1 shows that the baseline
model can learn the correct linking among date,
id and transcript between the question and
schema, but fail to identify that id should also be
included in the SELECT clause. On the other hand,
with the help of the dependency tree, date and id
are close to each other and thus should appear in the
SELECT clause simultaneously. However, almost
all available approaches treat the language question
as a sequence, and syntactic information is ignored
in neural network-based text-to-SQL models.

Entangled Edge Embedding. The question-
schema interaction graph pre-defines a series of
edges, and models them as learnable embeddings.
These embeddings should be diverse by nature be-
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Figure 2: An overview of S2SQL framework. The S2SQL has three relation types to represent the known syntactic
information, linking structure and schema information. There structure are integrated into the question-schema
interaction graph by learnable edge embedding with decoupling constraints.

cause each of them represents a different type of
relations and has a different meaning. Previous
work (Brock et al., 2019; Zhang et al., 2020) has
proved that the learnable embeddings are easy to be
entangled and do not satisfy the diversity objective.

In this paper, we propose S2SQL, injecting
Syntax to question-Schema graph encoder for Text-
to-SQL parsers. S2SQL models the syntactic la-
bels from a syntactic dependency tree as additional
edge embeddings. Motivated by the belief that
if the structure of input can be reliably obtained
and is a central feature of a task, models that ex-
plicitly exploit the structure can benefit. In this
paper, we investigate and prove that properly intro-
ducing syntactic information into text-to-SQL can
further improve the performance, and we provide
a detailed analysis on why and how the proposed
model works. Built on that, we propose a decou-
pling constraint to encourage the model to learn a
diverse set of relation embeddings, which further
enhances the network’s performance. We evaluate
our proposed model on the challenging text-to-SQL
benchmark Spider (Yu et al., 2018) and robustness
setting Spider-Syn (Gan et al., 2021), and demon-
strate that S2SQL outperforms other graph-based
models consistently when augmented with differ-
ent pre-training models. In brief, the contributions
of our work are three-fold:

• We investigate the importance of syntax
in text-to-SQL and propose a novel and
strong encoder for cross-domain text-to-SQL,
namely S2SQL.

• To induce the diverse edge embedding learn-

ing, we introduce the decoupling constraint,
which further improves the performance.

• The empirical results show that our approach
outperforms all the existing models on the
challenging Spider and Spider-Syn bench-
mark.

2 The Proposed Method

2.1 Problem Definition

Given a natural language question Q = {qi}|Q|
i=1

and a schema S = ⟨C, T ⟩ consisting of columns
C =

{
ct11 , c

t1
2 , · · · , c

t2
1 , c

t2
2 , · · ·

}
and tables T =

{ti}|T |
i=1, text-to-SQL aims to generate the SQL

query y for the question sentence. The de
facto method for text-to-SQL employs an encoder-
decoder architecture. In this paper we focus on
improving the encoder part. For a detailed descrip-
tion of the decoder, please refer to the work of
(Wang et al., 2020; Cao et al., 2021).

2.2 Question-Schema Interaction Graph

The joint input questions and schema items can
be viewed as a graph G = (V,R), where
V = Q ∪ T ∪ C are nodes of three types
{Q, T , C}. The initial node embeddings matrix
X ∈ R|V |Q|+|T |+|C||×d is obtained by flattening all
question tokens and schema items into a sequence:
[CLS]q1q2 · · · q|Q|[SEP]t10t1c

t1
10c

t1
1 c

t1
20c

t1
2 · · ·

t20t2c
t2
10c

t2
1 c

t2
20c

t2
2 · · ·[SEP]. The type informa-

tion ti0 or ctij0 is inserted before each schema item.

The edge R = {R}|X|,|X|
i=1,j=1 represents the known

relation between two elements in the input nodes.

1255



The RGAT (relational graph attention transformers)
(Shaw et al., 2018; Wang et al., 2020; Cao et al.,
2021) models the graph G and computes the output
representation z by:

e
(h)
ij =

xiW
(h)
q

(
xjW

(h)
k + rKij

)⊤

√
dz/H

,

α
(h)
ij = softmax

{
e
(h)
ij

}
,

z
(h)
i =

∑
vnj ∈Nn

i

α
(h)
ij

(
xjW

(h)
v + rVij

)
,

(1)

where matrices Wq,Wk,Wv are trainable pa-
rameters in self-attention, and N n

i is the receptive
field of node vni .

Injecting Syntax The previous work mainly fo-
cuses on using linking structure and schema struc-
ture in the encoder (Wang et al., 2020), in which
the structure of the question is ignored. We pro-
posed an effective approach to integrate syntactic
dependency information1 into the graph. A straight-
forward idea is to treat all dependent types directly
as a new edge type. However, the dependency
parser will return 55 different dependency types.
Such a large number of edge types will signifi-
cantly increase the number of relational embedding
parameters in S2SQL, leading to over-fitting. In
order to address this, similar to (Vashishth et al.,
2018), we induct dependency types into three ab-
stract relations, Forward, Backward and NONE.
In addition, in order to ensure the simplicity of edge
embedding, we only consider the first-order rela-
tionship. By stacking multi-layer transformers, the
model implicitly captures the multi-order relation-
ship without deliberate construction. Specifically,
we compute the distance D(vi, vj) between any
two tokens vi and vj from the question. This dis-
tance is set to the first-order distance between vi
and vj if they have the aforementioned dependency
types, and 0 otherwise. Based on this first-order dis-
tance D, we model the syntactic relation Rquestion

ij

between tokens vi and vj by one of the three previ-
ously defined abstract types:

Rquestion
ij =


Forward, if D(vi, vj) = 1
Backward, if D(vj , vi) = 1

NONE, otherwise.
(2)

Overall, as shown in Figure 2, S2SQL models
three structures in the graph G:

1We use SpaCy toolkit to construct syntactic information:
https://spacy.io/.

• Question Structure Rquestion: relations that
represent syntactic dependency between two
question tokens.

• Linking Structure Rlinking: relations that
align entity in question to the corresponding
schema columns or tables. (Wang et al., 2020)

• Schema Structure Rschema: relations within
a database schema, e.g., foreign key.

The detailed structure construction could be found
in Appendix A.1.

Decoupling Constraint. There are k known
edges in R and each is represented as a relation
embedding. Intuitively, these edge embedding
r = [r1, r2, ..., rk] should be diverse because they
have different semantic meanings. To avoid the
potential risk of coupling edge embedding r dur-
ing optimization, we introduce the orthogonality
condition (Brock et al., 2019) to r:

L(r) =
∥∥r⊤r⊙ (1− I)

∥∥2
F
, (3)

where 1 denotes a matrix with all elements being
set to 1 and I is the identity matrix.

3 Experiments

3.1 Experiment Setup

Datasets and Evaluation Metrics. We conduct
experiments on Spider (Yu et al., 2018) and Spider-
Syn (Gan et al., 2021). Spider is a large-scale,
complex, and cross-domain text-to-SQL bench-
mark. Spider-Syn is derived from Spider, by re-
placing their schema-related words with manually
selected synonyms that reflect real-world question
paraphrases. For evaluation, we followed the offi-
cial evaluation to report exact match accuracy.

3.2 Implementation Details.

We utilize PyTorch (Paszke et al., 2019) to imple-
ment our proposed model. During pre-processing,
the input of questions, column names, and ta-
ble names are tokenized and lemmatized with the
Standford Nature Language Processing toolkit. For
a fair comparison with baselines, we configure it
with the same set of hyper-parameters, e.g., stack-
ing 8 self-attention layers, setting dropout to 0.1.
The position-wise feed-forward network has an in-
ner layer dimension of 1024. Inside the decoder,
we use rule embeddings of size 128, node type em-
beddings of size 64, and a hidden size of 512 inside
the LSTM with a dropout of 0.21.
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Model Dev. Test

Global-GNN (Bogin et al., 2019) 52.7 47.4
Eidt-SQL (Zhang et al., 2019a) 57.6 53.4
Bertand-DR (Kelkar et al., 2020) 57.9 54.6
IRNet v2 (Guo et al., 2019) 63.9 55.0
BRIDGE (Lin et al., 2020) 70.0 65.0
RYANSQL (Choi et al., 2020) 70.6 60.6
RATSQL + BERT (Wang et al., 2020) 69.7 65.6
ShadowGNN + RoBERTa (Chen et al., 2021) 72.3 66.1

RAT + RoBERTa (Wang et al., 2020) 69.7 64.3
S2SQL + RoBERTa 71.4 67.1

w/o DC 70.9 -

LGESQL + ELECTRA (Cao et al., 2021) 75.1 72.0
S2SQL + ELECTRA 76.4 72.1

w/o DC 75.8 -

Table 1: The exact match accuracy on the Spider dev
and test set. − indicates that the test set performance
cannot be obtained due to the number of submission
limit.

(a) S²SQL w/o DC (b) S²SQL w/ DC

Figure 3: The similarity matrix of different relation
embeddings with and without DC. The lighter the color,
the higher the similarity (entangled embeddings).

3.3 Baseline Models.

We conduct experiments on Spider and Spider-Syn
and compare our method with several baselines
including:

• RYANSQL (Choi et al., 2020) is a sketch-
based slot filling approach which is proposed
to synthesize each SELECT statement for its
corresponding position.

• RATSQL (Wang et al., 2020) is a relation
aware schema encoding model in whuich the
question-schema interaction graph is built by
n-gram patterns.

• ShadowGNN (Chen et al., 2021) processes
schemas at abstract and semantic levels with
domain-independent representations.

• BRIDGE (Lin et al., 2020) represents the
question and schema in a tagged sequence
where a subset of the fields are augmented
with cell values mentioned in the question.

• LGESQL (Cao et al., 2021) a line graph en-

Model Dev.

RAT + GraPPa (Yu et al., 2021) † 71.5
S2SQL + GraPPa 73.4

RAT + GAP (Shi et al., 2021) † 71.8
S2SQL + GAP 72.7

Table 2: Comparison on S2SQL under the different
table-based pre-training models on Spider Dev set.

Model Acc.

Global-GNN (Bogin et al., 2019) 23.6
IRNet (Guo et al., 2019) 28.4
RATSQL (Wang et al., 2020) 33.6
RATSQL + BERT (Wang et al., 2020) 48.2
RATSQL + Grappa (Wang et al., 2020) 49.1
S2SQL + Grappa 51.4

Table 3: The accuracy on the Spider-Syn dataset.

hanced Text-to-SQL model to mine the under-
lying relational features without constructing
metapaths. It was the SOTA model in the Spi-
der leaderboard before ours.

3.4 Results and Analyses

Overall Performance. We first compare S2SQL
with other state-of-the-art models on Spider. As
shown in Table1, we can see that S2SQL outper-
forms all existing models. Remarkably, the accu-
racy of S2SQL + RoBERTa on the hidden test set is
67.1%, which is 2.8% higher than the strong base-
line RAT + RoBERTa. Similarity, the accuracy of
the SOTA model LGESQL + ELECTRA is 72.0%
on the hidden test set, and 75.1% on the develop-
ment set, while S2SQL + ELECTRA can reach
72.1% test and 76.4 development accuracy. Table 2
shows results on the development set for RAT and
S2SQL with Table-based pre-training models. We
can see that S2SQL outperforms RAT consistently
when augmented with different pre-training mod-
els, including RoBERTa (Liu et al., 2019), GraPPa
(Yu et al., 2021) and GAP (Shi et al., 2021). In ad-
dition, as shown in Table 3, S2SQL demonstrates
improvement on the robustness dataset.

Ablation Study. The last row of Table 1 shows
that removing the decoupling constraint causes a
0.5% performance drop on the development set.
This implies that decoupling entangled embeddings
helps to improve the performance. To examine the
impact of the decoupling constraint, we visualize
the cosine similarity between any two relation em-
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Question List the name and tonnage in alphabetical descending order for the names.
Baseline SELECT name, tonnage FROM ship ORDER BY tonnage DESC
S2SQL SELECT name, tonnage FROM ship ORDER BY name DESC
Gold SELECT name, tonnage FROM ship ORDER BY name DESC
Syntax (name, tonnage, CONJ), (order, names, NMOD)

Question What is the total population and average area of countries in the continent of North America whose area is bigger than 3000 ?
Baseline SELECT sum(population) , avg(surface_area) FROM country where surface_area = “North America" and surface_area > 3000
S2SQL SELECT sum(population) , avg(surface_area) FROM country where continent = “North America" and surface_area > 3000
Gold SELECT sum(population) , avg(surface_area) FROM country where continent = “North America" and surface_area > 3000
Syntax (continent, America, NMOD)

Question Show the date of the transcript which shows the least number of results, also list the id.
Baseline SELECT transcript_date FROM Transcript_Contexts AS T1 JOIN . . .
S2SQL SELECT transcript_date, transcript_id FROM Transcript_Contexts AS T1 JOIN . . .
Gold SELECT transcript_date, transcript_id FROM Transcript_Contexts AS T1 JOIN . . .
Syntax (show, list, DEP) (show, date, OBJ) (list, id, OBJ)

Table 4: Case study: some comparisons with baseline (LGESQL) show that S2SQL can generate more accurate
SQL, where syntax column represents useful syntactic information in the generation of S2SQL.

beddings. As shown in Figure 3, we observe that
the decoupling constraint eliminates the entangling
phenomenon (darker colors) and produces a more
diverse set of embeddings.

3.5 Qualitative Analysis.

In Table 4, we compare the SQL queries generated
by our S2SQL model with those created by the
baseline model LGESQL. We notice that S2SQL
performs better than the baseline system, especially
in the case of question understanding that depends
on syntax structure. For example, in the first case
where the order and name have NMOD relation,
baseline fails to For example, in the first example,
both name and tonnage can be linked correctly,
but the baseline fails to capture the structure present
in name and order, resulting in a generation er-
ror, while S2SQL predicts the result well.

3.6 About Syntactic Parser.

In our experiments, we use the SpaCy tool as a syn-
tactic parser. It is important to emphasize that the
quality of the SpaCy syntactic parsing has marginal
impact on the performance of S2SQL. The follow-
ing three main reasons are given.

• SpaCy is the current SOTA parser tool (95%+
accuracy on the OntoNotes 5.0 corpus) and
has been widely used in various papers intro-
ducing syntax, which proves its reliability.

• The question in Spider are not extremely com-
plex and can be handled very well.

• Even though syntactic parser errors may in-
troduce noise into S2SQL, our proposed in-
ductive syntactic injection method (instead of
independent injection) can mitigate the impact
of syntactic type errors.

4 Related Work
Extensive work has been conducted on improv-
ing the encoder and decoder (Yin and Neubig,
2017; Wang et al., 2019; Guo et al., 2019; Choi
et al., 2020; Kelkar et al., 2020; Rubin and Berant,
2021; Hui et al., 2021b) as well as table-based pre-
training (Yin et al., 2020; Yu et al., 2021; Deng
et al., 2020; Shi et al., 2021; Wang et al., 2021b).
Besides, Wang et al. (2021a) proposed a meta-
learning based training objective to boost gener-
alization. Scholak et al. (2021) proposed PICARD,
a method for constraining auto-regressive decoders
of T5. Among the encoder-related work, Guo
et al. (2019) introduced the schema linking module,
which aimed to recognize the columns and the ta-
bles mentioned in a question. Lin et al. (2020) lever-
aged the database content to augment the schema
representation. Bogin et al. (2019) employed GNN
to derive the representation of the schema structure.
Then, Chen et al. (2021) proposed ShadowGNN to
abstract the representation of question and schema
with attention. Besides, Hui et al. (2021a) present
a dynamic graph framework that can model con-
textual information for context-dependent setting.
The most recent approaches (Wang et al., 2020;
Cao et al., 2021) achieved the best performance
through relation-aware transformer. Unlike these
works, we investigated the impact of the syntactic
structures during the encoding stage.

5 Conclusion
We present syntax-enhanced question-schema
graph encoder (S2SQL) that can effectively model
syntactic information for text-to-SQL and intro-
duce the decoupling constraint to induce the di-
verse relation embedding. The proposed model
achieves new state-of-the-art performance on the
widely used benchmark, Spider and Spider-Syn.
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A Appendix

A.1 Details of Relation Structure.
All structures have been shown in Table 5. a struc-
ture (edge) exists from source node x ∈ S to target
node y ∈ S if the pair fulfills one of the descrip-
tions listed in the Table 5, with the corresponding
label.
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Source x Target y Type Description

Question Question Forward-Syntax y is the target word of x under syntax dependency.
Question Question Backward-Syntax y is the source word of x under syntax dependency.
Question Question None-Syntax x and y have no syntactic dependency.

Column Column Foreign-Key y is the foreign key of x.

Table Column Has The column y belongs to the table x.
Table Column Primary-Key The column y is the primary key of the table x.

Question Table None-Linking No linking between x and y.
Question Table Partial-Linking x is part of y, but the entire question does not contain y.
Question Table Exact-Linking x is part of y, and y is a span of the entire question.

Question Column None-Linking No linking between x and y.
Question Column Partial-Linking x is part of y, but the entire question does not contain y.
Question Column Exact-Linking x is part of y, and y is a span of the entire question.
Question Column Value-Linking x is part of the candidate cell values of column y.

Table 5: The checklist of all relations structure used in S2SQL. All relations above are asymmetric.
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