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Abstract

Nested named entity recognition (Nested
NER) aims to identify named entities which
may overlap. Span-based approaches regard
nested NER as a two-stage task—span extrac-
tion and classification, thus having the innate
ability to handle this task. However, they
face the problems of error propagation, ig-
norance of span boundary, difficulty in long
entity recognition and requirement on large-
scale annotated data. In this paper, we propose
Extract-Select, a span selection framework for
nested NER, to tackle these problems. Firstly,
we introduce a span selection framework in
which nested entities with different entity cat-
egories would be separately extracted by the
extractor, thus naturally avoiding error propa-
gation in prior two-stage approaches. In the
inference phase, the trained extractor selects
final results specific to the given entity cate-
gory. Secondly, we propose a hybrid selection
strategy in the extractor, which not only makes
full use of both span boundary and span con-
tent, but also improves the ability of long en-
tity recognition. Thirdly, we design a discrimi-
nator to evaluate the extraction result, and train
both extractor and discriminator with gener-
ative adversarial training (GAT). The use of
GAT greatly alleviates the stress on the dataset
size. Experimental results on four benchmark
datasets demonstrate that Extract-Select out-
performs competitive nested NER models, ob-
taining state-of-the-art results. The proposed
model also performs well with less labeled
data, proving the effectiveness of GAT.

1 Introduction

Named entity recognition (NER) aims at detect-
ing the spans and semantic categories of entities
from the text. Previous studies usually treat NER
as a sequential labeling problem (Ma and Hovy,
2016; Chiu and Nichols, 2016). These studies re-
strict each token belonging to at most one entity
mention, and hence it is unable to handle nested
NER (Huang et al., 2015), where one token may
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Figure 1: Examples for nested entities from ACE2005
and GENIA corpora.

belong to multiple mentions. For example in Fig-
ure 1, a LOC (i.e., Location) entity “western Cana-
dian” is nested in another GPE (i.e., Geo-Political
Entity) entity “the western Canadian province of
British Columbia”.

Some studies seek to reconcile sequential la-
beling with nested NER (Alex et al., 2007; Ju
et al., 2018). However, sequential labeling is
naturally unsuitable for assigning multiple labels
to a single token. Considering that, some stud-
ies turn to adopt the two-stage framework, in-
cluding transition-based approaches (Wang et al.,
2018a; Lin et al., 2019), hypergraph-based ap-
proaches (Wang and Lu, 2018; Katiyar and Cardie,
2018; Luo and Zhao, 2020) and span-based ap-
proaches (Sohrab and Miwa, 2018; Shen et al.,
2021; Zhong and Chen, 2021). Among them,
span-based approaches handle nested NER by ex-
tracting possible spans and classifying their cat-
egories. Although these approaches have the in-
nate ability to cope with this task, they have the
following problems: (1) Span-based approaches
follow the two-stage framework, which inevitably
has the problem of error propagation; (2) These
approaches usually rely on span content for clas-
sification. However, span boundary information is
not fully utilized, which is important for precise
entity span extraction; (3) It is difficult for span-
based approaches to recognize long entities be-
cause the span length in the span extraction phase
is limited; (4) These approaches usually rely heav-
ily on large size of training data for obtaining com-
petitive results.
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In this paper, we propose a novel nested NER
approach, named Extract-Select, which is able
to cope with the above shortcomings. Specifi-
cally, the proposed Extract-Select works as fol-
lows. Firstly, an extractor is proposed to extract all
possible entity spans specific to a particular typed
entity marker, with a novel hybrid selection strat-
egy. Then, a discriminator is introduced to evalu-
ate and score entity span candidates predicted by
the extractor. The extractor and the discriminator
are iteratively trained with generative adversarial
training (GAT). In the inference phase, the itera-
tively trained extractor selects final entity spans of
the given entity marker from the contexts.

Extract-Select solves the above shortcomings
from the following three aspects:

• To address Problem (1), we adopt a span selec-
tion framework in Extract-Select, which aims to
separately train the extractor for each entity cat-
egory. Motivated by Zhong and Chen (2021),
we design entity markers that encodes category
knowledge and use it to clarify the extractor what
to extract. For example in Figure 1, the nested
entities “PEBP2” (type PROTEIN) and “PEBP2
site” (type DNA) would be separately extracted.
As two nested entities with different categories are
separately selected by the extractor in one step,
the problems of error propagation in two-stage ap-
proaches can be naturally solved.

• To solve Problems (2) and (3), we design a hybrid
selection strategy in our extractor. This strategy
makes full use of boundary information by detect-
ing the start and end positions of entity span, fol-
lowed with span content matching. Then, the span
boundary as well as content information are fully
used in the training of the extractor. As this strat-
egy detects entity spans with boundary extraction,
it does not require the setting of maximum span
length, thus overcoming the difficulty in long en-
tity recognition.

• To solve Problem (4), we design a discrimina-
tor to evaluate the extractor and train the extractor
and discriminator with GAT. Through min-max
training, the extractor can additionally learn from
the discriminator to get higher scores, meanwhile
greatly reducing the demand on training data size.
What is more, the well designed entity markers
provide informative prior knowledge for the ex-
tractor, which also contributes to better perfor-
mance with less labeled data.

To evaluate our Extract-Select, we conduct ex-
periments on four standard nested NER bench-
marks, including ACE04, ACE05, KBP17 and

GENIA datasets. Experimental results show that
our model can effectively detect nested entities
and achieve state-of-the-art results on the above
four datasets. The ablation study on entity marker,
GAT and hybrid selection strategy reveals that
these components are indispensable and all of
them contribute to our model. Moreover, our
model only requires half amount of labeled data
to achieve the same performance as baselines, in-
dicting the effectiveness of our approach with less
training data.

2 Related Work
Sequential labeling-based approaches solve
the nested NER by designing suitable labeling
schema. Shibuya and Hovy (2020) provide a
second-best path decoding method to iteratively
find nested entities. Straková et al. (2019) propose
a linearized encoding scheme to model multiple
named entity labels. Wang et al. (2020) design
a pyramid framework to identify nested entities.
Sequential labeling approaches is naturally unsuit-
able for nested NER.

Transition-based approaches model nested
structure through state transition and construct
nested entities through actions. Wang et al.
(2018a) introduce a scalable transition-based
model. Lin et al. (2019) propose an Anchor-
Region architecture which models the head-driven
phrase structures. However, these approaches rely
heavily on hand-crafted features.

Hypergraph-based approaches construct hy-
pergraphs by the structure of nested NER and de-
code results on hypergraphs. Muis and Lu (2017)
introduce a mention hypergraph for nested NER.
Wang and Lu (2018) propose a hypergraph rep-
resentation, which is free from structural ambigu-
ity. Luo and Zhao (2020) propose to capture bidi-
rectional information interactions between hyper-
graph layers. However, these hypergraphs should
be well designed to prevent ambiguous structure.

Span-based approaches extract entity spans
and then classify their categories. Luan et al.
(2019) select the most confident entity spans for
classification. Fisher and Vlachos (2019) propose
to merge entities and tokens into entities, and then
assign labels. Shen et al. (2021) regards this task
as an object detection task, locating and then la-
beling spans. Nevertheless, these two-stage ap-
proaches have the problem of ignorance of span
boundary, difficulty in long entity recognition and
error propagation.

Li et al. (2020b) formalizes NER as a machine
reading comprehension (MRC) task, which uses
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Figure 2: Overview of Extract-Select. It follows a span selection framework and contains an extractor which
adopts a hybrid selection strategy to extract entity span candidates and a discriminator which aims to score the
extractor. The extractor and discriminator are trained with multi-task learning including span boundary extraction
and generative adversarial training.

BERT as backbone and extracts spans of given
queries. However, this work relies heavily on
training data size. Besides, it extracts entity spans
based on boundary information but ignores con-
tent information. In contrast to their work, we use
GAT to iteratively train extractor to get better re-
sults, and adopt hybrid selection strategy to make
full use of both boundary and content information.

Generative adversarial training (GAT) gives
a way to learn deep representations without ex-
tensively labeled data. It is proposed by Goodfel-
low et al. (2014) and is characterized by training a
generator and a discriminator in competition with
each other. GAT has been applied in different NLP
subtasks, including dialogue generation (Li et al.,
2017) and relation extraction (Qin et al., 2018). In
these studies, GAT proves to be effective in reduc-
ing the usage of training data. Motivated by these
work, we propose to apply GAT in NER task to
reduce the demand on labeled data.

3 Problem Definition

The input of the span selection framework is a se-
quence X = {x1, x2, ..., x|X|}, where |X| denotes
the length of the sequence. The possible entity
span xs,e = {xs, xs+1, ..., xe−1, xe} is a continu-
ous sub-string of X satisfying s ≤ e. Let Y denote
the predefined list of all entity categories and y∗

be the entity marker specific to type y ∈ Y (e.g.,
“LOC” has an entity marker “location”). The aim
of span selection framework is to find all entities
in X for each category y.

4 Extract-Select: Nested NER with GAT

4.1 Overview

In this section, we introduce Extract-Select in de-
tail. As shown in Figure 2, Extract-Select consists
of two main components: an extractor and a dis-
criminator. In particular, given the input sequence
X and the entity marker y∗, the extractor adopts a
hybrid selection strategy to extract the entity span
candidate set C and calculates its representation
pC , i.e., (C, rC) = fE(y

∗, X). Afterwards, the
discriminator is fed with rC to evaluate the cor-
rectness of C, i.e., score = fD(y

∗, X, rC). After
iterative training of both extractor and discrimina-
tor, the extractor selects the final result (a set of
entity spans), i.e., final result = fEfinal

(y∗, X).

4.2 Extractor

Given the entity type y and the input sequence
X = {xj}|X|

j=1, the extractor aims to extract the
entity span candidate set C = {C1, C2, ...Ci} spe-
cific to y∗ from X . Then, the extractor needs to
compute a continuous latent variable pC to repre-
sent C.

1) Sequence representation: We first represent
all tokens {xi}|X|

i=1 in the input sentence X as a se-
quence of embeddings {wi}|X|

i=1. Each embedding
wi is the concatenation of character embedding,
word embedding, contextualized word embedding
and part-of-speech (POS) embedding. The char-
acter embedding is generated by a bi-directional
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LSTM (BiLSTM) module with the same setting
as Ju et al. (2018). For the contextualized word
embedding, we obtain the context-dependent em-
bedding for a target token with one surrounding
sentence on one side. Then, the concatenation is
fed into another BiLSTM to obtain the final token
representation:

{hi}|X|
i=1 = BiLSTM({wi}|X|

i=1), (1)

where hi is the hidden state.
2) Entity marker representation: Entity cate-

gory is an important prior knowledge as it makes
the extractor know what to extract, and its effec-
tiveness has been demonstrated in prior work (Li
et al., 2020b). Besides, the usage of entity marker
can avoid the error propagation issue in two-stage
framework. Therefore, we propose to design an
entity marker for each category, where the entity
marker is its fine-grained explanation and would
be used as the input of the extractor. We ex-
periment on different types of entity marker and
finally choose the combination of Keywords and
Synonyms. Specifically, Keywords mean that en-
tity markers are keywords describing entity type,
e.g., the entity marker for type ORG is “organi-
zation”, and Synonyms mean that entity markers
are words or phrases which mean nearly the same
as terms extracted from the Oxford Dictionary,
e.g., the entity marker for type ORG is “institution
body group company firm business corporation”.

We concatenate word embeddings of Key-
words and Synonyms, and feed embeddings
{wi}|y

∗|
i=1 into a BiLSTM to obtain {ui}|y

∗|
i=1 =

Bi-LSTM({wi}|y
∗|

i=1), where |y∗| is the length of
entity marker. Then, we use self attention to in-
tegrate the entity marker information:

αi =
exp(Waui)∑
k exp(Wauk)

, (2)

m =
∑y∗

i=1 αiui, (3)

where αi is the attention weight of ui and Wa ∈
Rd is a learned weight vector.

3) Hybrid selection: Prior span-based ap-
proaches extract spans by predicting whether each
token is within the entity span with n two-class
classifier, which only considers the span content.
These methods need to set maximum span length
parameter to avoid high computational costs. As
a result, it is hard for them to identify long enti-
ties. What is more, they ignore the span boundary
which is also important for entity recognition.

In view of this, we propose a hybrid selection
strategy, which makes full use of both boundary

and content of span. It first predicts the probabil-
ity of tokens being the boundary of entity spans,
and produce the entity span candidate set. Later, it
uses the content of span candidates, i.e., calculates
content representation of candidates, to enable the
training of extractor and the golden entity spans
could be selected eventually.

Given the representations of sequence and en-
tity marker, the extractor first predicts the proba-
bilities of token i being the boundary (i.e., start
and end index) of entity spans:

ps(i|y,X) =
exp(hiWsm)∑
k exp(hkWsm)

,

pe(i|y,X) =
exp(hiWem)∑
k exp(hkWem)

,

(4)

where Ws,We ∈ Rd×d are learnable parameters.
In the input sequence X , there may be multiple

entities of a particular category. This means that
multiple start and end indexes could be predicted.
To match them, we first get the indexes that might
be the starting or ending positions:

Is={i| argmax(ps(i|y,X))= 1, i=1,.., n},
Ie={j| argmax(pe(j|y,X))= 1, j=1,.., n}.

(5)

For any given start index is ∈ Is and end index
je ∈ Ie (is ≤ je), we calculate the probability of
entity span candidate:

ps,e(is, je|y,X)=sigmoid(WC·concat(his,hje)), (6)

where WC ∈ R1×2d is a learned parameter. The
entity span candidate Ci is added into the candi-
date set C if its span probability ps,e is larger than
a pre-defined threshold.

Then the content of candidate set C is utilized.
We calculate pC(i|y,X) as the probability of the
ith token appearing in C, which can be considered
as the probability of the ith token within the span
candidates. Specifically, pC(i|y,X) can be calcu-
lated through ps and pe:

pC(i|y,X) =
i∑

s=1

|X|∑
e=i

ps(s|y,X)pe(e|y,X), (7)

where pC(i|y,X) also means the frequency of the
ith token appearing in C. In other words, the more
frequent the ith token appears in C, the higher
pC(i|y,X) would be. In this way, the content in-
formation pC can be used in candidate set scoring
process to enable the training of extractor.

Finally, with both the boundary and content in-
formation, the extractor could be well trained to
select the final golden entity span. This strategy
does not set the maximum span length. As a re-
sult, long entity span can also be recognized.
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4.3 Discriminator
After the extractor has obtained the entity span
candidate set C, the discriminator aims to evaluate
and score C, so as to train the extractor with GAT.
This process consists of two steps as follows.

1) Candidate set representation: To represent
the entity span candidate set C, we propose to
encode the information of both entity type y
and sequence X into pC . Specifically, we build
entity-aware sequence representation with Match-
LSTM (Wang et al., 2018b), by matching the en-
tity marker up with the sequence:

{ri}|X|
i=1 = Match-LSTM({hi}|X|

i=1, {ui}|y
∗|

i=1 ). (8)

Then the representation of entity span candidate
set rC is calculated with ri and the probability
pC(i|y,X) through weighted sum:

βi =
pC(i|y,X)

Σ
|X|
k=1pC(k|y,X)

,

rC = Σ
|X|
k=1βkrk.

(9)

2) Candidate set scoring: The score fD of entity
span candidate set C can be calculated:

fD(C) = sigmoid(WDrC), (10)

where WD ∈ Rd is a learned weight vector and the
score fD ∈ [0, 1] would be used to iteratively train
the extractor to get higher span candidate set score
from the discriminator through min-max training
in the GAT process.

4.4 Multi-task Learning with GAT
In the training process, we train the extractor by
multi-task learning, and train the extractor and dis-
criminator together with GAT.

The first task is to train the extractor by min-
imizing the negative log probabilities of the true
start and end indexes of the golden entity span:

ℓboundary
E = − log ps(s|y,X)− log pe(e|y,X), (11)

where s and e denote the start and end indexes of
the golden entity in the sequence X .

The second is to train the extractor by minimiz-
ing the start-end index matching loss:

ℓspanE = − log ps,e. (12)

The third is to train the extractor and discrimi-
nator together with GAT. We train the extractor to
obtain a higher score from the discriminator:

ℓGAT
E = log(1− fD(y,X, pC)). (13)

Meanwhile, we train the discriminator to max-
imize log fD(y,X, pC) and minimize log(1 −
fD(y,X, pC)):

ℓGAT
D =z log fD(C)+(1− z) log(1−fD(C)), (14)

where z ∈ {1, 0} denotes whether the golden en-
tity appears in the entity span candidate set or not.

The overall training objective ℓE of the extrac-
tor is defined as follows:

ℓE = γ1ℓ
boundary
E + γ2ℓ

span
E + (1− γ1 − γ2)ℓ

GAT
E , (15)

where γ1,γ2∈[0,1] are learnable hyper-parameters
to control the contributions towards the overall
training objective.

In each training iteration, we use the extrac-
tor to select the new entity span candidate set
through Eq.(4)-(6). The new entity span candi-
date set would then be scored by the discriminator.
Such training procedure will be conducted itera-
tively so that the extractor can select spans hav-
ing high score from discriminator. In the infer-
ence phase, the trained extractor would first select
the start and end indexes and then match the start
indexes with end indexes, getting the final results.
The pseudo-code of the training procedure is given
in Appendix A.

Our model differs from BERT-MRC in the fol-
lowing ways: (1) Different from BERT-MRC
which uses bert-based machine reading compre-
hension model as the backbone, we design an
Extract-Select model which iteratively trains the
extractor to select the golden entity spans specific
to the entity marker. (2) We propose a hybrid
selection strategy for better entity span selection.
This strategy makes full use of both boundary and
content information of the span. However, BERT-
MRC only conducts entity decoding based on the
span boundary. (3) We propose to incorporate
GAT in our model to train the extractor to learn ad-
ditional information from the discriminator, mean-
while greatly reducing the demand on training data
size. (4) We use easily-obtained entity markers to
achieve competitive performance, avoiding com-
plex query designing.

5 Experimental Setup

5.1 Benchmarks and Evaluations
We evaluate Extract-Select on four NER bench-
marks — ACE20041, ACE20052, GENIA3, and
KBP20174. Please refer to Appendix B.1 for
the statistics and the detailed processing of the
datasets, and refer to Appendix B.2 for implemen-
tation details.

1https://catalog.ldc.upenn.edu/LDC2005T09
2https://catalog.ldc.upenn.edu/LDC2006T06
3http://www.geniaproject.org/genia-corpus
4https://catalog.ldc.upenn.edu/LDC2017D55
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Model
ACE2004 ACE2005 GENIA KBP2017

P R F1 P R F1 P R F1 P R F1

Transition5 74.9 71.8 73.3 74.5 71.5 73.0 78.0 70.2 73.9 74.7 67.0 70.1
Seg-Graph 78.0 72.4 75.1 76.8 72.3 74.5 77.0 73.3 75.1 79.2 66.5 72.3
Merge-Label - - - 75.1 74.1 74.6 - - - - - -
ARN - - - 76.2 73.6 74.9 75.8 73.9 74.8 77.7 71.8 74.6
Second-Path 83.73 81.91 82.81 82.98 82.42 82.70 78.07 76.45 77.25 - - -
Seq2seq6 - - 84.33 82.58 84.29 83.42 79.92 76.55 78.20 - - -
BiFlat-Graph - - - 75.0 75.2 75.1 77.4 74.6 76.0 77.1 74.3 75.6
Pyramid 86.08 86.48 86.28 83.95 85.39 84.66 79.45 78.94 79.19 - - -
BERT-MRC 85.05 86.32 85.98 87.16 86.59 86.88 85.18 81.12 83.75 82.33 77.61 80.97
Locate-Label 87.44 87.38 87.41 86.09 87.27 86.67 80.19 80.89 80.54 85.46 82.67 84.05

Extract-Select 88.26 88.53 88.39 87.15 88.37 87.76 83.64 84.41 84.02 83.76 85.87 84.80

Table 1: Results for nested NER tasks. Bold indicates the best scores

As for the evaluation metrics, we use strict eval-
uation that an entity is considered correct when
both span and category are correctly predicted. We
use span-level micro-averaged Precision (P), Re-
call (R) and F1 scores (F1) for evaluation.

5.2 Baselines
We choose the following models as baselines.

Sequential labeling-based models. Second-
Path (Shibuya and Hovy, 2020) regards the tag
sequence as a path and searches for results with
the second-best path decoding. Seq2seq (Straková
et al., 2019) views the nested NER as a sequence-
to-sequence problem. Pyramid (Wang et al., 2020)
is based on BERT and decodes nested mentions by
its length in a bottom-up manner.

Transition-based models. Transition (Wang
et al., 2018a) constructs forests for nested men-
tions through an action sequence. ARN (Lin et al.,
2019) builds the Anchor-Region networks by us-
ing the head-driven structures of nested entities.

Hypergraph-based models. Seg-Graph (Wang
and Lu, 2018) utilizes a segmental hypergraph rep-
resentation for the modeling of nested mentions.
BiFlat-Graph (Luo and Zhao, 2020) constructs a
hypergraph module and uses the representation of
it to improve inner entity predictions.

Span-based models. Merge-Label (Fisher and
Vlachos, 2019) first merges tokens and entities
to form nested structures and then labels them.
Locate-Label (Shen et al., 2021) is based on BERT
and generates span proposals by filtering and do-
ing regression on seed spans. BERT-MRC Li et al.
(2020b) formulates NER as a MRC task.

6 Results and Discussions

6.1 Overall Evaluation
Table 1 presents the performance of Extract-Select
as well as the above baselines on four datasets.
From the table, we observe that: (1) Extract-Select
can effectively deal with nested NER, achiev-
ing the state-of-the-art performance. Specifically,

Extract-Select gains at least 0.98%, 0.88%, 0.27%,
0.75% F1 scores improvements on ACE2004,
ACE2005, GENIA and KBP2017, respectively.
This verifies the effectiveness of our span selec-
tion architecture. (2) Extract-Select brings much
higher recall value improvements than other meth-
ods, especially on KBP2017 and GENIA datasets.
We notice that KBP2017 and GENIA contain
much more entities than the other two datasets
and the number of entities on test set of KBP2017
is over four times more than that of ACE2005.
Extract-Select has significant advantages on such
dataset, proving the effectiveness of GAT. (3)
Compared with most of the baselines, Extract-
Select can well balance precision and recall, main-
taining precision value with high recall improve-
ment. The reason may be that entity markers high-
light the category information, clarifying which to
extract. (4) With conventional word embeddings,
Extract-Select method performs better that those
BERT-based models (e.g., Locate-Label and Pyra-
mid), which further proves the advantage of span
selection framework. We also evaluate our model
on two flat NER datasets, as shown in Appendix C.

6.2 Ablation Study

We then conduct ablation study to elucidate the
effectiveness of main components of our Extract-
Select method. Likewise, we only present the re-
sults on ACE2005. We compare Extract-Select
with the following three internal baselines:

w/o EntityMarker: To verify the effective-
ness of entity marker, this variation removes en-
tity marker representations and only uses the in-
dex (i.e., “one”, “two”, et al.) of entity category
for span selection.

w/o GAT: To evaluate the effectiveness of GAT,
this variation only retains the extractor. Extractor

5Transition (Wang et al., 2018a) did not report precision
and recall scores. Instead, Wang and Lu (2018) reported these
scores for Transition.

6Seq2seq (Straková et al., 2019) did not report precision
and recall scores. We use the reported F1 scores in this article.
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Model
ACE2005

P R F1
w/o EntityMarker 85.82 86.03 85.92
w/o GAT 85.75 85.12 85.43
w/o HybridSelect 84.96 87.21 86.07
Extract-Select 87.15 88.37 87.76

Table 2: Results of internal baselines on the test set of
ACE2005.

is trained by Eq.(11) and Eq.(12):

ℓE = λℓboundary
E + (1− λ)ℓspanE , (16)

where λ ∈ [0, 1] is a hyper-parameter that controls
the weights of two tasks.

w/o HybridSelect: To verify the effectiveness
of hybrid selection strategy, this variation only
considers the boundary information and leaves out
the content. Specifically, we still calculate the
probabilities of tokens being start and end indexes
of entity spans, but use the boundaries of entity
candidates to represent the candidate set. Thus,
Eq.(9) can be rewritten as follows: rCj = rjs+rje ,
where js and je are the start and end indexes of
the jth entity span candidate Cj , obtained through
Eq.(5). And rjs(e) is obtained through Eq.(8).

In the training process, the extractor is trained
with the policy gradient method. Thus, the train-
ing objective of the extractor in Eq.(13) can be
modified as follows:

∇ℓGAT
E ≈−

k∑
j=1

[fD(y,X,Cj)∇(logps(js|y,X))

+ logpe(je|y,X))],

(17)

Results are shown in Table 2. From the ta-
ble, we find that: (1) Extract-Select outperforms
three internal baselines on the test set of ACE2005.
Compared with w/o GAT, the F1 scores of full
model improve by up to 2.33%, which means it
is useful to introduce the discriminator to train the
extractor through min-max training. (2) w/o Hy-
bridSelect suffers from much more precision de-
crease than recall compared to full model. The
reason may be that the policy gradient adopted
in w/o HybridSelect produces noise when sam-
pling the span candidates, whereas ours can avoid
such noise by training the extractor using back-
propagation. Such intuition reveals the effective-
ness of our hybrid selection strategy in enabling
the extractor to be trained by back-propagation
from the discriminator. (3) Experimental results
also demonstrate that entity markers are effective.
This allows the model to take advantage of the
prior knowledge of categories, improving the F1
score by 1.84% on ACE2005. (4) w/o Entity-
Marker shows significant or comparable perfor-
mance improvements compared to the baselines

Setting ACE2005 (F1)
Keywords 87.12
Synonyms 87.34
Wikipedia 86.71
w/o EntityMarker 85.92
Extract-Select 87.76

Table 3: Results of the model with different entity
markers on ACE2005 dataset.

presented in Table 1. This validates the effective-
ness of our span selection framework.

6.3 Analysis of Entity Marker

To explore the influence of using different types
of entity marker in Extract-Select, we investigate
the performance of our model with different en-
tity marker settings. Three experimental settings
are considered: Keywords, Synonyms, Wikipedia.
Keywords means the entity marker is the keyword
describing the category, whereas Synonyms repre-
sents entity markers as synonymous words of key-
words that are extracted from the Oxford Dictio-
nary. Wikipedia means entity markers are con-
structed using the Wikipedia definition. For ex-
ample, the entity marker for type ORG is “an en-
tity comprising multiple people, such as an insti-
tution or an association”. Besides, we also include
w/o EntityMarker, for which entity markers are re-
placed with the position index of the category.

The results of our model with different in-
put entity markers on ACE2005 are presented
in Table 3. From the table, we find that our
Extract-Select (with Keywords+Synonyms as en-
tity marker) achieves the highest F1 scores. In
all settings, w/o EntityMarker that do not contain
any entity information underperforms the others,
indicting that meaningful prior knowledge con-
tributes to superior performance. We also observe
that Wikipedia underperforms Keywords and Syn-
onyms. The reason may be that descriptive words
from Wikipedia may not precisely describe entity
categories compared to other settings.

6.4 Analysis of Training Data
Since entity markers encode useful prior knowl-
edge and the min-max training also learns from
unlabeled data, we expect that the proposed model
works better with less training data. We test
our model, w/o EntityMarker and w/o GAT on
randomly sub-sampled labeled data of ACE2005
training set. As shown in Figure 3, the perfor-
mance of three models drops with the decline of
training sample size. However, our full model only
requires half amount of training data to achieve
comparable performance with two internal base-
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Sentence 1 The US Supreme Court will hear arguments from both sides on Friday and Florida ’ s
Leon County Circuit Court will consider the arguments on disputed state ballots on Saturday .

Gold Label ORG:{The US Supreme Court, both sides, Florida ’ s Leon County Circuit Court};
GPE:{Florida, Leon County, state}

Locate-Label ORG:{The US Supreme Court, Florida ’ s Leon County Circuit Court}; GPE:{US, Florida,

Leon County, state};PER: {both sides}
Extract-Select ORG:{The US Supreme Court, both sides, Florida ’ s Leon County Circuit Court};

GPE:{US, Florida, Leon County, state}

Sentence 2 Separatists have fought since 1975 for independence in Aceh , which is rich in oil and gas
and has a population of about 4 . 1 million people .

Gold Label PER:{Separatists, a population of about 4 . 1 million people}; GEP:{which,
Aceh , which is rich in oil and gas and has a population of about 4 . 1 million people}

Locate-Label PER:{Separatists, about 4 . 1 million people, a population of about 4 . 1 million people} ; GEP:
{which, Aceh , which is rich in oil and gas and has a population of about 4 . 1 million peoople}

Extract-Select PER:{Separatists, a population of about 4 . 1 million people}; GEP:{which,
Aceh , which is rich in oil and gas and has a population of about 4 . 1 million people}

Sentence 3 united nations secretary general kofi annan today discussed plans for the summit with the host ,
egyptian president hosni mubarak .

Gold Label ORG:{united nations}; PER:{united nations secretary general, united nations secretary general
kofi annan, the host, egyptian president, egyptian president hosni mubarak}; GPE:{egyptian}

Locate-Label ORG:{united nations}; PER:{united nations secretary general, united nations secretary general
kofi annan, the host, egyptian president, egyptian president hosni mubarak}; GPE:{egyptian}

Extract-Select ORG:{united nations}; PER:{united nations secretary general, united nations secretary general kofi

annan, secretary general kofi annan, the host, egyptian president, egyptian president hosni mubarak} ;
GPE:{egyptian}

Table 4: Examples of predicted results of our model and Locate-Label. Blue highlights indicate wrong predictions
by Locate-Label, red highlights indicate wrong predictions by our model, colored words indicate wrongly predicted
entity references.
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Figure 3: Effect of varying training sample size on
ACE2005.

lines (removing the entity marker and the GAT, re-
spectively). Besides, the observation from the ver-
tical line reviews that the degree of performance
decrease of the full model is much less than that
of other two internal baselines. In sum, the above
observations indicate that both the entity marker
and the GAT contributes to the better performance
when less training data is given.

6.5 Analysis of Long Entity Recognition
To illustrate the performance of model on enti-
ties of different lengths, we divide the entities
into three groups according to their lengths. We
compare Extract-Select with two-stage models:
Locate-Label (Shen et al., 2021) which adopts
boundary regressors to enable long entity recog-
nition and Locate-Label-reg which is a two-stage
baseline. The results are shown in Table 5. We

Model
ACE2004 (F1)

1 ≤ L ≤ 5 5 < L ≤ 10 L > 10 ALL
support 2719 219 97 3035
Locate-Label-reg 88.43 66.12 37.11 85.18
Locate-Label 88.55 82.78 61.72 87.41
Extract-Select 89.52 84.06 66.20 88.39

Table 5: A comparison of recognition F1 score on enti-
ties of different lengths, we divide the entities into three
groups: 1 ≤ L ≤ 5, 5 < L ≤ 10, and L > 10,
where L denotes entity length. Support denotes the
number of entities in each length group on the test set
of ACE2004.

notice that the F1 score of Locate-Label-reg has
a sharp decrease for long entities (L > 10) by
29.09% compared to our model. This may be-
cause Locate-Label-reg set maximum span length
in span extraction, limiting the ability of recogniz-
ing long entities. Locate-Label faces a large F1
score decrease (5.77% and 21.06%) when the en-
tity length increases from 1 ≤ L ≤ 5 to 5 < L ≤
10 and from 5 < L ≤ 10 to L > 10, respec-
tively. Compared with them, Extract-Select main-
tains a good performance when the entity length
increases, with only 5.46% and 17.86% F1 score
decrease. This verifies that our model is more ef-
fective in recognizing long entities.

6.6 Case Study
Examples of predictions are shown in Table 4. The
first part illustrates that Extract-Select has the abil-
ity of resolving ambiguous entity references, as
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span selection framework separately extracts en-
tities for each category rather than conducts multi-
classification for every entity. As shown in the
fourth line, Extract-Select accurately recognizes
the reference phrase “both sides” as ORG cate-
gory, whereas Locate-Label incorrectly classifies
it into PER category due to the ambiguity. The
second part reveals that Extract-Select can recog-
nize long entities well. As shown in the second
part, the long entities “Aceh , which is rich in oil
and gas and has a population of about 4 . 1 million
people” of GEP category can be extracted. How-
ever, this framework may also incorrectly recall
some entities, especially for entities with multi-
level nested structures. For example in the third
part, the multi-level nested entities “secretary gen-
eral kofi annan” is incorrectly recognized. The
reason may be that the extracted multi-level nested
entities confuses the discriminator.

7 Conclusion

This paper proposes Extract-Select, a span selec-
tion framework to solve nested NER. It contains an
extractor which aims to extract entities specific to
a particular entity category with a hybrid selection
strategy, and a discriminator scoring the extractor.
The extractor and discriminator are trained with
GAT to reduce the demand on labeled data. Com-
prehensive experiments performed on four widely
used nested NER datasets demonstrate the supe-
riority of Extract-Select. In future, we will (1)
attempt to overcome the deficiency issue and (2)
investigate in discontinuous and joint NER.
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A The Training Procedure of
Extract-Select

The full pseudo-code for the learning procedure of
Extract-Select is given in Algorithm 1.

Algorithm 1 The learning procedure of Extract-
Select.
Require: An extractor E; A discriminator G; the

input sequence S; an entity type y ∈ Y
Output: Trained extractor with multi-task lean-

ing
1: Initialize E, D parameters;
2: Generate entity span candidate set C using E

for training D;
3: Pre-train D via min-max training by Eq.(14);
4: repeat
5: for E-step do
6: Extract a set and its representation

(C, rC) = fE(y, S) using Eq.(1)-(9);
7: Compute the score of C using Eq.(10);
8: Compute joint objective ℓE using

Eq.(11)-(13);
9: Update Extractor parameters via policy

gradient;
10: end for
11: for D-step do
12: Use current E to generate entity span

candidate set C;
13: Represent C and calculate its score

fD(y, S) using Eq.(10);
14: Train discriminator for k epochs by

Eq.(14);
15: end for
16: until Extract-Select converges

B Experiments on Nested NER

B.1 Datasets Processing
Dataset statistics are listed in Table 6. For
ACE2004 (Doddington et al., 2004) and
ACE2005 (Walker et al., 2006), we follow
the same settings as Lin et al. (2019), and splitting
files into training, development and test sets
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ACE2004 ACE2005 GENIA KBP2017

Model Train Dev Test Train Dev Test Train dev Test Train Dev Test
NO. sentences 6200 745 812 7194 969 1047 15022 1669 1855 10546 545 4267
NO. sent. nested entities 2712 294 388 2691 338 320 3222 328 448 2809 182 1223
NO. total entities 22204 2514 3035 24441 3200 2993 47006 4461 5596 31236 1879 12601
NO. nested entities 10149 1092 1417 9389 1112 1118 8382 818 1212 8773 605 3707
nested percentage (%) 45.71 46.69 45.61 38.41 34.75 37.35 17.83 18.34 21.66 28.09 32.20 29.42

Table 6: Statistics of the datasets used in the experiments.

Model
CoNLL2003

P R F1
BiLSTM-CRF - - 91.03
ELMo-Tagger - - 92.22
Bert-Tagger - - 92.8
Extract-Select 92.10 94.03 93.05

Model
Weibo

P R F1
SLK-NER 61.80 66.30 64.00
Glyce 67.60 67.68 67.71
FLAT - - 68.55
Extract-Select 69.20 70.08 69.64

Table 7: Results for flat NER tasks.

by 8:1:1. For GENIA (Ohta et al., 2002), we
use GENIA v3.0.2 corpus, and follow the split
of Wang et al. (2020), i.e., first collapse all
subtypes into five types, and then split files into
training, development, and test sets by 8.1:0.9:1.
For KBP2017, we follow Lin et al. (2019) and
evaluate the model on the 2017 English evalua-
tion dataset, using previous RichERE annotated
datasets as the training set except 20 randomly
sampled documents reserved as development set.
Finally, there are 866/20/167 files for training,
development and test set.

B.2 Implementation Details
We initialize word embeddings of the input se-
quence and entity marker with 100-dimensional
GLoVE vectors for extractor and discriminator.
The dimensions of contextualized word embed-
ding, POS embedding, and character embedding
are 1024, 50, and 50, respectively. The hidden
size is set to 1024. For GENIA dataset, we replace
GLoVE vectors with word vectors pre-trained on
biomedical corpus (Chiu et al., 2016), which are

in 200 dimensions. During the training process,
we employ the Adam Optimizer with the initial
learning rate as 0.002 and the minibatch size as
64. We use a dropout rate of 0.35 in each training
process. We set the threshold in Line 325 through
grid search among (0.2, 0.5, 0.8), and it is set to
0.5 for having the best performance.

C Experiments on Flat NER

We also choose two flat NER datasets, i.e.,
CoNLL2003 and Weibo, to evaluate Extract-
Select. CoNLL2003 is an English dataset (Sang
and Meulder, 2003) with four types of flat enti-
ties. We follow the data processing in Lin et al.
(2019). Weibo is a Chinese dataset (Peng and
Dredze, 2015) sampled from Weibo web pages.
We use the same settings in Li et al. (2020a) to
evaluate our model.

For English flat NER, we use several taggers as
baselines: BiLSTM-CRF (Ma and Hovy, 2016),
ELMo-Tagger (Peters et al., 2018), and Bert-
Tagger (Devlin et al., 2019). For Chinese flat
NER, we use the following models as baselines:
SLK-NER (Hu and Wei, 2020) which incorporates
second-order lexicon knowledge, Glyce (Meng
et al., 2019) which combines glyph information,
and FLAT (Li et al., 2020a) which uses phrases.

Table 7 presents comparisons between Extract-
Select and the baselines on two flat NER datasets.
On Weibo dataset, our model outperforms the
baselines, improving the F1 score by 1.09%. On
CoNLL2003, our model also gains comparable re-
sults, with 0.25% performance improvement com-
pared to Bert-Tagger. In general, Extract-Select
achieves good performance on not only nested
NER but also flat NER.
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