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Abstract

Data Augmentation (DA) is known to improve
the generalizability of deep neural networks.
Most existing DA techniques naively add a
certain number of augmented samples without
considering the quality and the added compu-
tational cost of these samples. To tackle this
problem, a common strategy, adopted by sev-
eral state-of-the-art DA methods, is to adap-
tively generate or re-weight augmented sam-
ples with respect to the task objective dur-
ing training. However, these adaptive DA
methods: (1) are computationally expensive
and not sample-efficient, and (2) are designed
merely for a specific setting. In this work, we
present a universal DA technique, called Glit-
ter, to overcome both issues. Glitter can be
plugged into any DA method, making train-
ing sample-efficient without sacrificing perfor-
mance. From a pre-generated pool of aug-
mented samples, Glitter adaptively selects a
subset of worst-case samples with maximal
loss, analogous to adversarial DA. Without
altering the training strategy, the task objec-
tive can be optimized on the selected sub-
set. Our thorough experiments on the GLUE
benchmark, SQuAD, and HellaSwag in three
widely used training setups including consis-
tency training, self-distillation and knowledge
distillation reveal that Glitter is substantially
faster to train and achieves a competitive per-
formance, compared to strong baselines.1

1 Introduction

The undeniable importance of data in deep learn-
ing (Sambasivan et al., 2021; Rogers, 2021) and the
costly process of data annotation has propelled re-
searchers into leveraging Data Augmentation (DA)
in a broad range of applications from computer
vision (Cubuk et al., 2019; Wang et al., 2020) to

∗Equal Contribution.
†Work done while interning at Huawei Noah’s Ark Lab.

1Our code is available at https://github.com/
huawei-noah/KD-NLP/tree/main/Glitter.

natural language processing (NLP) including ma-
chine translation (Sennrich et al., 2016; Shen et al.,
2020), language understanding (Shen et al., 2020;
Qu et al., 2021; Du et al., 2021; Kamalloo et al.,
2021), and question answering (Alberti et al., 2019;
Longpre et al., 2019; Shakeri et al., 2020). DA
is shown to be effective in improving generaliza-
tion of deep neural networks (DeVries and Taylor,
2017; Xie et al., 2020) and in increasing the num-
ber of training samples especially in low resource
data regimes (Sennrich et al., 2016; Zhang et al.,
2018). Nonetheless, in NLP, the discrete nature of
text poses additional complexity to DA as gener-
ating semantically viable text from another text is
challenging (Feng et al., 2021).

DA methods can be broadly categorized into
task-aware and task-agnostic methods. Task-
agnostic DA methods essentially generate aug-
mented text regardless of the task at hand and often
do not warrant additional training or fine-tuning.
They can be based on some hand-crafted heuristics
(Zhang et al., 2015; Wei and Zou, 2019), back-
translation (Sennrich et al., 2016; Edunov et al.,
2018), or token replacement from a pre-trained lan-
guage model (Kobayashi, 2018; Wu et al., 2019; Ng
et al., 2020). Even though deploying task-agnostic
methods is straightforward, these methods do not
take into account any task-specific information, and
thus, their performance is usually limited. On the
other hand, task-aware DA methods are capable
of generating augmented samples, conditioned on
the downstream task objective (Hu et al., 2019;
Xie et al., 2020; Rashid et al., 2021). These meth-
ods adapt augmented examples specifically for a
task in that they construct augmented examples,
sometimes partly, during training. Despite their ad-
vantages, they often incur additional training costs,
resulting in a prohibitively slow and a computation-
ally expensive training.

In general, the central problems surrounding DA
techniques in NLP can be summarized as follows:
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First, DA methods are mostly not sample-efficient
in that they add arbitrary number of augmented
samples to the training data and naively incorpo-
rate all of them into training without investigat-
ing how many of augmented samples are actually
needed. Second, although more effective, task-
aware methods are notoriously time-consuming to
train. This is especially problematic in large-scale
datasets such as SQuAD (Rajpurkar et al., 2016)
and MNLI (Williams et al., 2018). Third, most
DA methods are not universal as they work solely
with a particular setup—e.g., training a single-
network (Xie et al., 2020), or training in teacher-
student settings (Rashid et al., 2021). Overall, the
importance of both sample efficiency and training
efficiency for DA has been often overlooked.

Motivated by the above problems, in this work,
we introduce a universal DA method, Glitter 2,
which can be plugged into any DA method to make
them sample-efficient, and task-aware without sac-
rificing performance. Specifically, given a pool
of augmented samples that are generated offline,
our proposed method follows a minimax approach
(Farnia and Tse, 2016) to select a small subset with
maximal expected loss (maximization step) during
training. Without any further adjustments to the
training algorithm, the task objective can be opti-
mized for this selected subset (minimization step).

Our key contributions in this paper can be sum-
marized as follows:

1. Glitter is a universal method which can be
effortlessly applied to any DA method to en-
force sample efficiency while maintaining (or
even boosting) their performance.

2. We devise strategies to adapt Glitter for a
variety of widely used training setups includ-
ing single-network, consistency training, self-
distillation and knowledge distillation.

3. Through our empirical evaluations, we show
that Glitter achieves superior performance
over state-of-the-art DA methods on GLUE,
SQuAD, and HellaSwag, while significantly
speeding up the training.

2 Related Work

2.1 Task-agnostic DA in NLP
Contextual augmentation techniques (Kobayashi,
2018; Wu et al., 2019) use pre-trained language

2Inspired by “All that is gold does not glitter” —J.R.R.
Tolkien, The Fellowship of the Ring.

models for DA. Kobayashi (2018) propose bidi-
rectional LSTM language models for word substi-
tution conditioned on the label of their input text.
SSMBA (Ng et al., 2020) and TinyBERT (Jiao
et al., 2020) perturb the input by masking some of
the tokens, and then, sample tokens from a BERT
model to replace the masked tokens and generate
augmented samples. Back-Translation (Sennrich
et al., 2016) augments data using two consecutive
translation models: the first model to translate the
input into an arbitrary target language; then, a sec-
ond model to translate the result back into its orig-
inal language. Mixed-up (Guo et al., 2019) gen-
erates augmented samples based on interpolating
word embedding and sentence embedding vectors.
Shen et al. (2020) introduce a set of cut-off tech-
niques that zero out contiguous spans of the em-
bedding matrix at token level, feature level and
span level. EDA (Wei and Zou, 2019) consists of
simple word-level operations including synonym
replacement, random deleting, random insertion
and random swapping.

2.2 Task-aware DA in NLP
One approach to leverage task-specific informa-
tion is to assign different weights to augmented
samples based on their individual impacts on the
model (Yi et al., 2021). Although effective, the
re-weighting mechanism largely ignores sample
efficiency. Wu et al. (2019) introduce a mask-and-
reconstruct approach, namely c-BERT, that fine-
tune a pre-trained BERT model to predict label-
compatible tokens. CoDA (Qu et al., 2021) com-
bines various label-preserving transformations with
adversarial training jointly with a contrastive regu-
larization objective. Unsupervised DA (UDA; Xie
et al. 2020) uses off-the-shelf DA methods and
adds an auxiliary consistency loss to the training
objective. However, UDA is not sample-efficient
and it is designed only for a single-network setup;
how to deploy it in other training scenarios such as
knowledge distillation is not clear. Hu et al. (2019)
propose a reinforcement learning-based technique
where the reward function is defined based on
whether generated augmented samples are label-
preserving or not.

2.3 DA for KD
KD (Buciluǎ et al., 2006; Hinton et al., 2015), ini-
tially proposed as a model compression technique,
aims at transferring the knowledge of an already
trained model, called teacher, to a smaller or a
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same-size student model. Several studies found
that DA can significantly boost KD’s performance
in NLP. TinyBERT (Jiao et al., 2020) uses a task-
agnostic DA technique for its task-specific fine-
tuning. Kamalloo et al. (2021) and Rashid et al.
(2021) showed that DA can also be tailored for
KD. In particular, MATE-KD (Rashid et al., 2021)
tunes a separate masked language model in order to
generate augmented samples with maximum diver-
gence. Kamalloo et al. (2021) and Du et al. (2021)
employ kNN retrieval to fetch augmented samples
from a massive sentence bank.

Glitter differs from previous work in that it si-
multaneously focuses on sample efficiency, and
universality such that it can be freely used in any
training setting.

3 Methodology

In this section, we introduce our task-aware DA
method, Glitter , that aims at using an efficient
number of augmented samples without sacrificing
performance. Our proposed strategy is agnostic
to DA methods; it can be seamlessly plugged into
any DA method with any training setting to enforce
sample efficiency.

Existing learning-based DA methods train a sep-
arate DA model and adapt its output for a particular
objective function that is entirely task-dependent:

φ∗ ← min
φ

`DA(M(Ω(x;φ); θ))

x′∗ = Ω(x;φ∗)
(1)

where `DA() is a loss function, geared towards the
objective of the task, Ω(;φ) is the DA model with
trainable parameters φ, and M(; θ) refers to the
original model, parameterized by θ.

In contrast to learning-based DA, we propose to
generate many augmented candidates using any ar-
bitrary DA method prior training, and adaptively se-
lect most suitable candidates during training. This
procedure does not introduce additional trainable
parameters into training, and more importantly, is
capable of automatically ignoring unnecessary aug-
mented examples. Let (xi, yi)

N
i=1 ∈ {(X ,Y)} rep-

resent training data such that a pair xi ∈ X and
yi ∈ Y are an input example and its corresponding
label. Suppose a pool of K augmented examples,
X ′(i) = {x′k(i)}Kk=1, are sampled from some DA
model for each training example (xi, yi) ∈ (X ,Y).
Note that Glitter imposes no restrictions on how to
augment training data; augmented samples can be
generated via a single or even multiple DA models.

Sample Selection. Given a pool of augmented
samples, our approach is to adaptively select the
best candidates according to particular defined cri-
teria. Inspired by the minimax approach (Farnia
and Tse, 2016; Volpi et al., 2018), our selection
mechanism is based on finding top-k1 (out of K)
worst-case augmented samples from the X ′ set.
Minimizing the main model loss function on these
worst-case augmented samples will help improv-
ing generalization of the model (Volpi et al., 2018).
In order to rank augmented samples, we evaluate
X ′(i) based on a distance function with respect
to the corresponding original training sample, xi,
within the model’s latent space:

X ′∗(i)← topk1
(
`eval

(
M(xi; θ),M(X ′(i); θ)

))
X ′∗(i) = {x′∗j (i)}k1j=1 ⊂ X

′(i)

(2)

where topk1() denotes returns top-k1 indices based
on the scores returned by `eval, X ′∗(i) is the set of
k1 selected augmented samples for xi; `eval() is
the evaluation loss which is determined via the task
objective.

Updating the Model Parameters. After obtain-
ing the top-k1 augmented samples, we group them
with the original training samples, {xi} ∪X ′∗(i),
and subsequently, update the model parameters
only based on this selected set of augmented sam-
ples on the original loss:

L(θ) =

N∑
i=1

`task

(
M(xi; θ),M(X ′∗(i); θ), yi

)
θt ← θt−1 − λ∇θ(L(θ))|θt−1

(3)

where N is the number of training samples, λ is
the learning rate, and `task() is the final task loss—
e.g., cross entropy (ce) for classification—that is
computed over both original data and selected aug-
mented data. In the remainder of this section, we
discuss how Glitter can be applied to popular train-
ing settings including general DA for single net-
works, and DA for teacher-student (KD) setups.
Note that Glitter is not restricted to these settings
and may be adapted for other settings such as DAIR
(Huang et al., 2022).

3.1 General DA for Single Networks
We consider three potential setups for the single
network scenario: (1) General single network, (2)
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Figure 1: Illustration of Glitter (from left to right): first, generating augmented samples from different DA
techniques; second, forming a pool of samples X ′(i); third, evaluating the augmented samples using the `eval()
loss; fourth, filtering the top-k1 samples based on their corresponding `eval(); fifth, updating the parameters of the
model by minimizing the task loss `task(: θ).

Self-distillation, and (3) Consistency training.

General Single Network. In this setup, aug-
mented samples are exploited in a semi-supervised
manner where we can evaluate them based on the
divergence of their predicted outputM(x′k(i); θ) =
p(y|x′k(i); θ) from the ground-truth label or the pre-
diction of the original corresponding training sam-
ple M(xi; θ) = p(y|xi; θ) using the cross entropy
loss, `ce:

`eval = `ce
(
yi,M(x′k(i); θ)

)
or

`eval = `ce
(
M(xi; θ),M(x′k(i); θ)

)
.

(4)

The cross entropy criterion is not the only option
here. Other choices for `eval include (but not limited
to) focal loss (Lin et al., 2017), and tilted loss (Li
et al., 2021).

For the final task loss, `task we can deploy a stan-
dard cross entropy loss over both training samples
and their corresponding selected augmented sam-
ples:

`task = `ce
(
yi,M(xi; θ)

)
+

1

k1

∑
x∈X′∗(i)

`ce
(
yi,M(x; θ)

)
. (5)

Consistency Training (CT; Xie et al. 2020). In
this configuration, we can employ the same `eval
introduced in Eq. (4). As a result, our method nat-
urally selects top-k1 most inconsistent augmented
samples for each training sample. Then, the net-
work is optimized to make predictions for input
augmented samples that are consistent with pre-
dictions of their corresponding original training

samples:

`CT
task = `ce

(
yi,M(xi; θt)

)
+

1

k1

∑
x∈X′∗(i)

`ce
(
M(xi; θt−1),M(x; θt)

)
. (6)

As stated by Xie et al. (2020), the second term
in Eq. (6) leverages the previous prediction of the
network for each training example.

Self-Distillation (Self-KD). In Self-KD, we first
train a model, and then, use it (M(; θ∗)) as a teacher
to train an identical model but initialized from
scratch using KD (Furlanello et al., 2018). How to
adjust `eval and `task is detailed in §3.2.

3.2 DA for Teacher-Student (KD)
In this setup, we have a teacher model, T (;ψ∗) with
parameters ψ that is already trained on the training
data, along with a student model,M(; θ), which we
aim to train. The selection criterion for augmented
samples is to maximize divergence between the
teacher and the student:

`KD
eval = `KL

(
T
(
x′k(i);ψ

∗),M(x′k(i); θ)) (7)

where `KL refers to the KL divergence. After se-
lecting the maximum divergence augmented sam-
ples, then we calculate the KD loss as following:

`KD
task = α `ce

(
yi,M(xi; θ)

)
+ (1− α)×

1

k1 + 1

∑
x∈{xi}∪X′∗(i)

`KL
(
T (x;ψ∗),M(x; θ)

)
(8)

where α is a hyperparameter.
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4 Experiments

4.1 Setup

To incorporate unlabelled augmented data into
training, we adopt CT (Xie et al., 2020) and KD
(Hinton et al., 2015). To this end, we conduct ex-
periments under two settings:

Standalone where we train a single model on
the augmented data. In this setting, we seek to an-
swer two questions: (1) How much is DA capable
of improving the model generalization? (2) Does
sample efficiency of Glitter hurt performance? For
this purpose, we fine-tune RoBERTabase (Liu et al.,
2019) using CT and Self-KD on augmented data.

Distilled where we distill DistilRoBERTa (Sanh
et al., 2019) (student) from RoBERTaLarge (Liu
et al., 2019) (teacher) using the augmented data.
Note that the teacher is already trained on the
original data and DA comes into play only dur-
ing distilling the student model. Our goal here is
to investigate whether DA is an effective means in
knowledge transfer to curb the capacity gap (Cho
and Hariharan, 2019) between a large model and a
small one.

In both settings, we take the best performing
model on the development set and evaluate it on
the test set (depicted by Test). Additionally, for
the standalone model setting, we also report results
on the development set when models are trained
only for 5 epochs (depicted by Dev), similar to
CoDA (Qu et al., 2021), to make a comparison
with baselines. Our Dev results are an average of
10 runs with different seeds. The implementation
details and hyperparameters are provided in §A.

4.1.1 DA Methods
We leverage three widely used textual augmenta-
tion methods:

1. EDA (Wei and Zou, 2019)3: We randomly
replace 5% of the tokens with their synonyms
and randomly delete up to 10%.

2. Back-Translation (BT; Sennrich et al.
2016): We use fairseq (Ott et al., 2019) to
translate sentences into German and then back
into English. We do nucleus sampling (Holtz-
man et al., 2020) with p = 0.9 for both trans-
lations. We find that p = 0.6 works better on
sentiment classification.

3https://github.com/makcedward/nlpaug

3. Mask-and-Reconstruct (MR; Ng et al.
2020): We randomly mask 15% of the tokens
and construct a new sentence by sampling
from a pre-trained BERTLarge for masked to-
kens. We adopt top-k sampling with k = 20
to select new tokens. For MNLI, we obtain
better results with top-10 sampling.

For each augmentation method, we generate 12
augmented examples per training instance for all
datasets, except for large datasets—i.e., MNLI,
QQP, and SQuAD—where the number of aug-
mented examples are 8 per train example.

4.1.2 Baselines

Because the two environments—i.e., standalone
and distilled—are different in nature, we compare
Glitter with different baselines for each environ-
ment. For both, Vanilla-DA that takes all aug-
mented data into account without reservation is
the first baseline.

The baselines for the standalone setting are:
CoDA (Qu et al., 2021), MMEL (Yi et al., 2021),
and HiddenCut (Chen et al., 2021). And for dis-
tilled, we consider MATE-KD (Rashid et al., 2021).

4.2 GLUE

The GLUE benchmark (Wang et al., 2019) is a
well-known suite of nine4 tasks that aim at evalu-
ating natural language understanding models. We
present test results in the distilled mode in Table 1.
Glitter consistently outperforms Vanilla-DA, while
it is faster to train. Specifically, Glitter achieves
parity with Vanilla-DA for EDA in terms of the
overall average score, while scoring +0.2% and
+0.4% higher for BT and MR, respectively. We ob-
serve that only in few cases Vanilla-DA negligibly
outperforms Glitter—e.g., on MRPC, and STS-B
for BT. Nonetheless, Glitter 8x/1x trains 50% faster
than Vanilla-DA 8x on average, and 30% faster for
8x/2x. Also, Glitter surpasses MATE-KD by +0.2%
in the overall score. Unlike Glitter, MATE-KD in-
troduces additional parameters to the model during
training and it trains drastically slower because it
generates augmented examples on-the-fly. More-
over, Table 1 illustrates that MR yields the best
test results across the three DA methods except for
SST where BT leads to better results. Based on this
observation, we report results on MR augmented

4We excluded WNLI since our DA methods are not de-
signed for this task.
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Method CoLA SST MRPC STS-B QQP MNLI-m/mm QNLI RTE Avg.Mcc Acc Acc/F1 P/S Acc/F1 Acc Acc Acc
RoBLarge (teacher) 63.8 96.8 90.6 92.4 81.5 90.3/89.8 94.8 88.3 87.3
BERTLarge

♣ 60.5 94.9 87.4 87.1 80.7 86.7/85.9 92.7 70.1 82.5
DistilRoB 55.2 93.9 85.9 86.0 80.3 84.0/83.1 90.6 73.6 81.1
KD 54.9 94.0 86.8 87.3 80.5 85.1/83.7 91.9 73.5 81.7

Task-Aware DA
MATE-KD ♣ 56.0 94.9 90.2 88.0 81.2 85.5/84.8 92.1 75.0 82.8

EDA (Wei and Zou, 2019)
Vanilla-DA (8x) 55.5 94.8 87.6 86.1 80.7 85.3/84.7 92.0 72.8 81.8
Glitter 54.5 95.1 87.5 86.5 80.4 85.4/84.8 92.1 73.2 81.8

8x/2x 8x/1x 8x/2x 8x/2x 8x/2x 8x/2x 8x/2x 8x/1x
Back-Translation

Vanilla-DA (8x) 53.4 95.1 88.5 87.5 80.9 85.9/85.9 92.2 73.5 82.1
Glitter 54.9 95.1 88.4 87.3 80.9 86.2/85.3 92.2 73.7 82.3

8x/2x 8x/1x 8x/1x 8x/2x 8x/2x 8x/2x 8x/2x 8x/2x
Mask-and-reconstruct

Vanilla-DA (8x) 58.8 94.5 88.7 87.0 80.9 85.8/84.9 91.8 74.0 82.6
Glitter 59.2 95.1 89.2 87.6 81.0 86.6/84.8 92.4 74.1 83.0

8x/1x 8x/1x 8x/2x 8x/1x 8x/2x 8x/2x 8x/2x 8x/2x

Table 1: Test results of the distilled experiment on GLUE. (♣) denotes results are taken verbatim from: BERTLarge
(Devlin et al., 2019), and MATE-KD (Rashid et al., 2021). Bold and underlined numbers indicate the best and the
second best results across the DA methods.

Method CoLA SST MRPC STS-B QQP MNLI-m QNLI RTE Avg.Mcc Acc Acc/F1 P/S Acc/F1 Acc Acc Acc
RoBERTa 61.9 95.4 88.6 89.3 80.4 87.6 93.0 81.6 84.7
Self-KD 61.7 95.7 89.0 89.0 80.8 88.3 93.0 81.7 84.9
+ Vanilla-DA 61.5 96.1 88.9 89.7 81.0 88.0 92.9 81.1 84.9

8x 8x 8x 8x 8x 8x 8x 12x
+ Glitter 62.5 96.0 89.8 89.5 81.1 88.1 93.5 82.3 85.4

8x/1x 8x/2x 8x/2x 8x/2x 8x/2x 8x/2x 8x/2x 12x/1x
CT + Vanilla-DA 59.4 95.6 89.0 85.8 80.3 82.5 92.0 80.2 83.1

8x 8x 8x 10x 8x 8x 8x 10x
CT + Glitter 62.7 95.8 89.2 87.9 80.9 84.1 92.9 81.8 84.4

8x/1x 8x/1x 8x/1x 10x/1x 8x/2x 8x/2x 8x/2x 10x/1x

Table 2: Test result of the standalone experiments on GLUE using RoBERTabase.

data for all GLUE datasets except for SST in the
remainder of our experiments.

For the standalone mode, Tables 2 and 3 present
the results on test and dev, respectively. Similar to
distilled, Glitter outperforms Vanilla-DA by +0.5%
for both self-KD and CT. Self-KD yields better re-
sults than CT on all GLUE tasks except CoLA. CT
falls short on most GLUE tasks, compared to no
DA results—i.e., top-2 rows in Table 2. This is why,
we only evaluated Glitter with self-KD on the dev
data. Glitter achieves superior performance gains,
compared to all three baselines on all datasets ex-
cept QNLI. The key advantage of Glitter is that the
training procedure remains intact.

4.2.1 Out-of-Domain Generalization
We also evaluate Glitter on OOD datasets. To this
end, we test our models, already trained on GLUE
tasks, on OOD datasets whose data distribution
differs from the original data. In particular, here

are our selected OOD datasets:

• SST: IMDb (Maas et al., 2011), IMDb-
Cont. (Gardner et al., 2020), and IMDb-
CAD (Kaushik et al., 2020), as done in
Chen et al. (2021). Although both SST and
IMDb datasets are collected on movie reviews,
IMDb reviews tend to be substantially longer
than SST sentences.

• STS-B: SICK (Marelli et al., 2014), a seman-
tic relatedness dataset, created from image
and video captions. SICK and STS-B are col-
lected on roughly identical domains, but from
different sources.

• QQP: PAWSQQP (Zhang et al., 2019), anal-
ogous to Chen et al. (2021), and MQP (Mc-
Creery et al., 2020), a medical question simi-
larity dataset.
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Method SST MRPC MNLI-m QNLI RTE IMDb-Con. A-NLI HANS
Acc F1 Acc Acc Acc Acc Acc Acc

RoB♠ 94.8 90.2 87.6 92.8 78.7 - - -
CoDA♠ 95.3 91.7 88.1 93.6 82.0 - - -
HiddenCut♠ 95.8 92.0 88.2 93.7 83.4 87.8 32.8 71.2
MMEL† 94.6 ± 0.8 91.9 ± 0.4 88.1 ± 0.1 93.2 ± 0.1 85.3 ± 1.0 90.5 ± 0.7 31.4 ± 0.6 74.5 ± 0.6

RoB† 94.3 ± 0.1 91.6 ± 0.5 87.7 ± 0.1 92.8 ± 0.2 84.5 ± 0.8 90.0 ± 0.4 30.8 ± 0.9 73.6 ± 0.7
Self-KD 94.3 ± 0.2 91.5 ± 0.3 87.9 ± 0.1 92.9 ± 0.2 84.0 ± 0.6 90.3 ± 0.5 30.9 ± 0.4 73.5 ± 0.7

+ Vanilla-DA 95.4 ± 0.5 92.0 ± 0.3 88.2 ± 0.1 93.4 ± 0.1 84.4 ± 0.7 90.2 ± 0.4 31.3 ± 0.5 73.9 ± 0.4

+ Glitter 95.7 ± 0.2 92.2 ± 0.5 88.2 ± 0.1 93.4 ± 0.1 85.6 ± 0.7 90.6 ± 0.2 31.8 ± 0.4 74.6 ± 0.3

Table 3: Dev results of the standalone experiment on GLUE using RoBERTabase. (♠) denotes results are taken
verbatim from: RoB and CoDA (Qu et al., 2021), and HiddenCut (Chen et al., 2021). (†) indicates the results are
obtained from our implementation of MMEL (Yi et al., 2021).

• MNLI: SciTail (Khot et al., 2018), collected
from school-level science questions, and sim-
ilar to Chen et al. (2021), A-NLI (Nie et al.,
2020), and HANS (McCoy et al., 2019).

• RTE: HANS (McCoy et al., 2019).

Table 10 in §B.1 showcases the OOD results for
the distilled mode. Glitter outperforms Vanilla-DA
in most cases, and is on par with it for nearly the
rest. The only exceptions are IMDb-Cont., MQP,
and PAWSQQP where Vanilla-DA outperforms Glit-
ter by almost 1% on average. Also, all models
do not generalize well to PAWSQQP and A-NLI
because their performance is below a majority-
class performance. Moreover, a fine-tuned Distil-
RoBERTa achieves the best OOD performance on
HANS, highlighting that DA is not actually helpful
for OOD accuracy on HANS.

Table 3 (the right side) reports the OOD results
for standalone models. The complete results are
presented in §B.2—i.e., Table 11 on test and Ta-
ble 12 on dev. Glitter overwhelmingly outperforms
all the baselines with a few exceptions. In the dev
results, the fine-tuned model with no DA achieves
the best OOD generalization on IMDb, and SciTail,
while HiddenCut scores the highest on A-NLI with
a 1% margin. Similarly, in the test results, Glitter
trails Self-KD with no DA on IMDb, IMDb-CAD,
and SciTail.

4.3 HellaSwag
HellaSwag (Zellers et al., 2019) is a dataset for situ-
ated commonsense reasoning that involves picking
the best ending given a context. We augment con-
texts in HellaSwag using only BT to ensure that
the choices remain meaningful for the augmented
contexts. Because our standalone results have been
consistent with the distilled results, we report our
results only in the distilled mode. According to our

Method SQuAD HellaSwag
EM/F1 Acc

RoBLarge 88.9/94.6 85.2
DistilRoB 80.9/87.9 42.9
KD 81.1/88.2 42.5
+ Vanilla-DA (8x) 81.8/89.1 41.8
+ Glitter (8x/2x) 83.6/90.3 44.1

Table 4: Dev results of the distilled experiment on two
downstream tasks.

results demonstrated in Table 4, Glitter comfortably
surpasses Vanilla-DA by a +2.3% margin.

4.4 SQuAD

SQuAD (Rajpurkar et al., 2016) is a crowd-sourced
reading comprehension benchmark that consists of
more than 100K questions, derived from Wikipedia
passages. The task objective is to extract an an-
swer span from a given question/passage pair. We
augment questions in SQuAD v1.1 using only BT
to ensure that the answer can still be found in the
given passage for the augmented questions. Anal-
ogous to HellaSwag, we report our results only in
the distilled mode. As shown in Table 4, Glitter
outperformas Vanilla-DA by +1.8% in exact-match
accuracy on the development set.

We also evaluate our trained models under dis-
tribution shift by testing them on QA datasets
from four different domains: Wikipedia, New
York Times, Reddit, and Amazon product reviews
(Miller et al., 2020). The OOD results are pre-
sented in Table 5. Glitter is consistently superior to
Vanilla-DA in all four domains.

5 Ablation Study and Discussion

In this section, we aim to answer the following
questions:
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Method Wiki NYT Reddit Amzn
EM EM EM EM

RoBLarge 84.4 85.9 76.6 74.4
DistilRoB 76.6 78.1 66.2 62.9
KD 76.5 78.7 65.7 63.0
+ Vanilla-DA 77.3 79.0 65.9 63.3
+ Glitter 79.3 80.7 68.1 64.7

Table 5: OOD results for models trained on SQuAD
and tested on QA datasets from four different domains
(Miller et al., 2020).

• How does training time of Glitter compare
against Vanilla-DA?

• Instead of adaptively selecting augmented
data during training, can we pre-process them
to dispense with unnecessary examples prior
to training?

• How many augmented examples are required
for Glitter to work?

• Is our selection strategy based on sorting of
`eval in Glitter important?

For this purpose, we conduct a detailed analy-
sis on 4 GLUE tasks—i.e., SST, MRPC, QNLI,
and RTE. We trained models based on Vanilla-DA
and Glitter using Self-KD and tested them on the
development set (the dev setting).

Runtime Analysis. Throughout our experiments
in §4, we compare Glitter with Vanilla-DA when
number of augmentations are similar for both
methods—i.e., 8x. A natural question is: how
would both DA methods behave with fewer aug-
mented data? To this end, we vary augmentation
size from 1x to 8x and train different Vanilla-DA
models on each augmented dataset. We measure
average the training time per epoch for all models.
Figure 2 illustrates the dev accuracy as the train-
ing time increases. The training speed of Glitter
8x/2x is slightly faster than Vanilla-DA 6x on SST,
MRPC, and QNLI and for Glitter 8x/1x, is faster
than Vanilla-DA 4x on RTE. Glitter is superior of
the two on all datasets.

Effect of Pre-processing Augmented Data. We
conjecture that Glitter does not need any data en-
gineering on augmented examples to obtain prefer-
able performance gains. However, Vanilla-DA
may require some pre-processing by weeding out
potentially noisy data to become more effective.
To investigate this, we exploit two pre-processing

Method SST MRPC QNLI RTE
Acc F1 Acc Acc

Vanilla-DA 95.1 92.2 93.3 84.8
β = 0.7 95.1 92.5 93.4 84.8
β = 0.9 95.0 92.2 93.3 83.8
LP 94.8 92.4 93.3 84.8

Glitter 95.8 92.8 93.4 85.9
β = 0.7 95.0 91.5 93.5 85.2
β = 0.9 95.0 92.5 93.3 84.1
LP 95.1 92.2 93.5 85.9

Table 6: Dev results of self-KD exhibiting the effective-
ness of different pre-processing techniques to filter aug-
mented examples on 4 GLUE tasks. β and LP depict
a minimum confidence threshold, and label preserving,
respectively.

techniques: (1) Confidence-based filtering: Aug-
mented examples for which the model’s confidence
is below a minimum threshold β are discarded,
(2) Label-preserving augmentation (LP): Aug-
mented examples for which the model predicts a
different label than the original example are dis-
carded. The results, reported in Table 6, show
no meaningful performance gains by these pre-
processing techniques. For Vanilla-DA, minimum
confidence threshold of 0.7 performs slightly better
as it brings minor improvements on MRPC (+0.3%)
and QNLI (+0.1%), but is still lower than Glit-
ter. On the other hand, applying these techniques
slightly deteriorates the performance of Glitter in
almost all cases. The only improvements are +0.1%
on QNLI for LP and β=0.7.

Effect of Augmentation Size in Glitter. We ex-
plore how augmentation size affects the perfor-
mance of Glitter. Throughout our experiments, we
fix the augmentation size to 8x, but now, we reduce
augmentation size K to 6x and 4x, while retaining
selection size k1 as before—i.e., 1 for RTE, and 2
for the rest. Our results, shown in Table 7, reveal
that when K becomes close to k1, Glitter’s per-
formance declines. Nonetheless, for a sufficiently
large augmentation, Glitter starts to shine. For SST,
and MRPC, the magic number is 8x, whereas for
QNLI, and RTE, Glitter performs best on 6x. An-
other parameter in Glitter is the selection size k1.
We find that for all tasks, the best value can be cho-
sen from {1, 2} (2 by default). Using this method,
tuning k1 is straightforward and does not impose
additional complexity to our method.

Effect of Selection Strategy in Glitter. In this
section, our objective is to assess whether our pro-
posed selection algorithm is crucial in Glitter. To
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Figure 2: Runtime Analysis of DA when training RoBERTabase using self-KD. The red point signifies Glitter.

Method SST MRPC QNLI RTE
Acc F1 Acc Acc

Glitter (8x) 95.8 92.8 93.4 85.9
Glitter (6x) 94.7 92.7 93.7 86.3
Glitter (4x) 95.0 92.1 93.3 85.7
Glitter-Rnd (8x/2x) 94.3 91.4 93.2 85.2
Glitter-Rnd (8x/1x) 94.3 91.8 93.2 84.5

Table 7: Dev results of self-KD for studying the effect
of augmentation size and the selection algorithm for 4
GLUE tasks.

this end, we sample random augmented examples
at each iteration, namely Glitter-Rnd, instead of
selecting worst-case examples. As illustrated in Ta-
ble 7 (the bottom two rows), the performance drops
on all datasets—i.e., 0.2% on QNLI, and more than
1% on the rest, confirming the effectiveness of our
selection algorithm.

6 Conclusion

In this work, we proposed a universal DA tech-
nique, namely Glitter, that can be freely applied
to any DA technique to enforce sample efficiency
without introducing additional parameters or chang-
ing the training procedure. We extensively evalu-
ated Glitter on a broad range of NLU tasks and in
various widely used settings including consistency
training, self-distillation and knowledge distillation
and demonstrated substantial efficiency gains with-
out compromising effectiveness. Extending Glitter
to auto-regressive models for machine translation
and abstractive summarization is an interesting di-
rection for future work.
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A Implementation Details

A.1 Fine-tuning details

We adopted the publicly available pre-trained
RoBERTa (Liu et al., 2019) and DistilRoBERTa
(Sanh et al., 2019)—using the Huggingface Trans-
formers library (Wolf et al., 2020) and the Pytorch
Lightning library5.

For the test settings, the model is evaluated on
the development data once per epoch for small
datasets and twice per epoch for large ones—i.e.,
SST-2, MNLI, QNLI, SQuAD, and HellaSwag.
The best performing model is chosen for testing.
Our learning rate schedule follows a linear de-
cay scheduler with a warm-up, specified as a ra-
tio of the total number of training steps. Maxi-
mum number of epochs is set to 20 for all tasks
except SQuAD, following (Mosbach et al., 2021).
For large datasets, we early stop with a patience
of 10. The learning rate, and the batch size are
tuned for each task separately. The details of hy-
perparameters are summarized in Table 9. We ran
RoBERTabase experiments with the similar hyper-
parameters, but with these exceptions: On QNLI,
learning rate, batch size, and weight decay are set
to 3e-5, 64, and 0.1; warmup ratio is set to 0.06 on
QQP.

For dev experiments, we follow CoDA (Qu et al.,
2021) on the GLUE tasks. Specifically, we train
the model for 5 epochs with a batch size of 32,
learning rate 1e-5, warmup ratio 0.06, weight decay
0.1, and linear learning rate decay. For SQuAD,
and HellaSwag, the hyperparameters are detailed
in Table 8.

All experiments were conducted on two Nvidia
Tesla V100 GPUs.

Hyperparam. SQuAD HellaSwag
Learning rate 1.5e-5 1.5e-5
Batch size 16 32
Max length 512 512
Max epochs 3 20
Warmup ratio 0.06 0.06
Grad. acc. steps 4 1
Weight Decay 0.01 0.01
temp. τ (for KD) 5.0 10.0

Table 8: Hyperparameters of DistilRoBERTa on two
downstream tasks.

5https://github.com/PyTorchLightning/
pytorch-lightning

A.2 Knowledge distillation details
We implemented knowledge distillation by caching
the teacher’s logits prior to training. We performed
grid search to find the best softmax temperature τ
from {5.0, 10.0, 12.0, 20.0, 30.0}. The value of τ
used in our experiments are reported in Tables 8
and 9 for DistilRoBERTa and RoBERTabase; with
the exception τ = 20.0 on MRPC for RoBERTabase.
Loss weight α, in Eq. (8), is set to 0.5 for all tasks
except CoLA in which α = 0.75.

B OOD results

B.1 Distilled Mode
OOD results for models trained in the distilled
mode are presented in Table 10.

B.2 Standalone Mode
Table 11 presents OOD results for models trained
using test settings, and Table 12 (complementary
to Table 3 in §4.2.1) presents OOD results for dev
experiments.
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Hyperparam. CoLA SST MRPC STS-B QQP MNLI-m/mm QNLI RTE
Learning rate 1e-5 1e-5 1e-5 1e-5 1e-5 3e-5/1e-5 5e-5∗ 1e-5
Batch size 32 64 16 32 64 64 128∗ 32
Max length 128 256 128 128 256 256 256 256
Warmup ratio 0.1 0.06 0.06 0.06 0.1∗ 0.08/0.06 0.08 0.06
Gradient acc. steps 1 4 1 1 4 4 4 1
Weight Decay 0.1 0.1 0.1 0.1 0.1 0.0/0.1 0.0∗ 0.1
Softmax temp. τ (for KD) 30.0 20.0 12.0∗ 12.0 20.0 12.0 12.0 12.0

Table 9: Hyperparameters of DistilRoBERTa on the GLUE benchmark. We used the same configuration for
RoBERTabase albeit with a few exceptions marked by (∗).

Trained On → SST SST SST STS QQP QQP MNLI MNLI RTE

Method
IMDb IMDb-Con. IMDb-CAD SICK MQP PAWSQQP SciTail A-NLI HANS

Acc Acc Acc P/S Acc/F1 Acc Acc Acc Acc

RoBLarge 93.7 92.0 94.0 84.3 71.6 43.6 82.0 45.9 81.8
DistilRoB 90.2 87.6 92.5 79.6 67.3 36.3 74.8 27.8 71.3
KD 90.6 87.4 93.2 79.9 65.6 33.1 77.3 28.9 70.6

EDA (Wei and Zou, 2019)
Vanilla-DA 91.8 87.2 92.9 80.0 59.9 38.0 75.8 27.3 66.6
Glitter 91.2 87.1 94.0 80.0 64.0 36.6 75.6 28.8 65.6

Back-Translation
Vanilla-DA 92.2 87.9 92.1 80.3 69.6 35.0 76.5 27.9 68.0
Glitter 92.4 87.9 92.8 81.2 68.7 35.2 77.6 30.4 70.5

Masked-and-reconstruct
Vanilla-DA 91.8 88.8 92.9 80.4 68.5 33.7 77.4 28.5 69.3
Glitter 92.0 88.0 92.5 80.7 68.8 35.3 78.2 29.9 70.9

Table 10: OOD results of models whose in-domain test results are reported in Table 1 for the distilled mode. Bold
numbers indicate the best result across DistilRoB models.

Trained On → SST SST SST STS QQP QQP MNLI MNLI RTE

Method
IMDb IMDb-Con. IMDb-CAD SICK MQP PAWSQQP SciTail A-NLI HANS

Acc Acc Acc P/S Acc/F1 Acc Acc Acc Acc

RoBBase 92.2 89.1 94.3 80.6 70.7 38.6 78.5 31.4 78.5
Self-KD 92.6 89.1 95.0 80.2 70.9 37.6 79.4 32.1 79.5
+ Vanilla-DA 91.8 88.8 94.8 81.5 71.4 38.8 78.4 31.5 79.3
+ Glitter 92.0 89.6 94.8 81.7 72.1 39.4 79.1 32.7 80.1

CT + Vanilla-DA 90.6 88.1 92.1 76.6 70.6 38.3 76.6 30.3 78.4
CT + Glitter 92.2 88.6 93.7 79.4 70.7 38.8 77.0 31.6 80.2

Table 11: OOD results of models whose in-domain test results are reported in Table 2 for the standalone experiment.
Bold numbers indicate the best result.

1061



Trained On → SST SST SST MNLI MNLI MNLI RTE

Method
IMDb IMDb-Con. IMDb-CAD SciTail A-NLI HANS HANS

Acc Acc Acc Acc Acc Acc

RoBBase 91.9 ± 0.3 90.0 ± 0.4 94.1 ± 0.4 80.1 ± 0.4 31.0 ± 0.6 73.7 ± 0.7 78.3 ± 0.4

HiddenCut♠ - 87.8 90.4 - 32.8 71.2∗ -
MMEL† 91.6 ± 0.1 90.5 ± 0.7 94.5 ± 0.4 79.7 ± 0.3 31.4 ± 0.6 74.5 ± 0.6 78.3 ± 0.3

Self-KD 91.9 ± 0.3 90.3 ± 0.5 94.4 ± 0.4 79.9 ± 0.3 30.9 ± 0.4 73.5 ± 0.7 78.2 ± 0.4

+ Vanilla-DA 91.6 ± 0.4 90.2 ± 0.4 94.3 ± 0.3 79.3 ± 0.4 31.3 ± 0.5 73.9 ± 0.4 77.8 ± 0.3

+ Glitter 91.7± 0.2 90.6± 0.2 94.8± 0.2 79.4 ± 0.1 31.8 ± 0.4 74.6 ± 0.3 78.4 ± 0.2

Table 12: OOD results of models with dev settings in the standalone mode, same models whose results are reported
in Table 3. (♠) denotes results are taken verbatim from: HiddenCut (Chen et al., 2021). (†) indicates the results are
obtained from our implementation of MMEL (Yi et al., 2021). Bold numbers indicate the best result.
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