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Abstract

Machine reading comprehension (MRC) has
drawn a lot of attention as an approach for as-
sessing the ability of systems to understand
natural language. Usually systems focus on se-
lecting the correct answer to a question given a
contextual paragraph. However, for many appli-
cations of multiple-choice MRC systems there
are two additional considerations. For multiple-
choice exams there is often a negative marking
scheme; there is a penalty for an incorrect an-
swer. This means that the system is required
to have an idea of the uncertainty in the pre-
dicted answer. The second consideration is that
many multiple-choice questions have the op-
tion of none of the above (NOA) indicating that
none of the answers is applicable, rather than
there always being the correct answer in the
list of choices. This paper investigates both of
these issues by making use of predictive uncer-
tainty. It is shown that uncertainty does allow
questions that the system is not confident about
to be detected. Additionally we show that un-
certainty outperforms a system explicitly built
with an NOA option for the ReClor corpus.

1 Introduction

Machine reading comprehension (MRC), where
the correct answer must be deduced for a question
from a context paragraph, plays a crucial role in de-
veloping systems for natural language processing
and understanding. In recent years, popular MRC
datasets (Richardson et al., 2013; Chen et al., 2016;
Lai et al., 2017; Trischler et al., 2017; Rajpurkar
et al., 2018; Yang et al., 2018; Yu et al., 2020) have
consistently observed increasingly competitive sys-
tems topping public leaderboards (Trischler et al.,
2016; Dhingra et al., 2017; Zhang et al., 2021; Ya-
mada et al., 2020; Zaheer et al., 2020; Wang et al.,
2021) and surpassing human performance. How-
ever, systems in deployment should not necessarily
always aim to answer a posed reading comprehen-
sion question. There are two modes of interest

in which an MRC system may choose to abstain
from giving an answer: answer uncertainty and
unanswerability. If a system is uncertain about
its prediction, it is likely that the predicted answer
will be incorrect. In particular, negative marking
schemes, which are shown to improve the reliabil-
ity of multiple-choice assessment as guessing is
deterred (Holt, 2006), penalise a system for predict-
ing an incorrect answer while abstaining carries no
penalty, and of course the correct answer has a pos-
itive reward. In such cases, it would be sensible for
a system to abstain from answering if there is an-
swer uncertainty in the prediction. Unanswerability
is where the answer to a question is not deducible
from the associated context. Consequently, a sys-
tem should abstain from answering a question if
it believes the answer is not present in the context.
Answer uncertainty is when the system is unsure
about its prediction while unanswerability is where
the system (confidently) believes the question can-
not be answered.

A fair amount of work has investigated the chal-
lenge of tackling unanswerability in span-based
reading comprehension (Rajpurkar et al., 2018)
with the hope of encouraging systems to truly un-
derstand the comprehension task beyond simple
word matching with remarkable success (Sun et al.,
2018; Hu et al., 2019; Zhang et al., 2021). How-
ever, limited work has been completed with re-
gard to unanswerability for multiple-choice reading
comprehension datasets, where most work focuses
on developing state-of-the-art systems on the de-
fault task such as Wan (2020); Jiang et al. (2020).
This work investigates both answer uncertainty and
unanswerability in multiple-choice MRC.

One challenge for this problem is that unanswer-
able examples are often not available at training
time, and the possible range of incorrect answers
even to valid questions is vast. Uncertainty mea-
sures have been demonstrated to be effective at
out-of-distribution detection across a wide range
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of tasks (Amodei et al., 2016; Gal, 2016; Malinin,
2019; Malinin et al., 2021). This work studies the
potential viability of using uncertainty measures at
test time to identify examples for which the system
should abstain for both settings of answer uncer-
tainty for optimising performance with a negative
marking scheme and handling unanswerability.

2 Multiple-Choice MRC

Figure 1: Model architecture.

In the multiple-choice reading comprehension
task, the system is given a question, a context pas-
sage and multiple possible answer options. The
system must be able to select the correct answer op-
tion. State-of-the-art for machine comprehension is
largely dominated by pre-trained language models
(PrLMs) (Devlin et al., 2018; Yang et al., 2019; Liu
et al., 2019; Lan et al., 2020; Clark et al., 2020; Rad-
ford and Narasimhan, 2018; Radford et al., 2019;
Brown et al., 2020; Lewis et al., 2020; Raffel et al.,
2020) based upon the transformer encoder archi-
tecture (Vaswani et al., 2017). Figure 1 depicts
the typical model structure of systems for multiple-
choice MRC (Yu et al., 2020). In order to use
the transformer architecture, the input to the trans-
former is constructed as follows 1:
[CLS] Context [SEP] Question Option [SEP] [PAD] ...

The transformer models are usually trained with
pairs of sentences separated by the [SEP] token.
The context is used as the first sentence and the
question concatenated with an option is used as the
second sentence. The construct is repeated for each
of the four options. These four pairs of sentences
are passed in parallel to the transformer encoder
architecture where the weights are shared for each
of the inputs. The hidden state embedding asso-
ciated with the [CLS] token is passed to a final

1Other permutations of the context, question and answer
options were trialled but they give worse performance.

linear head (with a non-linear activation) at the end
of the transformer encoder that calculates output
scores for each answer option which is then con-
verted to a discrete probability distribution over the
four answer options using the Softmax activation.
Typically, at test time, the predicted answer option
is the one with the greatest probability mass.

The work in this paper focuses on ReClor (A
Reading Comprehension Dataset Requiring Logi-
cal Reasoning) introduced by Yu et al. (2020) that
encourages the development of MRC systems be-
yond a superficial understanding of the context as
the dataset was designed to focus on more challeng-
ing logical reasoning questions compared to previ-
ous multiple-choice datasets including DREAM
(Sun et al., 2019), MCTest (Richardson et al.,
2013), ARC (Clark et al., 2018) and RACE (Lai
et al., 2017). Results are presented on RACE for
comparison against ReClor. Additional numbers
are provided on COSMOSQA (Huang et al., 2019)
in the Appendix A.3.

The architecture of Figure 1 based on the base-
line systems introduced by Yu et al. (2020) is used
for simplicity as the focus here is on answer un-
certainty and unanswerability. The selected model
in this paper deviates from the baseline systems
as ELECTRA is specifically selected as the PrLM
given that it has been proven to achieve state-of-
the-art results in other forms of MRC (Zhang et al.,
2021) whilst also being smaller than equivalently
competitive ALBERT (Lan et al., 2020) systems.

2.1 Answer uncertainty

In the default setting of multiple-choice reading
comprehension task, systems are encouraged to al-
ways select one of the available answer options for
each of the questions. However, there are many
multiple-choice tests, such as the UKMT Senior
Mathematics Challenge (Pargeter, 2000), that pe-
nalise a candidate for selecting the wrong answer,
reward the correct answer and give no penalty for
not answering the question. Such scoring systems
discourage candidates from guessing if they are
not confident about the answer. Similarly, multiple-
choice MRC systems must also be able to abstain
from giving an answer if there is answer uncertainty
present in the prediction. Therefore, it is important
to develop robust measures of answer uncertainty
where the system chooses to only tackle questions
that it is able to answer correctly.

Let the total number of questions in a multiple-
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choice test be denoted N = Ncorrect + Nwrong +
Nabstain where Ncorrect, Nwrong and Nabstain respec-
tively denote the questions that the system an-
swered correctly, answered incorrectly and ab-
stained from answering. For a penalty, p and re-
ward, r, the overall test score, S, becomes,

S = rNcorrect − pNwrong (1)

where the aim is to maximise the score. Therefore,
the ratio p/r dictates the degree of aggression in
the negative marking scheme where a larger ratio
encourages a system to abstain from answering
a greater number of questions to avoid the harsh
penalty of selecting the incorrect answer option.

2.2 Unanswerability

Typically, multiple-choice MRC datasets assume
that the question for a given example can be an-
swered using one of the answer options. How-
ever, several real multiple-choice tests (Odegard
and Koen, 2007) exist where none of the answer
options address the posed question in relation to
the contextual paragraph. An artificial answer op-
tion, none of the above (NOA), is usually present
in such tests for candidates to be able to indicate
the unanswerable questions. Unanswerability is
further possible in an educational setting for au-
tomatic question generation (Kriangchaivech and
Wangperawong, 2019) where new questions are
automatically generated. Such question generation
systems require a verification stage to automati-
cally filter out the questions that are unanswerable
in relation to a passage. Therefore, it is important
for MRC systems to detect unanswerable questions
and only answer the answerable questions.

In this work, two modes of unanswerability are
explored. First, the simple set-up is considered
where a multiple-choice MRC system is trained
with a mixture of answerable and unanswerable ex-
amples and then evaluated on in-domain data that
has the same proportion of answerable and unan-
swerable examples. Second, a more challenging
mode of operation is considered where only an-
swerable examples are present at training time but
a mixture of answerable and unanswerable exam-
ples at test time. In this setting, the MRC model
must be able to identify unanswerable examples at
test time without encountering any such examples
for the learning of its parameters. Hence, the test
data is distributionally shifted with respect to the
training data. In the first mode, the architecture

from Figure 1 can be directly used to handle unan-
swerability as an additional artificial answer option,
NOA, can exist for each example with a positive
label for this option for all unanswerable examples.

3 Uncertainty

Research in uncertainty estimation is popular
in recent years with model averaging (Gal and
Ghahramani, 2016; Lakshminarayanan et al., 2017;
Ashukha et al., 2020; Ovadia et al., 2019) as
the standard approach. In particular, ensemble-
based and sampling-based uncertainty estimates
have demonstrated effectiveness for both identify-
ing misclassifications and out-of-distribution in-
puts (Malinin et al., 2021). This work focuses
on ensemble-based approaches for multiple-choice
MRC as ensembles consistently outperform single
models (Ganaie et al., 2021) and offer interpretable
uncertainty estimates.

For multi-class classification, various measures
of predictive uncertainty can be calculated using
the predicted probability distributions over the
classes from each of the ensemble members. Mea-
sures of knowledge uncertainty include mutual in-
formation, expected pair-wise KL divergence, and
reverse mutual information; measure of data un-
certainty is the average of the entropy of each pre-
dicted distribution (expected entropy); while mea-
sures of total uncertainty include (negated) confi-
dence and entropy of the average prediction (Gal,
2016; Malinin, 2019). We present results using the
expected entropy as the uncertainty measure for
abstaining to answer for both a measure of answer
uncertainty in a negative marking scheme and a
measure of unanswerability when a system does
not encounter unanswerable examples at training
time 2. Formally, expected entropy, E[H], for a
given input is defined as:

E[H] = − 1

K

K∑
k=1

∑
y

PMk
(y) logPMk

(y) (2)

where PMk
denotes the discrete probability dis-

tribution using the the kth model member of an
ensemble of size K and y ∈ {A,B,C,D}.

4 Data and Experimental Set-Up

All experiments are based upon the ReClor and
RACE datasets (Yu et al., 2020; Lai et al., 2017) or

2Knowledge uncertainty is theoretically better at out-of-
distribution detection but empirical results showed the data
uncertainty measure was better for unanswerability.
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their variants. This section discusses how the de-
fault datasets are modified to perform experiments
for answer uncertainty and unanswerability as well
as performance criteria.

4.1 Training and evaluation data

Examples Ans Unans

TRN-def 4,638 4,638 0
TRN-mixed 18,552 13,914 4,638
TRN-ans 13,914 13,914 0

DEV-def 500 500 0
DEV-mixed 2,000 1,500 500

EVL-def 1,000 1,000 0

Table 1: ReClor: statistics for data splits.

Examples Ans Unans

TRN-def 87,866 87,866 0
TRN-mixed 351,464 263,598 87,866
TRN-ans 263,598 263,598 0

DEV-def 4,887 4,887 0
DEV-mixed 19,548 14,661 4,887

EVL-def 4,934 4,934 0

Table 2: RACE: statistics for data splits.

Table 12 summarises the statistics for ReClor.
Yu et al. (2020) split the ReClor datset into a train,
validation and test set that are respectively referred
to here as the default (def) configurations: TRN-
def, DEV-def and EVL-def. In this default config-
uration, each example consists of a unique ques-
tion, contextual paragraph and four answer options
with no overlap across the total 7,138 examples in
the dataset. All questions have a correct answer
amongst the four answer options such that all three
default splits are 100% answerable.

Two further training splits are introduced in Ta-
ble 12 beyond the default configurations: TRN-
mixed and TRN-ans. TRN-mixed consists of a
mixture of answerable and unanswerable exam-
ples, with exactly 25% unanswerability. In con-
trast, TRN-ans consists of only answerable exam-
ples that is 3 times TRN-def. Finally, DEV-mixed
is the development set equivalent of TRN-mixed
that consists of 25% unanswerable examples too.

Table 2 presents the equivalent statistics and
modified datasets for RACE with the main distinc-
tion that RACE is a significantly larger dataset.

4.2 Data construction
This section describes the method by which the
modified data splits, TRN-mixed, TRN-ans and
DEV-mixed, are constructed from the default data
splits of ReClor/RACE, TRN-def, DEV-def and
EVL-def. As the default configuration only con-
sists of answerable examples, the mixed datasets
aim to achieve an equivalent dataset that also con-
tain unanswerable examples. TRN-mixed is con-
structed from TRN-def as follows:

1. For each example, replicate it 4 times.

2. For each of the four versions of an example,
replace one of the answer options with NOA.
Ensure a different answer option is replaced
for each version of the example.

3. Re-order each example such that NOA is the
fourth (D) answer option.

Therefore, TRN-mixed is exactly 4 times the size
of TRN-def with 75% answerable and 25% unan-
swerable examples. Similarly, DEV-mixed is con-
structed from DEV-def by following the above
steps. TRN-ans is the answerable subset of TRN-
mixed. Hence, TRN-ans can be considered to only
have three answer options as the fourth NOA option
is never the correct answer for this dataset.

Note that TRN-mixed and DEV-mixed consist of
real unanswerable examples rather than synthetic
equivalents. Moreover, the modified construction
is not performed on the evaluation set because the
unanswerability experiments have to be performed
on the development sets as the default test set labels
are not publicly available. See Appendix B for
details of hyperparameter tuning of models.

4.3 Performance criteria
General performance on any development or evalu-
ation set is reported in terms of accuracy. This is
consistent with the performance metric used on the
ReClor dataset and leaderboard (Yu et al., 2020).

In order to measure the effectiveness of uncer-
tainty measures at measuring answer uncertainty
for negative marking schemes, it is desirable for
the uncertainty measure to be correlated with the
error-rate. Therefore, the standard approach to as-
sess robustness and uncertainty of error-retention
curves (Gal, 2016; Lakshminarayanan et al., 2017;
Malinin et al., 2021) is used here. An error re-
tention curve plots a model’s mean error over a
dataset as measured by the classification error rate
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with respect to the fraction of the dataset for which
the model’s predictions are used. The classifica-
tion error for a given example is 0 if the prediction
matches the label and 1 otherwise. The fraction
of the model’s predictions to be used is dictated
by thresholding the uncertainty measure where all
examples are ordered from lowest to highest un-
certainty. Ideally, the uncertainty measure should
be perfectly correlated in terms of rank-ordering
with the error-rate. Hence, it is expected that with
an increasing retention fraction, the error rate will
increase as increasingly uncertain examples will be
retained. Therefore, the area under the retention
curve (R-AUC) is used as an appropriate metric to
assess the effectiveness of the uncertainty measure
for a negative marking scheme where a lower value
for R-AUC is indicative of better performance.

The ability to identify unanswerable examples
in DEV-mixed is reported using the area under the
precision-recall curve and the binary F1 where pre-
cision and recall are equally important. For perfor-
mance on DEV-mixed, in decoding we use:

ŵ =

argmax
w ̸=ws

{P (w|x)} if P (ws|x) > β

ws otherwise
(3)

where ŵ denotes the predicted class; P (w|x) de-
notes the discrete probability distribution output by
the model over the classes conditioned on the input;
ws denotes the class corresponding to unanswer-
able (i.e. NOA) and β denotes the threshold that
the probability mass assigned to the unanswerable
class must exceed in order to be deemed unanswer-
able. The value of β is swept in order to find the
overall performance at different operating points.

5 Results and Discussion

This section discusses the main findings of how the
ELECTRA system fares against existing systems
on the ReClor dataset and the role of uncertainty
measures in using answer uncertainty for tackling
negative marking schemes or detecting unanswer-
able examples for ReClor and RACE. Expected
entropy is the chosen uncertainty measure. See the
Appendix for other uncertainty measures’ results.

5.1 Baseline results
Table 9 presents how the ELECTRA system com-
pares against other PrLMs as well as the DAGN
(Huang et al., 2021) and FocalReasoner (Ouyang
et al., 2021) too on ReClor. Out of the presented

Model DEV-def EVL-def

Paper

Chance 25.0 25.0
Students - 63.0
BERT 53.8 49.8
XLNet 62.0 56.0
RoBERTa 62.6 55.6

Others
ALBERT - 62.6
DAGN 65.2 58.2
Focal 66.8 58.9

Ours
ELECTRA 67.8±1.1 —
-max 69.4 64.2
-ensemble 70.2 67.1

Table 3: Accuracy on default ReClor from the paper Yu
et al. (2020); others from the leaderboard and finally
our implementations. Mean and standard deviation is
quoted for single-seed results.

systems, the ELECTRA systems achieve the best
accuracy on DEV-def and EVL-def. Note that the
best single ELECTRA system achieves an accuracy
of 64.2% on EVL-def that out-performs the human
performance of 63% achieved by graduate students
(Yu et al., 2020). Ensembling boosts performance
by 2.9% to 67.1%. Performance on the EVL-def is
reported for the best member of the ensemble (on
the development set) to avoid multiple submissions
to the official leaderboard.

It is found that pre-training models on RACE
(Lai et al., 2017) boosted performance of the best
single model to an accuracy of 70.8% on DEV-def
and 69.7% on EVL-def. We focus on the situation
where only the ReClor data is available for training
for fair comparison with other models. At the time
of writing, the ELECTRA model ranked 4th on
the ReClor leaderboard 3, and only limited details
are available for the top three performing systems.
However, the focus here is investigating negative
marking schemes and unanswerability rather than
developing the best system for the ReClor task
for which the current system’s performance is con-
sidered reasonable. See Appendix A.2.1 for the
baseline results on RACE. Note, ReClor is consid-
ered a significantly more challenging dataset than
RACE as human performance on ReClor by gradu-
ate students is 63% while human performance on
RACE is 94.5%. As the ensembled system achieves
superior performance to single systems, the experi-
mental results in the following sections will report
results for the ensembled ELECTRA system only.

3Code at https://github.com/VatsalRaina/
question_answering_reclor
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(a) ReClor (b) RACE

Figure 2: Error retention curves for answer uncertainty.

5.2 Answer uncertainty

This section explores the effectiveness of using
uncertainty measures for identifying answer uncer-
tainty in the model’s predictions to abstain from
answering for negative marking schemes.

Figure 2 presents the error retention curves for
a random measure, an ideal measure and expected
entropy as an uncertainty measure for the ELEC-
TRA system trained on TRN-def and evaluated on
DEV-def. For ReClor, all curves, as expected, end
at a classification error rate of 29.8% when all the
data is retained which is consistent with an accu-
racy of 70.2% from Table 9. The ideal system is
where the classification error of each point itself
is used as the measure of uncertainty such that all
misclassifed points are retained at the end. From
Figure 2a, the random system has the largest R-
AUC of 0.147 while the ideal system bounds the
lowest area at 0.045. The uncertainty measure is
able to achieve an R-AUC as low as 0.096 demon-
strating that predictive uncertainty measures such
as expected entropy are effective at identifying ex-
amples that are likely to be misclassified. Similar
patterns are observed on RACE from Figure 2b
with the main difference that the R-AUC values are
lower for all systems as the baseline ELECTRA
system on RACE achieves an accuracy of 86.3%.
See Appendices A.1.2 and A.2.2 for the R-AUC
values for other popular uncertainty measures.

In order to see the impact of using an uncertainty
measure for abstaining to answer some questions,
Figure 3 illustrates the normalised score using var-
ious negative marking schemes while sweeping
through the number of examples retained ordered
from lowest to highest uncertainty. Each negative
marking scheme is expressed as r : p (Equation 1),
indicating the reward for a correct answer vs the

penalty for an incorrect answer. The normalised
score is the total number of points, S, divided by
the maximum score achieved by correctly answer-
ing all questions. When a harsh negative marking
scheme, such as 3:5, is applied it is beneficial to
use an uncertainty measure like expected entropy
in deployment to filter out the top 40% uncertain
examples on ReClor and the top 10% on RACE to
achieve the greatest score. Therefore, predictive
uncertainty measures help identify examples for
which the system should abstain from answering
to achieve a higher overall score with aggressive
negative marking schemes. However, further work
is required to investigate how uncertainty measures
may be useful in boosting vanilla performance of
answering all questions when using a mild negative
marking scheme like 3:1.

5.3 Unanswerability

Here, we assess the ability of uncertainty measures
to identify unanswerable examples in DEV-mixed
when using the ensembled ELECTRA-based sys-
tem. The Explicit system trains a four-option sys-
tem on TRN-mixed (with the fourth option indica-
tive of the question being unanswerable as it corre-
sponds to NOA) while the Implicit system trains a
three-option system on TRN-ans that contains only
answerable examples. This Implicit system uses
the uncertainty over the three answer options to
indicate whether the question is unanswerable. The
Explicit system takes the maximal probability over
the first 3 options and then uses the fourth option
probability mass for unanswerability detection by
sweeping its value β (Equation 3).

Table 13 presents the best F1 score for each ap-
proach at the corresponding precision and recall
operating point from the precision-recall curves
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(a) ReClor (b) RACE

Figure 3: Aggressive negative marking schemes.

Approach P R F1 ↑ AUPR ↑

Random 25.0 100.0 40.0 25.0

ReClor Implicit 40.5 63.4 49.5 48.2
Explicit 50.4 63.0 56.0 55.5

RACE Implicit 46.1 73.6 56.7 47.9
Explicit 70.1 70.6 70.3 78.3

Table 4: Detecting unanswerable examples.

Figure 4: Unanswerabilty detection on DEV-mixed.

in Figure 4 for both ReClor and RACE. The area
under the precision-recall curve (AUPR) is also re-
ported. As expected, the Explicit system is the best
performing - with an F1 score and AUPR of 56.0%
and 55.5% respectively on ReClor, and 70.3% and
78.3% respectively on RACE - as the system en-
countered unanswerable examples at training time
and hence unanswerable examples at test time are
in-domain. In contrast, the Implicit system did not
train with any unanswerable examples. Despite
this, the predictive uncertainty, expected entropy
in this case, is able to substantially surpass the
random system in its ability to detect unanswer-
able examples at test time to achieve a binary F1
score and AUPR of 49.5% and 48.2% respectively
on ReClor, and 56.7% and 47.9% respectively on

RACE. Moreover, from the precision-recall curves,
the Implicit system’s ability to identify unanswer-
able examples surpasses the random curve across
all recall rates with the trace lagging behind the
Explicit system’s curve. See Appendix A.1.3 and
A.2.3 for the F1 and AUPR scores for other uncer-
tainty measures at detecting unanswerability.

Table 5 compares the Implicit and MAP sys-
tem for overall accuracy on DEV-mixed. The
maximum-a-posteriori, MAP, system is where the
ELECTRA system trained on TRN-mixed is di-
rectly evaluated on DEV-mixed such that the pre-
dicted answer option (out of the four including
NOA) is the one with the greatest probability as-
signed to it. It is interesting to observe that the
overall performance of the Implicit system at an
unanswerability rate of 18.6% is able to outperform
the MAP system on ReClor. Hence, predictive un-
certainty measures are very powerful in this case
at identifying unanswerable examples in order to
boost overall performance as a system trained on
only answerable examples from TRN-ans is ca-
pable of out-competing a MAP system trained on
answerable and unanswerable examples from TRN-
mixed. However, the uncertainty measure appears
to be weaker on RACE.

Approach ACC ↑ %UNAS

ReClor Implicit 62.5 18.6
MAP 61.1 38.0

RACE Implicit 72.6 23.0
MAP 77.7 24.5

Table 5: Accuracy (ACC) and Percentage Unanswerable
(%UNAS) on Dev-Mixed

Figure 5 shows the performance of the Implicit
system over a range of thresholds, β, rather than
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(a) ReClor (b) RACE

Figure 5: Overall performance on DEV-mixed.

just the maximum performance shown in Table 5.
On ReClor, from Figure 5a, it can be seen that it out-
performs the MAP decoding over a range of thresh-
olds. However, it is unfair to compare the Implicit
system against the MAP system alone. Therefore,
Figure 5 plots the overall accuracy on DEV-mixed
for various systems with a sweep across the number
of examples in the dataset predicted as unanswer-
able. Particularly, the plot for the Explicit system is
given where the number of examples hypothesised
as unanswerable is deduced by sweeping the thresh-
old on the fourth answer option’s probability mass
(i.e. the probability assigned to NOA) as β. The
inference process is as in Equation 3. On ReClor,
the Explicit system is able to achieve a maximum
accuracy of 64.2% at an unanswerability rate of
28.9%. This system outperforms the MAP system
across a wide range of thresholds of about 10-40%.

As a contrast, the Explicit: option A’s perfor-
mance is also shown. This is generated by sweep-
ing over the threshold on option A rather than the
fourth NOA option. If the probability mass as-
signed to option A is higher than the threshold, the
predicted answer will be option A and otherwise
the predicted answer is the option with the highest
probability mass amongst the other three options.
Note, Explicit: option B and Explicit: option C
have similar profiles to Explicit: option A. Based
on the difference in performance between Explicit
and Explicit: option A, the NOA option operates
in a different fashion to the other classes for the
ReClor dataset. Intuitively, a possible reason is
that the mathematical space for unanswerable ques-
tions is a lot larger than the space associated with
answerable questions in relation to a specific con-
textual paragraph which is further evidenced given
that the MAP system believes 38% of examples

are unanswerable despite the unanswerability rate
being only 25% at both training and test time.

However, for RACE, from Figure 5b, MAP is on
par with Explicit which in turn peaks with Explicit:
option A. The inability to out-perform the MAP
system can be attributed to MAP operating at the
expected unanswerability rate of about 25%. There-
fore, the ability to out-compete a MAP system for
ReClor is based on the MAP system over-predicting
unanswerable examples at decoding time. This ten-
dency to over-predict unanswerable examples may
arise due to the complex nature of the questions in
ReClor (Appendix C) while other multiple-choice
datasets are simpler, leading to a more constrained
space learned for NOA.

6 Conclusion

This paper addresses answer uncertainty and unan-
swerability in multiple-choice MRC. Measures of
answer uncertainty are required to identify exam-
ples that the system may struggle to get correct and
hence should abstain from answering such ques-
tions. Unanswerability detection is required for
when the answer cannot be deduced using the in-
formation provided. An ELECTRA PrLM achieve
competitive results on the default ReClor dataset,
achieving up to 67.1% accuracy on the evaluation
split. Ensemble-based predictive uncertainty mea-
sures are explored for both modes of operation:
answer uncertainty for negative marking schemes
and the presence of unanswerability. It is shown
that uncertainty in the prediction such as expected
entropy is correlated with the error rate of the MRC
system allowing better than vanilla performance
with an aggressive negative marking scheme for
ReClor and RACE. Interestingly, it is found that ex-
pected entropy from the predictions of an implicitly

1027



trained system is competitive at unanswerability de-
tection and is able to out-compete MAP decoding
from an explicitly trained system that has been
trained with unanswerable examples for ReClor.
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Appendices
A Additional results

The Appendices detail additional results for answer
uncertainty and unanswerability detection when us-
ing ensembled-based predictive uncertainty. The
main paper uses expected entropy as the uncertainty
measure of choice. The below sections explore
other popular choices of uncertainty measures, in-
cluding measures of knowledge uncertainty such as
mutual information, expected pair-wise KL diver-
gence (EPKL) and reverse mutual information, and
also measures of total uncertainty including nega-
tive confidence and entropy of expected. The math-
ematical justifications for each uncertainty measure
is motivated by Gal (2016); Malinin (2019).

A.1 ReClor
A.1.1 Baseline
Additional baseline results are provided here that
contrasts and combines an ensemble of ALBERT
systems with an ensemble of ELECTRA systems
with ensembling. The ELECTRA and ALBERT
systems involve the same hyperparameters (see Ap-
pendix B).

DEV-def EVL-def
Model single ensemble ensemble

ELECTRA 67.8±1.1 70.2 67.1
ALBERT 62.9±2.4 71.6 68.6
ELECTRA & ALBERT – 74.8 71.0

Table 6: Accuracy on development and test sets of Re-
Clor. Mean and standard deviation is quoted for single-
seed results.

A.1.2 Answer uncertainty

Uncertainty measure R-AUC ↓

negative confidence 0.0939
entropy of expected 0.0942
expected entropy 0.0960
mutual information 0.1003
EPKL 0.1018
rev mutual information 0.1028
Ideal 0.0450
Random 0.1470

Table 7: Effectiveness of uncertainty measures for neg-
ative marking schemes measured by area under error-
retention curves (R-AUC) on ReClor.

A.1.3 Unanswerability

TRN Measure F1 ↑ AUPR ↑

Random 40.0 25.0

mixed confidence 56.0 55.5

ans

negative confidence 48.3 45.6
entropy of expected 48.8 47.5
expected entropy 49.5 48.2
mutual information 47.4 36.2
EPKL 47.4 35.0
rev mutual information 47.4 34.5

Table 8: Effectiveness of uncertainty measures for unan-
swerability detection for ReClor.

A.2 RACE

This section details additional results on RACE
including the baseline results and comparisons with
the other popular choices of uncertainty measures.

A.2.1 Baseline

Model DEV-def EVL-def

Others

Roberta — 83.2
ALBERT — 86.5
-ensemble 89.4
ALBERT+ DUMA — 88.0
-ensemble 89.8
Megatron-BERT — 89.5
-ensemble 90.9

Ours
ELECTRA 86.5±0.3 —
-max 87.0 85.9
-ensemble 86.9 86.3

Table 9: Accuracy on default RACE. Mean and standard
deviation is quoted for single-seed results. Other sys-
tems include Roberta (Liu et al., 2019), ALBERT (Lan
et al., 2020), ALBERT + DUMA (Zhu et al., 2020) and
Megatron-BERT (Shoeybi et al., 2020).
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A.2.2 Answer uncertainty

Uncertainty measure R-AUC ↓

negative confidence 0.0238
entropy of expected 0.0244
expected entropy 0.0246
mutual information 0.0287
EPKL 0.0288
rev mutual information 0.0290
Ideal 0.0085
Random 0.0652

Table 10: Effectiveness of uncertainty measures for
negative marking schemes measured by area under error-
retention curves (R-AUC) on RACE.

A.2.3 Unanswerability

TRN Measure F1 ↑ AUPR ↑

Random 40.0 25.0

mixed confidence 70.3 78.3

ans

negative confidence 56.1 46.2
entropy of expected 56.4 46.4
expected entropy 56.7 47.9
mutual information 52.3 41.0
EPKL 52.2 40.6
rev mutual information 52.0 40.4

Table 11: Effectiveness of uncertainty measures for
unanswerability detection for RACE.

A.3 COSMOSQA
COSMOSQA (Huang et al., 2019) is a multiple-
choice reading comprehension dataset that has nat-
urally occurring unanswerable examples. Further
results are investigated on this dataset for reference.

A.3.1 Data

Examples Ans Unans

TRN-def 25,262 22,199 3,063
TRN-ans 22,199 22,199 0

DEV-def 2,985 2,541 444
DEV-ans 2,541 2,541 0

Table 12: Statistics for data splits for COSMOSQA.

These numbers disagree with those quoted in the
paper in terms of number of samples and in terms
of the unanswerability rate suggesting that some
data has been modified or removed since the release
of the original data. The following results are pre-
sented using an ensemble of 5 ELECTRA models,
which is consistent with RACE. Expected entropy
is used here as the main uncertainty measure.

A.3.2 Unanswerability

Approach P R F1 ↑ AUPR ↑

Random 14.9 100 25.9 14.9
Implicit 50.2 47.1 48.6 52.4
Explicit 71.9 58.3 64.4 72.7

Table 13: Detecting unanswerable examples on default
COSMOSQA (DEV-def).

Figure 6: Unanswerabilty detection on DEV-def for
COSMOSQA.

Figure 7: Overall performance on DEV-def for COS-
MOSQA.

B Hyperparameter tuning

An ensemble of 10/5/5 members for ReClor, RACE
and COSMOSQA respectively are trained using the
large 4 ELECTRA PrLM as a part of the multiple-
choice MRC architecture depicted in Figure 1.
Each model has 340M parameters. Grid search

4Configuration at: https://huggingface.co/
google/electra-large-discriminator/blob/
main/config.json.
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was performed for hyperparameter tuning with the
initial setting of the hyperparameter values dic-
tated by the baseline systems from Yu et al. (2020).
Apart from the default values used for various hy-
perparamters, the grid search was performed for the
maximum number of epochs ∈ {2, 5, 10}; learn-
ing rate ∈ {2e − 7, 2e − 6, 2e − 5}; batch size
∈ {2, 4}; truncated length of number of input to-
kens of the concatenated context, question and a
given answer option ∈ {256, 512}. For systems
trained on ReClor the final hyperparameter settings
included training for 10 epochs at a learning rate
of 2e-6 with a batch size of 4 and inputs truncated
to 256 tokens. For RACE, training was performed
for 2 epochs at a learning rate of 2e-6 with a batch
size of 4 and inputs truncated to 512 tokens. For
COSMOSQA, training was performed for 5 epochs
at a learning rate of 2e-6 with a batch size of 4
and inputs truncated to 256 tokens. Cross-entropy
loss was used at training time with models built us-
ing NVIDIA V100 graphical processing units with
training time under 10 hours per model for ReClor,
12 hours for COSMOSQA and 20 hours for RACE.
All hyperparameter tuning was performed by train-
ing on TRN-def and selecting values that achieved
optimal performance on DEV-def. As there is no
equivalent evaluation set available for the modified
versions of ReClor, the final setting of hyperparam-
eters of the system trained on TRN-def is also used
for training on TRN-mixed and TRN-ans.

C Examples

This section takes a look at example questions from
RACE, COSMOSQA and ReClor to compare the
nature of the questions from each dataset.
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ReClor

Context:
In a business whose owners and employees all belong to one family, the employees can be paid
exceptionally low wages. Hence, general operating expenses are much lower than they would be
for other business ventures, making profits higher. So a family business is a family’s surest road to
financial prosperity.

Question:
The reasoning in the argument is flawed because the argument

Options:

A ignores the fact that in a family business, paying family members low wages may itself reduce
the family’s prosperity

B presumes, without providing justification, that family members are willing to work for low
wages in a family business because they believe that doing so promotes the family’s prosperity

C ignores the fact that businesses that achieve high levels of customer satisfaction are often
profitable even if they pay high wages

D presumes, without providing justification, that only businesses with low general operating
expenses can succeed

Figure 8: Example question from ReClor.

RACE

Context:
This is Jim’s room. It’s not big, but it’s very clean. There is a bed in the room. It’s near the door.
Under the bed, there are two balls. There is a desk and a chair near the window. There are two
pictures in the room, too. They are on the wall.

Question:
Jim’s bed is

Options:

A near the door

B near the window

C on the bookcase

D on the wall

Figure 9: Example question from RACE.
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COSMOSQA

Context:
Do I need to go for a legal divorce? I wanted to marry a woman but she is not in the same religion,
so I am not concern of the marriage inside church. I will do the marriage registered with the girl
who I am going to get married. But legally will there be any complication, like if the other woman
comes back one day, will the girl who I am going to get married now will be in trouble or is there
any complication?

Question:
Why is this person asking about divorce?

Options:

A If he gets married in the church he won’t have to get a divorce

B He wants to get married to a different person

C He wants to know if he doesn’t like this girl can he divorce her

D None of the above choices

Figure 10: Example question from COSMOSQA.
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