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Abstract

Though successfully applied in research and
industry large pretrained language models of
the BERT family are not yet fully understood.
While much research in the field of BERTol-
ogy has tested whether specific knowledge can
be extracted from layer activations, we invert
the popular probing design to analyze the pre-
vailing differences and clusters in BERT’s high
dimensional space. By extracting coarse fea-
tures from masked token representations and
predicting them by probing models with ac-
cess to only partial information we can appre-
hend the variation from ‘BERT’s point of view’.
By applying our new methodology to different
datasets we show how much the differences can
be described by syntax but further how they are
to a great extent shaped by the most simple
positional information.

1 Introduction

By taking on the perspective of BERT and present-
ing the methodology to explore this point of view
we contribute a new approach to BERTology re-
search, a field that has emerged for a number of
good reasons.

Ever since the original BERT paper (Devlin
et al., 2019) combined masked language model-
ing (MLM) with massive pretraining and the trans-
former architecture (Vaswani et al., 2017), models
of the BERT family have achieved a variety of new
Natural Language Processing (NLP) benchmarks.
While their success is driven by the contextualiza-
tion of words it is clear that these models do not
yet have a real understanding of language (Bender
and Koller, 2020). Still, researchers are struggling
to find out what it is exactly that they learn and
how they perform so well. Challenges are the high
number of parameters over which the model knowl-
edge is distributed, and the innumberable different
patterns the models can potentially gather from
text.

BERTology takes on this quest of understanding
the inner workings of these large pretrained mod-
els to drive further improvements and identify the
next steps towards general AI. Though the train-
ing of ever greater models with ever more data
has been criticized because of the societal costs
and risks these models bring with, including bias
and discrimination (Bender et al., 2021). Never-
theless, because of their high performance they
are already employed in research but also industry-
applications, which exacerbates the need for their
explainability.

The black box of Bidirectional Encoder Repre-
sentations from Transformers (BERT) and its rel-
atives commonly consists of 6-24 identical trans-
former encoder layers. Each layer comprises a
multi-head-attention block followed by a fully con-
nected block, with both being bypassed by resid-
ual connections (Vaswani et al., 2017). This stack
of layers is primarily pretrained with MLM, the
task of predicting a randomly masked (or replaced)
word in an input text, and can afterwards be fine-
tuned to specific tasks. Next to attention scores,
layer activations are a popular choice for analy-
sis, as they conflate the information from atten-
tion heads and skip-connections and represent the
stages of the contextualization process.

BERT layer activations are most prominently
scrutinized by the so-called edge probing design,
in which they are treated as the fixed input to an-
other neural network trained on specific NLP tasks
(Tenney et al., 2019). Previous research has em-
ployed this method to test them for information
on word senses or grammatical properties, but this
does not reveal how much the information shapes
the space.

By inverting the probing design we present a
new way to analyze layer activations, specifically
their prevailing patterns, complementing the exist-
ing methodology. In contrast to the regular process,
we do not use them as input but as the output of
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a model. We reduce their dimensionality by clus-
tering and principal component extraction to cap-
ture the predominating differences within a dataset.
By declaring these differences as our ground truth
and explaining them in a second step, we can ren-
der visible the salient patterns and groupings from
‘BERT’s point of view’. We chose this term to
signal the shift of the perspective, from any con-
textual information a human might deem important
to the information that actually predominates the
representative space of the models.

For different datasets we extract the layer activa-
tions of masked tokens, meaning that all analyzed
tokens start out with identical representations. With
this setup we can be sure that the differences we an-
alyze are derived from context and are not caused
by different pretrained embeddings. As masked
language modeling continues to be a popular and
successful pretraining objective, it is of particular
interest which patterns are exploited when a model
is determining the identity of a masked token.

For the prediction of the representative features
we train three types of probing models that receive
as input a simplified version of the token context:
bag-of-words, ordered part-of-speech tags and sim-
ply the position of the token in a sentence. By
the disentanglement of these information types, the
probing results provide indications about their im-
portance for shaping the representative space.

Social science shows that contrastive explana-
tions are more relevant to humans than complete
explanations (Miller, 2019), which affirms the ne-
cessity of methods that focus on the contrasts per-
ceived by black box models. For a specific dataset
of masked tokens our methodology reveals the most
salient differences between their contexts.

Contributions With our methodology we offer
a new perspective on the contextual representa-
tions inside masked language models: The con-
trasts within a dataset from BERT’s point of view.

By its application we render visible how well
syntax describes the coarse patterns of the space
but further how much of this description is possible
by mere simplistic positional information.

Finally we demonstrate the danger of misinter-
preting the learned patterns of the models due to
the correlational nature of separated information
types which may also lead to an overestimation of
the models’ sophistication.

2 Related Work

In the field of BERTology (see Rogers et al., 2020
for a general overview) much research has focused
on three components; the self-attention mechanism,
a key component of the transformer architecture
that provides intuitive explanations (see e.g. Koval-
eva et al., 2019, Manning et al., 2020, Clark et al.,
2019), individual neurons (e.g. Luo et al., 2021)
and the layer activations that are scrutinized in our
work. Frequently the edge probing design (Ten-
ney et al., 2019) has been deployed to analyze the
contents of these activations, in different settings
such as after finetuning (Merchant et al., 2020) and
with various modifications. Amnesic probing mea-
sures what information gets used in the probing
tasks by removing selected properties (e.g. part-of-
speech) from the activations (Elazar et al., 2021).
Similarly O’Connor and Andreas (2021) measured
usable information when increasing context size
and ablating features of this additional context, e.g.
by shuffling. In a parameter-free approach Wu
et al. (2020) analyzed the output representation
of a masked token by additionally masking other
tokens in its proximity to determine their impact.

Another stream of research explores the geo-
metrical space of layer activations. A common ap-
proach is the direct measurement of similarities, e.g.
between instances of the same token and tokens of
the same sentences (Ethayarajh, 2019; Peters et al.,
2018) or between instances of homonyms and syn-
onyms (Garcia, 2021). Further work analyzes the
separability of predefined categories (e.g. word
senses) by manifold analysis (Mamou et al., 2020),
by measuring categorical cohesion with silhouette
scores (Mickus et al., 2020) or a nearest-neighbor
classifier (Coenen et al., 2019), or by searching
for clustering solutions that correspond to the cat-
egories (Yenicelik et al., 2020). The similarities
to our work are the focus on word level represen-
tations and the search for categories, though our
clusters are not predefined by us but are the group-
ings inherent to our datasets from BERT’s point of
view.

Much of the described work concerns only rep-
resentations of unmasked tokens, except for e.g.
Wu et al. (2020) and Mamou et al. (2020), but
as masked language modeling continues to be a
popular training objective the study of contextual
information of masked tokens is highly relevant.
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3 Experimental Setup

Because of the various components of probing clas-
sifiers and their respective interactions, the design
of such is non-trivial (Belinkov, 2021). This is also
true for this new, inverted type of probing process
that we present here.

3.1 Data
For this analysis of salient differences between
large numbers of datapoints the composition of the
dataset determines what can potentially be found.
Differences may be related to semantics, syntax
but also to artifacts that humans are unaware of.
Which of the existing distinctions shape the rep-
resentations in turn depends on if and how these
patterns are utilized by the studied model.

The prevailing differences thus depend on:

• The availability of different patterns

• The frequency of available patterns

• BERT’s attention to available patterns

• BERT’s integration of available patterns

The choice of data is contingent on the objective;
it thus can be a specific NLP dataset to understand
a model’s task performance or a new dataset that
we wish to interpret. For an explorative analysis of
BERT’s view the data can be used as is, but for an
analysis of the relevance of specific patterns it is
necessary to control their availability and frequency
within the dataset. Patterns that are the same across
all examples do not influence the feature extraction
process.

The tokens to be masked can be one or more fre-
quent words, word senses or syntactical functions,
e.g. Part-of-Speech, depending on the selected
dataset and the contexts of interest. The diversity
of contexts and contextual representations may dif-
fer much depending on the token, especially as
contextual information not only gives clues about
the word behind the mask but also about its inter-
pretation - additional meaning that is attached to
it. This is especially true for tokens that signify
entities as they are subject to opinions, e.g. "per-
son". This is also reflected by the great amount
of sensible candidate words, e.g. named entities,
professions or even insults, compared to a masked
determinator token "the" or other stopwords.

We selected four datasets from two sources and
with different masked tokens to demonstrate the

varying patterns that are salient in different kinds
of datasets. Data collection and preprocessing steps
are listed in Appendix C.

SemCor&OMSTI noun-synsets Our first
dataset stems from the combined word-sense
annotated corpus (Raganato et al., 2017) of
SemCor (Sense-tagged Semantic Corpus) (Miller
et al., 1991) and OMSTI (One Million Sense-
Tagged Instances) (Taghipour and Ng, 2015). We
selected three frequent noun synsets for masking:
person.n.01, manner.n.01 and line.n.16, and
stratified according to synset, which resulted in
a dataset of 6048 masked tokens. While these
words are all nouns, they are still used in different
syntactic settings.

SemCor&OMSTI person.n.01 From the same
combined, sense-annotated corpus we masked all
7702 instances of the synset person.n.01. This
includes instances of the word "person" but also
named entities.

cctweets-random Our cctweets data consists of
tweets about climate change activism that were col-
lected during and after the UN Climate Change
Conference in 2019. Ethical considerations of data
privacy are elucidated in Appendix A. The dis-
course was highly polarized, containing diverging
representations of the same issues, posing the ques-
tion of what differences would be salient in the
presence of such polarization. We masked random
tokens for explorative analysis and as comparison
to the cctweets-activist dataset. This dataset com-
prises 155952 instances.

cctweets-activist Our last dataset consists of cli-
mate change related tweets with 132710 masked
mentions of a prominent climate change activist,
as this person was the center of attention of the
discourse. Therefore we could extract thousands
of lexically identical instances with different de-
pictions. This dataset represents the use case of
searching for semantic groupings based on inter-
pretations from context.

3.2 Feature Extraction
For the investigation of salient differences be-
tween the masked token representations we chose
k-means clustering and principal component anal-
ysis to produce both categorical and continuous
features. The appropriateness of either method de-
pends on the properties of the data and we show
the results for both, for all of our datasets.
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input type example tokenization example tensor
Bag-of-Words who is mask [0 1 0 0 1 0 1 0 0]
Part-of-Speech [PAD] [PAD] WP VBZ [MASK] [PAD] [PAD] [PAD] [PAD] [0 0 4 6 1 0 0 0 0]
Position [PAD] [PAD] [MASK] [MASK] [MASK] [PAD] [PAD] [PAD] [PAD] [0 0 1 1 1 0 0 0 0]

Table 1: Input Format: Bag-of-Words, Part-of-Speech and position.

However it is achieved the dimensionality reduc-
tion helps humans to grasp the coarse patterns of
the space, which is not possible with the raw distri-
butions of meaning over 768 dimensions (bert-base-
uncased). Categorizing and aligning datapoints
along a single dimension, e.g. ranking them accord-
ing to some quality, are furthermore tasks that hu-
mans not only understand but perform themselves
on a daily basis, which underlines the importance
of representing the data accordingly.

It has been shown that none of the layer repre-
sentations of BERT are uniformly distributed with
respect to direction (Ethayarajh, 2019) and it is
thus important to note that the methods applied
here are susceptible to this anisotropy. This does
not contradict our design, as we want to describe
distances as they are, also showing possible causes
for anisotropy. The goal is not to tune our feature
extraction methods but to understand how we may
want to change the language models themselves.

K-Means Clustering The purpose of clustering
is finding distinct groups of similar contexts and
it is performed directly on the raw, extracted layer
representations. We chose a robust, widely-used
algorithm to capture obvious clusters, namely k-
means, which we ran with the default configuration
of the scikit-learn library. This means 10 runs with
different centroid initializations, returning the best
solution. We leave the experimentation with dif-
ferent clustering algorithms for future work, but
it should be noted that feature extraction methods
should remain simple, as complex features will take
away from the explainability power of the method.

As we do not know the correct numbers of clus-
ters we cluster for different values of k (2-30) and
also utilize silhouette scores to identify the opti-
mal value, thus showing what might be a useful
granularity from BERT’s point of view. Silhouette
scores are a measure of how similar datapoints are
to points within their cluster as opposed to points of
neighboring clusters (Rousseeuw, 1987). We select
common values 2 and 5 to perform the probing for
better comparability between settings.

Principal Component Analysis By rotating our
axes with principal component analysis (PCA) we
obtain the uncorrelated dimensions along which
there is the most variation. Thus they are continu-
ous representations of the biggest divergences that
are perceived by the BERT models. This is a useful,
straightforward alternative to the categorization by
clustering when the clusterability of the representa-
tive space is low. We choose to analyze the first two
principal components with our probing method.

3.3 Pretrained Models
For the extraction of the masked representations
we chose two models of the BERT family. First
bert-base-uncased (Devlin et al., 2019), which is
the standard sized original BERT model and sec-
ond, deberta-base (He et al., 2020), a modifica-
tion that has recently been a prominent name on
NLP benachmark leaderboards, e.g. SuperGLUE
(Wang et al., 2019). The models were retrieved
from the Huggingface Transformers library (Wolf
et al., 2020).

3.4 Probing
Our reversed probing methodology predicts the fea-
tures we extracted from BERT representations and
takes as inputs simpler features that we obtain from
the texts. These inputs are chosen to provide differ-
ent kinds of contextual information to our probing
models. By optimizing these models we can then
find out how well our coarse BERT features are
described by this information.

To find out how much co-occurences — un-
ordered meaning — and how much syntax shape
our coarse BERT features, we disentangle these
types of information from our context sentences
by creating two input types. The first is a bag-of-
words vector that considers all context words of
a masked token, while the second input type is a
part-of-speech embedding that retains the original
order of the context tokens. Because a preliminary
qualitative analysis of clusters showed that much
of the performance of the syntax classifier may be
due to the positional information it receives, we
added a third position-only input type. This list of
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classifiers is not conclusive, but rather a starting
point and may also be expanded depending on what
additional information is available. Table 1 shows
the overview of the selected information and input
formats.

For better comparability and similar optimiza-
tion, we chose to build the architecture of these clas-
sifiers identically except for the input layer. While
the first layer of the BOW model is fully-connected
and accepts a multi-hot vocabulary vector, the POS
architecture requires an actual embedding layer. Po-
sition is retained simply by centering the masked
token and padding on both sides until maximum
sequence length. A linear layer aggregates the in-
formation over the sequence dimension, arriving
at a fixed-length syntax embedding. The position
classifier functions similarly, without the additional
embedding dimension. For all probing models we
append one hidden and one output layer with ReLU
activations in-between.

Implementation The probing classifiers were
implemented with the Huggingface Transformers
Trainer Loop (Wolf et al., 2020) with AdamW opti-
mizer (Loshchilov and Hutter, 2019) and a linear
learning rate schedule. Hyperparameter search was
realized with Optuna (Akiba et al., 2019) and is
described in Appendix D. For the cluster prediction
models the cross-entropy loss was calculated with
balanced class weights and the best model was se-
lected by Macro-F1 score, as we care equally about
all identified clusters. The best models for the re-
gression of principal components were determined
by MSE-loss.

4 Results

For the investigation of prevailing differences dis-
cerned by the models, we are starting with a manual
inspection of the PCA plots for bert-base-uncased
in Figure 1 and deberta-base in Figure 3, observing
that the contextual space for some combinations
of datasets and layers exhibits quite distinct clus-
ters. The presence of further clusters is indicated
by their optimal number as determined by silhou-
ette scores, shown in the lower right corner of the
individual plots. The datapoints are colored accord-
ing to positional information, here simply defined
as the first character of the masked token divided
by the number of characters in the sentence. From
these visuals alone we can already learn that po-
sitional information greatly shapes the principal
components and visible clusters. Some clusters

are completely defined by a specific position while
others are internally arranged by this feature.

The probing results for the test datasets are
shown in Figure 2 for bert-base-uncased and Fig-
ure 4 for deberta-base (evaluation results can be
found in Appendix E). For almost all studied repre-
sentations the Part-of-Speech models perform best
or are on par to the Bag-Of-Words models. The
performance gap is more distinct for the explained
variance of the principal components with an 0.21
average difference in R² but only 0.1 for the Macro-
F1 scores of the cluster predictions. Notably, while
the position models can never outperform the POS
models, as they receive only the position-related
subset of their contextual inputs, they achieve a
large percentage of their performance for many
settings, corroborating the finding of the visibly
prevailing positional information. Here the per-
formance gaps are 0.40 for R² and 0.26 for the
Macro-F1 scores, averaged over all studied settings,
showing how much the part-of-speech tags add to
the explanations.

For some datasets the plots of BERT and de-
BERTa closely resemble one another, especially
for the noun-synsets. Strikingly, though the data
consists of three equally-sized groups of synsets,
there are exactly two clusters visible in 2D. The
cluster assignment plots for best values of k in Ap-
pendix F show that for some layers of BERT and
deBERTa the k-means algorithm does manage to
differentiate all three of the synsets. Since the prob-
ing results are similar as well, we can conclude that
BERT’s and DeBERTa’s point of view do corre-
spond for this dataset. Qualitative inspection found
that the synsets person.n.01 and manner.n.01 ad-
join while line.n.16 is spatially far removed. While
positional information visibly permeates the clus-
ters the distance between them is described almost
perfectly by the POS models, thus by syntactic
contextual differences. However, the almost equal
performance of the BOW models shows the corre-
lation of part-of-speech with bag-of-words patterns
that can be exploited.

For the dataset of masked person.n.01 synsets
the BERT and deBERTa 2D-projections appear less
alike, especially for layer 6. In this setting the POS
model’s performance for the regression of BERT’s
principal components greatly exceeds all others
with 88% of their variances explained. Further
analysis showed that the cluster in the upper half
of the plot contains only instances of masked to-
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Figure 1: BERT-base-uncased 2D Principal Components. Datapoints are colored by positional information,
calculated by the first character of the masked token divided by the number of characters of the sentence. K indicates
the number of clusters with the best silhouette score. Extended plot with additional layers: Appendix 5.

Figure 2: BERT-base-uncased Probing Test Results. Reported scores are Macro-F1 for k-means prediction and R²
for the regression of principal components.

kens that were followed by an apostrophe, showing
that his specific syntactic pattern is perceived as
significantly different. Because of the very low
performance of the BOW regression model, we
can be sure that this difference is indeed caused
by syntax and not by co-occurences. The diverg-

ing results for the k-means-2 model expose that
the clustering algorithm found a different one than
the visible grouping solution (see also plots with
cluster assignments for k=2 in Appendix 6).

For both the twitter datasets of random masks
and masked activist tokens the final layer of BERT
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Figure 3: DeBERTa-base 2D Principal Components. Datapoints are colored by positional information, calculated
by the first character of the masked token divided by the number of characters of the sentence. K indicates the
number of clusters with the best silhouette score. Extended plot with additional layers: Appendix 8.

Figure 4: DeBERTa-base Probing Test Results. Reported scores are Macro-F1 for k-means prediction and R² for
the regression of principal components.

singles out those that appeared at the end of the sen-
tence. Qualitative investigation showed that this is
the case regardless if the token was the final one or
followed by a punctuation character. For DeBERTa
the space of cctweets-activist is characterized by
position to a greater extent than that of cctweets-

random, as evident from the visuals and the perfor-
mances of the position models. The numbers of
clusters as suggested by silhouette scores are much
higher for the random masks. While the BERT and
DeBERTa perspectives on the dataset with equally
sized groups of synsets seem quite identical, the
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cases of one synset or random masks reveal rather
different perceived contextual differences.

5 Discussion & Conclusion

In contrast to much recent BERTology work of
predicting specific syntactic and semantic informa-
tion from layer activations, we invert the probing
design to instead predict features of the represen-
tative space itself. From masked token representa-
tions we extract clusters and principal components
of contextual information and explore their nature
by probing models that receive as input detangled
types of information. We thus paint a picture of the
dissimilarities and groupings within a dataset from
BERT’s point of view, thereby expanding existing
probing methodology by a crucial perspective.

Our analysis shows that the representative space
of contextual information does exhibit clusters.
Most clusters and principal components of our
datasets are best described by the Part-of-Speech
models, however, for many settings the positional
probing models can achieve 50% or more of the
POS performance. This shows how the representa-
tive space of both BERT and DeBERTa is greatly
shaped by the most simple positional information,
even though these models handle positional embed-
dings differently. As demonstrated by Geirhos et al.
(2020), neural networks are prone to shortcut learn-
ing, and thus position may be one such shortcut.
On the other hand, for the standard BERT it was
shown that the representative space is anisotropic
due to outlier neurons capturing positional informa-
tion, which was attributed to Layer Normalization
(Luo et al., 2021).

The usual probing classifier architecture that re-
ceives representations as input and predicts a speci-
fied linguistic property cannot clarify, if the repre-
sentations are actually informed by the linguistic
property of interest or by other, correlating proper-
ties of the training data (Belinkov, 2021). In our
analysis the for some cases equal performance of
detangled semantics (Bag-of-Words) and syntax
(ordered Part-of-Speech tags) shows as well their
correlational nature and the difficulty of pinpoint-
ing which features are actually utilized by large
masked language models. When simplistic and
meaningful features correlate this provides the dan-
ger of assuming that the models are much more
sophisticated than they actually are.

We do not attempt to answer the question of
what information should predominate the represen-

tational space, but it is likely that the optimum is
not reached with features as simple as the position
of a token in a sentence. We expect the best solu-
tions to be defined by more sophisticated features
that are not obtainable with simple string analysis,
and which might even be utilizable for data analysis
and hence other fields of research.

Concluding, our methodology delivers clues
about the shortcomings of language models and
the shortcuts that they are exploiting, to highlight
directions of further adjustments of training objec-
tives and processes in the future.

We hope that this work inspires more researchers
to look at the world from BERT’s point of view, to
understand how it differs from ours. By recogniz-
ing the nature of their current primitivity we can
generate new ideas on how to improve these large
language models, gradually moving in the direction
of a more general AI.

Limitations The prevailing contextual patterns
that are revealed by this method are not universal
but are always contingent on the analyzed datasets.
Accordingly these have to be chosen and controlled
depending on the research objective.

For the extraction of categories by clustering,
selecting the appropriate number of clusters is non-
trivial. Here the number of clusters was set to
equal numbers to allow for a comparison between
datasets and layers, but these may not reflect the
inherent number of groupings.

Lastly this method, as with any method that an-
alyzes individual parts of a network in isolation,
does not explain how the identified prevailing in-
formation is utilized during task performance.

Future Work A promising extension of this
work will be to enlarge the set of probing mod-
els to even better partition the different types of
information, to better understand their contribu-
tions. Examples of further relevant input types
are a windowed Bag-of-Words or Bag-of-Words
filtered by word types. Furthermore it would be
highly interesting to compare the POS model to
other embedding models (e.g. simply word embed-
dings) with identical structures.

The settings that may be analyzed by this method
are various, such as the finetuning process, to ex-
plore how the prevailing patterns shift when models
adapt to particular tasks. A comparison between
models of different languages may reveal differ-
ent focuses and varying correlations of information
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types.
The described method is applicable also for the

analysis of unmasked tokens though then the pro-
cess of contextualization will differ from the very
first layer depending on the token. The masked and
unmasked contextualizations are moreover shaped
by different objectives, predicting masked tokens
and predicting potentially perturbed tokens, which
may result in attention to different contextual pat-
terns.

Finally it may be fruitful to utilize gradient-
based attribution methods to pinpoint not just the
relevance of input types but the relevance of spe-
cific inputs and positions from BERT’s point of
view.
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A Ethical Considerations

This work utilizes public discussions by private
individuals on Twitter. The tweets were collected
with the Twitter streaming API and all information
of the tweeting users, including user names and
ids, was discarded. However, sensitive information
is also found within the analyzed texts, none of
which are made public. The tweets are stored with
restricted access and will be deleted upon research
conclusion. Afterwards only the tweet ids will
be available, which can be hydrated through the
Twitter API only for tweets that still are public.

B Computing Infrastructure & Runtimes

A Nvidia GeForce RTX 2080 Ti graphics card was
used for the training and evaluation of the probing
models. The hyperparameter search with 50 runs
lasted 28 minutes on average and the final mod-
els were optimized with an average of 6 minutes
training time.

C Data Collection & Preprocessing

The unified sense-tagged corpus of SemCor
and OMSTI was obtained from http://lcl.
uniroma1.it/wsdeval/training-data
(Raganato et al., 2017).

The Part-of-Speech tags for the POS probing
models were obtained by the nltk python pack-
age. Specialized taggers for Twitter data are avail-
able but were not deemed necessary as most of
the twitter-specific artefacts were removed during
preprocessing.

For probing the datasets were split randomly
into training, evaluation and test sets by the ratio
70:15:15.

Twitter datasets Tweets were collected through
the Twitter Streaming API with keywords related to
climate change and activism. The timeframe of col-
lection was during and after the United Nations
Climate Change Conference in 2019 (COP25):
2.-19.12.2019 As per Twitter policy only the ids
of tweets are made available, which can be re-
hydrated with the Twitter API.

• Filters:

– only English tweets
– no replies
– at least three words
– only sentences / sentence-like phrases

– duplicates removed

• Preprocessing:

– removing URLs
– removing hashtag and mention se-

quences if n > 1
– pruning repeating characters and words

if n > 3
– random masking /masking first token

that matches activist pattern
– obtaining sentences / sentence-like

phrases containing the mask token

D Hyperparameter Search

Hyperparameter search was performed for a sample
of the analyzed probing settings: For each combina-
tion of the 4 datasets, 3 input types (bag-of-words,
part-of-speech and position) and 2 output types
(k-means, principal component), 3 settings were
sampled and hyperparameter search was conducted
with Optuna for 50 runs. The search results were
then pooled for each combination.

The search space and pooling strategy are shown
in Table 2. Preliminary experiments had shown that
one hidden layer was a generally good choice for
network depth, but network width was included as
a search parameter. The determined values for the
hyperparameters stayed within the search bound-
aries, except for two cases where n_hidden was
equal to the maximum value. Thus additional trials
were run to find out if representational capacity had
to be increased further with the maximum value
found to be 2060.

hyperparameter search space pooling
hidden_layer_size 128 - 2048 max
batch_size 8 - 64 mean
learning_rate 1e-5 - 1e-1 mean
n_steps 5000 - 50000 max + 5000

Table 2: Hyperparameter Search Space and Pooling
Strategy.

For batch_size and learning_rate the values were
aggregated by averaging, but to ensure a sufficient
capacity of the network layer_size was set to the
maximum. The number of training steps was set to
the maximum plus additional 5000 steps to ascer-
tain sufficient training for any configuration. As the
best checkpoint is selected for testing, this does not
hurt the performance of faster converging models.
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dataset input_type output_type n_hidden batch_size learning_rate max_steps
cctweets-activist BOW kmeans 1882 14 0.00075 53988
cctweets-activist BOW pc 1617 33 0.00076 31841
cctweets-activist pos. kmeans 2060 11 0.00026 45684
cctweets-activist pos. pc 1715 34 0.00057 36678
cctweets-activist POS kmeans 1654 30 0.00317 38124
cctweets-activist POS pc 1970 47 0.00247 24824
cctweets-random BOW kmeans 1308 26 0.00079 37955
cctweets-random BOW pc 1721 23 0.00112 48627
cctweets-random pos. kmeans 1187 12 0.00035 47055
cctweets-random pos. pc 1674 47 0.00041 54746
cctweets-random POS kmeans 1482 25 0.00412 47735
cctweets-random POS pc 2048 48 0.00252 38101
S&O noun-synsets BOW kmeans 1726 21 5e-05 14053
S&O noun-synsets BOW pc 698 16 0.02717 26494
S&O noun-synsets pos. kmeans 1098 11 0.00029 34690
S&O noun-synsets pos. pc 597 10 0.00332 15622
S&O noun-synsets POS kmeans 736 17 0.04023 45072
S&O noun-synsets POS pc 299 24 0.00947 13580
S&O person.n.01 BOW kmeans 1983 21 0.00022 32521
S&O person.n.01 BOW pc 518 29 0.00786 40901
S&O person.n.01 pos. kmeans 945 20 0.00222 37165
S&O person.n.01 pos. pc 1047 19 0.00229 17568
S&O person.n.01 POS kmeans 923 18 0.00102 24021
S&O person.n.01 POS pc 1075 19 0.02934 18444

Table 3: Hyperparameter Settings.

The resulting hyperparameter settings are listed in
Table 3.

E Extended Results

F Extended Plots
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noun-synsets person.n.01 cctweets-random cctweets-activist
k2 k5 pc1 pc2 k2 k5 pc1 pc2 k2 k5 pc1 pc2 k2 k5 pc1 pc2

BOW eval 0.96 0.69 0.84 0.59 0.7 0.52 0.19 0.2 0.64 0.37 0.11 0.19 0.83 0.57 0.56 0.45
BOW test 0.95 0.69 0.86 0.62 0.7 0.51 0.15 0.08 0.63 0.37 0.1 0.19 0.83 0.56 0.58 0.43
POS eval 0.98 0.83 0.93 0.85 0.92 0.9 0.89 0.9 0.88 0.69 0.69 0.67 0.9 0.74 0.88 0.56
POS test 0.98 0.84 0.95 0.87 0.91 0.88 0.88 0.89 0.87 0.68 0.68 0.67 0.9 0.73 0.88 0.55
pos. eval 0.62 0.44 0.17 0.45 0.73 0.48 0.54 0.03 0.61 0.41 0.34 0.41 0.69 0.43 0.6 0.16
pos. test 0.61 0.41 0.18 0.47 0.69 0.47 0.48 0.04 0.61 0.4 0.35 0.4 0.69 0.43 0.6 0.15

Table 4: BERT-base-uncased Layer 6 Probing Evaluation and Test Results.

noun-synsets person.n.01 cctweets-random cctweets-activist
k2 k5 pc1 pc2 k2 k5 pc1 pc2 k2 k5 pc1 pc2 k2 k5 pc1 pc2

BOW eval 0.96 0.77 0.87 0.68 0.75 0.59 0.61 0.54 0.58 0.48 0.12 0.64 0.76 0.62 0.45 0.21
BOW test 0.96 0.83 0.88 0.66 0.7 0.59 0.54 0.55 0.58 0.48 0.13 0.66 0.76 0.59 0.45 0.19
POS eval 0.98 0.81 0.9 0.74 0.81 0.6 0.66 0.36 0.77 0.59 0.37 0.53 0.74 0.6 0.44 0.28
POS test 0.98 0.8 0.93 0.78 0.8 0.58 0.66 0.36 0.76 0.58 0.35 0.54 0.74 0.59 0.44 0.25
pos. eval 0.63 0.37 0.16 0.29 0.66 0.38 0.32 0.14 0.73 0.35 0.26 0.07 0.6 0.4 0.19 0.14
pos. test 0.61 0.38 0.17 0.32 0.64 0.36 0.29 0.17 0.71 0.34 0.23 0.07 0.6 0.39 0.18 0.13

Table 5: BERT-base-uncased Layer 12 Probing Evaluation and Test Results.

noun-synsets person.n.01 cctweets-random cctweets-activist
k2 k5 pc1 pc2 k2 k5 pc1 pc2 k2 k5 pc1 pc2 k2 k5 pc1 pc2

BOW eval 0.96 0.78 0.86 0.63 0.67 0.49 0.29 0.43 0.73 0.5 0.43 0.15 0.8 0.57 0.57 0.53
BOW test 0.95 0.82 0.87 0.64 0.66 0.46 0.21 0.45 0.72 0.5 0.44 0.16 0.8 0.56 0.56 0.53
POS eval 0.98 0.82 0.91 0.82 0.9 0.81 0.82 0.7 0.8 0.63 0.59 0.68 0.86 0.68 0.66 0.81
POS test 0.99 0.8 0.93 0.83 0.88 0.79 0.83 0.7 0.8 0.63 0.58 0.68 0.86 0.68 0.67 0.81
pos. eval 0.63 0.37 0.18 0.37 0.8 0.49 0.61 0.24 0.73 0.39 0.36 0.35 0.78 0.51 0.42 0.64
pos. test 0.62 0.36 0.2 0.38 0.76 0.47 0.58 0.25 0.73 0.38 0.35 0.35 0.79 0.52 0.43 0.65

Table 6: DeBERTa-base Layer 6 Probing Evaluation and Test Results.

noun-synsets person.n.01 cctweets-random cctweets-activist
k2 k5 pc1 pc2 k2 k5 pc1 pc2 k2 k5 pc1 pc2 k2 k5 pc1 pc2

BOW eval 0.96 0.81 0.88 0.68 0.91 0.57 0.62 0.4 0.65 0.48 0.47 0.19 0.8 0.69 0.62 0.65
BOW test 0.95 0.82 0.89 0.68 0.88 0.55 0.55 0.39 0.65 0.48 0.46 0.19 0.8 0.68 0.62 0.66
POS eval 0.98 0.81 0.91 0.76 0.88 0.76 0.68 0.69 0.78 0.63 0.47 0.54 0.86 0.71 0.65 0.75
POS test 0.98 0.79 0.92 0.78 0.85 0.73 0.7 0.7 0.77 0.62 0.47 0.52 0.86 0.71 0.65 0.75
pos. eval 0.63 0.37 0.18 0.26 0.67 0.52 0.33 0.17 0.59 0.33 0.1 0.11 0.77 0.45 0.4 0.47
pos. test 0.62 0.36 0.2 0.28 0.62 0.49 0.29 0.2 0.59 0.32 0.1 0.11 0.77 0.45 0.41 0.48

Table 7: DeBERTa-base Layer 12 Probing Evaluation and Test Results.
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Figure 5: BERT-base-uncased 2D Principal Components. Datapoints are colored by positional information,
calculated by the first character of the masked token divided by the number of characters of the sentence. K indicates
the number of clusters with the best silhouette score.
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Figure 6: BERT-base-uncased 2D Principal Components and Cluster Assignments for k=2. K (lower right corners)
indicates the number of clusters with the best silhouette score.
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Figure 7: BERT-base-uncased 2D Principal Components and Cluster Assignments for best Values of K as determined
by Silhouette Scores.
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Figure 8: DeBERTa-base 2D Principal Components. Datapoints are colored by positional information, calculated
by the first character of the masked token divided by the number of characters of the sentence. K indicates the
number of clusters with the best silhouette score.
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Figure 9: DeBERTa-base 2D Principal Components and Cluster Assignments for k=2. K (lower right corners)
indicates the number of clusters with the best silhouette score.
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Figure 10: DeBERTa-base-uncased 2D Principal Components and Cluster Assignments for best Values of K as
determined by Silhouette Scores.
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