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Abstract

We propose GRS: an unsupervised approach
to sentence simplification that combines text
generation and text revision. We start with an
iterative framework in which an input sentence
is revised using explicit edit operations, and
add paraphrasing as a new edit operation. This
allows us to combine the advantages of gen-
erative and revision-based approaches: para-
phrasing captures complex edit operations, and
the use of explicit edit operations in an itera-
tive manner provides controllability and inter-
pretability. We demonstrate these advantages
of GRS compared to existing methods on the
Newsela and ASSET datasets.

1 Introduction

Text simplification is the task of reducing the com-
plexity and improving the readability of text while
preserving its meaning. This is beneficial for per-
sons with reading disabilities (Evans et al., 2014),
non-native speakers, people with low literacy, and
children. Furthermore, other NLP tasks can use
simplification as a pre-processing step, such as
summarization (Klebanov et al., 2004), parsing
(Chandrasekar et al., 1996), and machine transla-
tion (Štajner and Popovic, 2016).

Sentence simplification models can be catego-
rized into generative and revision-based. Genera-
tive approaches produce a simple sentence from a
complex sentence in one step, in an auto-regressive
way (Zhang and Lapata, 2017; Guo et al., 2018;
Kriz et al., 2019; Surya et al., 2019; Martin et al.,
2020a). Revision-based methods iteratively edit a
given sentence using a sequence of edit operations
such as word deletion (Alva-Manchego et al., 2017;
Dong et al., 2019; Kumar et al., 2020; Agrawal
et al., 2021). While generative models learn com-
plex edit operations implicitly from data, the ex-
plicit edit operations performed by revision-based
approaches can provide more control and inter-
pretability.

Simplification methods can also be categorized
as supervised or unsupervised. Supervised methods
tend to have better performance, but require aligned
complex-simple sentence pairs for training (Zhang
and Lapata, 2017; Guo et al., 2018; Kriz et al.,
2019; Martin et al., 2020a,b; Maddela et al., 2021).
Unsupervised methods do not need such training
data but do not perform as well (Surya et al., 2019;
Kumar et al., 2020; Zhao et al., 2020).

We propose GRS: a new approach to bridge
the gap between generative and revision-based
methods for unsupervised sentence simplification.
The insight is to introduce paraphrasing as an
edit operation within an iterative revision-based
framework. For paraphrasing, we use a fine-tuned
BART model (Lewis et al., 2020) with lexically-
constrained decoding (Hokamp and Liu, 2017; Post
and Vilar, 2018; Hu et al., 2019a). This decoding
technique allows us to select words from the initial
sentence that must be changed in the paraphrased
sentence (otherwise, paraphrasing an entire sen-
tence reduces to a pure generative model). To avoid
the computational overhead of repeatedly perform-
ing constraint-based decoding using various com-
binations of words to paraphrase, GRS includes a
complex component detector to identify the most
appropriate words to paraphrase. The code is avail-
able at https://github.com/imohammad12/GRS.

GRS is unsupervised in the sense that it does
not require aligned complex-simple sentence pairs,
but it uses supervised models. The paraphrasing
model requires paraphrasing corpora, and the com-
plex component detector requires two unlabeled
corpora, one containing more complex sentences
than the other. However, collecting paraphrasing
data and unaligned simplification data is simpler
than collecting aligned complex-simple pairs.

2 Related Work

Early work on simplification relied on rules, e.g., to
split or shorten long sentences (Chandrasekar and
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Srinivas, 1997; Carroll et al., 1998; Vickrey and
Koller, 2008). Later work treated simplification as
a monolingual phrase-based machine translation
(MT) task (Coster and Kauchak, 2011; Wubben
et al., 2012), with syntactic information added,
such as constituency trees (Zhu et al., 2010). Re-
cent work, reviewed below, leverages neural mod-
els in a generative and revision-based manner.

Supervised Generative Methods employ
Seq2Seq models to learn simplification operations
from aligned complex-simple sentence pairs (Ni-
sioi et al., 2017). Building on a Seq2Seq model,
Zhang and Lapata (2017) used reinforcement learn-
ing to optimize a reward based on simplicity, flu-
ency and relevance. Recent methods build on trans-
former (Vaswani et al., 2017) models, by integrat-
ing external databases containing simplification
rules (Zhao et al., 2018), using an additional loss
function to generate diverse outputs (Kriz et al.,
2019), combining syntactic rules (Maddela et al.,
2021), and conditioning on length and syntactic and
lexical complexity features (Martin et al., 2020a).

Unsupervised Generative Methods rely on
non-aligned complex and simple corpora. Zhao
et al. (2020) adopted a back-translation framework,
whereas Surya et al. (2019) used an unsupervised
style transfer paradigm. Martin et al. (2020b)
used a pre-trained BART model fine-tuned on para-
phrased sentence pairs.

Controllable Generative Methods produce out-
puts at specified grade levels (Scarton and Specia,
2018; Nishihara et al., 2019), or apply syntactic or
lexical constraints on the generated sentences (Mar-
tin et al., 2020a,b). However, these models do not
provide any insights into the simplification process.

Supervised Revision-Based Methods use
complex-simple sentence pairs to learn where to
apply edit operations. Alva-Manchego et al. (2017)
use keep, replace, and delete operations. Some re-
cent work used iterative non-autoregressive models
to edit sentences by either predicting token-level
edit-operations (Omelianchuk et al., 2021) or us-
ing a fixed pipeline of edit operations (Agrawal
et al., 2021). Dong et al. (2019) proposed a hybrid
method with explicit edit operations in an end-to-
end generative model.

Unsupervised Revision-Based Methods such
as Narayan and Gardent (2016) apply a pipeline of
edit operations in a fixed order. Kumar et al. (2020)
presented an unsupervised revision-based approach
by modelling text simplification as an unsupervised

Figure 1: An overview of GRS. Given a complex input
sentence, simplifications are iteratively produced via
paraphrasing and deletion, with paraphrasing guided by
the complex component detector. Sentences passing a
filter (Equation 4) are candidates for input to the next
iteration.

search problem. While GRS also uses a revision-
based framework and an unsupervised search strat-
egy, we integrate a generative paraphrasing model
into the framework to leverage the strengths of both
text generation and text revision approaches.

3 GRS Model

3.1 Overview

Our solution, GRS, iteratively revises a given com-
plex sentence by applying edit operations on sen-
tence fragments. In each iteration, multiple can-
didate simplifications are produced and evaluated
using a scoring function (Section 3.5), and the best
candidate is selected (Section 3.6). The selected
sentence acts as the input to the next iteration. This
process continues until none of the candidate sen-
tences are simpler than the input sentence.

GRS uses two edit operations: paraphrasing
(Section 3.2; guided by the complex component de-
tector described in Section 3.3) and deletion (Sec-
tion 3.4). The scoring function (Section 3.5) guides
our search for best simplifcation, using soft and
hard constraints on simplicity, linguistic acceptabil-
ity, and meaning preservation.

In Section 3.6, we explain how paraphrasing
and deletion work in an iterative search framework,
how candidate sentences are selected, and when the
algorithm terminates. Figure 1 gives an overview
of GRS, which is explained further in Section 3.6.
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Figure 2: Two iterations of edit operations: deletion,
then paraphrasing to simplify the complex fragments
(“announcement” and “massive”) identified by the com-
plex component detector and given as negative con-
straints to the paraphrasing model. This example demon-
strates the interpretability of GRS through building a
simplification path leading to the final sentence.

3.2 Paraphrasing Operation

We use a pre-trained BART model (Lewis et al.,
2020), fine-tuned on a small subset of ParaBank
2 paraphrasing dataset (Hu et al., 2019b); how-
ever, any paraphrasing auto-regressive model can
be used instead. During inference, we use lexical-
constrained decoding (Hokamp and Liu, 2017; Post
and Vilar, 2018; Hu et al., 2019a) to place negative
constraints on complex words and phrases in the
input sentence. Negative constraints are words that
the paraphrasing model is forced not to generate
during decoding. Figure 2 shows an example in
which an input sentence was paraphrased to ex-
clude two complex words (negative constraints):
“massive” and “announcement”. We explain how
to choose negative constraints below, with the help
of the complex component detector.

3.3 Complex Component Detector

Constrained decoding is computationally more ex-
pensive than greedy and beam search decoding.
In GRS, before paraphrasing a sentence, the com-
plex component detector predicts the best negative
constraints; then the sentence and the predicted
negative constraints are given to the paraphrasing
model to generate a new candidate sentence. As
a result, the paraphrasing operation is called only
once per iteration of GRS, using the predicted neg-
ative constraints, avoiding the expensive process of
repeatedly paraphrasing the input using different
combinations of negative constraints.

Figure 3: One of the attention matrices of the De-
BERTa complex-simple classifier (head 11 of the second
layer). Attention weights are reflected by color intensity.
The input sentence in this example is “below are some
useful links to facilitate your involvement." We used
BertViz (Vig, 2019) to visualize attention weights.

We implemented the complex component de-
tector as a complex-simple classifier that gives a
simplicity probability to a given sentence. We only
require two corpora with different complexity lev-
els to train this classifier. Since aligned complex-
simple sentence pairs are not required, this clas-
sifier can be trained on any pair of corpora with
different complexity levels. Reid and Zhong (2021)
showed that it is possible to extract style-specific
sections of a sentence using the attention layers of
a style classifier. Similarly, we use the attention lay-
ers of our complex-simple classifier to extract the
complex components from a given input sentence.

We fine-tune the pre-trained DeBERTa
model (He et al., 2020) as our complex-simple
classifier. Figure 3 illustrates one of the attention
heads of the second layer of DeBERTa. This
visualization shows that the word “faciliate” was
attended to more than the other words in the
given sentence. We use this intuition and devise
a formula (Equations 1 and 2 below) to detect
complex words by analyzing attention weights.

BERT (Devlin et al., 2019) and its extensions
(e.g. DeBERTa) add a [CLS] token to the begin-
ning and a [SEP] token to the end of each sentence
(as shown in Figure 3). In these models, the hid-
den states of the [CLS] token in the last layer are
used for classification tasks. In our complex-simple
classifier, we found that the attention paid by the
[CLS] token in the second layer to other words
in the sentence can help us detect complex com-
ponents. Equations 1 and 2 demonstrate how we
extract complex components from attention head
matrices of the second layer of the classifier. Here,
A

[CLS]
h,i refers to the amount of attention the [CLS]

token in the hth attention head of the second layer
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pays to the ith token of the input sentence. N and
H refer to the length of the input sentence and the
number of attention heads, respectively. ci defines
whether the ith token is complex or not. If ci = 1,
then this token will be set as a negative constraint.
T̄ is a threshold used for finding complex tokens.
In the example demonstrated in Figure 3, only c8,
which refers to the word “facilitate", is a complex
token.

T̄ =

∑H−1
h=0

∑N−1
i=0 A

[CLS]
h,i

N
(1)

ci =


1, if

H−1∑
h=0

A
[CLS]
h,i ≥ T̄

0, otherwise

(2)

3.4 Deletion Operation

Deletion aims to remove peripheral information to
make sentences simpler, and is composed of two
sub-operations: removal and extraction. Inspired
by Kumar et al. (2020), we use the constituency
tree of the input sentence to obtain all constituents
from different depths of the parse tree. These con-
stituents can be deleted (removal) or selected as
a simplified candidate sentence (extraction). The
removal sub-operation creates new candidate sen-
tences by removing each of these phrases from the
input sentence. The extraction sub-operation se-
lects phrases as candidate sentences, which helps
the model extract the main clause and drop periph-
eral information. The example in Figure 2 drops the
phrase “burying 25 nepalese sherpa guides under
sheets of ice the size of houses” from the complex
sentence since it is not the main clause.

3.5 Scoring Function

Candidates generated by our two edit operations
may not be correct in terms of linguistic accept-
ability. Furthermore, important information from
the original sentence may have been removed. We
use a score function to filter out non-grammatical
candidates or sentences that are not conceptually
similar to the original sentence. The score function
is composed of three important components.

Meaning Preservation (Hmp): First, we use
the method proposed in Reimers and Gurevych
(2019) to obtain the semantic representations of
the sentences. We then use the cosine similarity
measure between the representations of the original
and the generated candidate sentence. Our meaning

preservation measure acts as a hard filter. A hard
filter assigns a zero score to candidate sentences
that do not pass a certain threshold.

Linguistic Acceptability (Hla): By removing
some components of a complex input sentence,
the output sentence may become nonsensical. To
check the linguistic acceptability of the generated
sentences, we train a classifier on the CoLA (the
corpus of linguistic acceptability) (Warstadt et al.,
2019) dataset. This classifier measures the proba-
bility that a given sentence is grammatical. This
module, like the meaning preservation module, is
used as a hard filter in the score function.

Simplicity (Ssimp): This is a soft constraint, for
which we use the complex-simple classifier men-
tioned in Section 3.3, which computes the simplic-
ity probability of a sentence.

These three measures together evaluate the qual-
ity of each candidate sentence, as shown in Equa-
tion 3. In this equation, S, Ssimp, Hla, Hmp, c,
and o refer to the score function, simplicity mod-
ule, linguistic acceptability hard filter, meaning
preservation hard filter, candidate sentence, and the
original sentence, respectively.

S(c) = Ssimp(c) ∗Hmp(c, o) ∗Hla(c) (3)

3.6 Simplification Search

Our unsupervised search method is inspired by Ku-
mar et al. (2020), but with different simplification
operations and a different score function. Given a
complex input sentence, paraphrasing and deletion
operations generate candidate sentences separately.
In each iteration, the paraphrasing operation cre-
ates only one candidate sentence, as described in
Section 3.2, whereas the deletion operation gen-
erates multiple candidate sentences (Section 3.4).
Candidates sentences are then evaluated according
to the scoring function. Given a score for each
candidate sentence, we filter out those candidates
that do not improve the score of the input sentence
by some threshold. The threshold depends on the
edit operation that the candidate sentence has been
created from. In equation 4, top is the threshold
associated with operator op. S, c, and c′ refer to
the score function, the candidate sentence, and the
input sentence in the current iteration, respectively.

S(c) > S(c′) ∗ top (4)

Finally, at the end of each iteration, out of the
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remaining sentences (that are not filtered out), we
select the one with the highest score.

4 Experiments

This section discusses the experimental setup (Sec-
tions 4.1 through 4.4), a comparison of GRS with
existing approaches (Section 4.5), a controllability
study (Section 4.6), an evaluation of the complex
component detector (Section 4.7), an analysis of
the simplification search (Section 4.8), and a hu-
man evaluation (Section 4.9).

4.1 Data

We use the Newsela (Xu et al., 2015) and ASSET
datasets (Alva-Manchego et al., 2020) to evalu-
ate GRS against existing simplification methods.
Newsela contains 1840 news articles for children
at five reading levels. We use the split from Zhang
and Lapata (2017), containing 1129 validation and
1077 test sentence pairs. ASSET includes 2000 val-
idation and 359 test sentences pairs. Each sentence
has ten human-written references.

4.2 Training Details

Paraphrasing Model: We fine-tune a pre-trained
BART model (Lewis et al., 2020) implemented by
Wolf et al. (2020). To do this, we use a subset
of the ParaBank 2 paraphrasing dataset (Hu et al.,
2019b) containing 47,000 pairs. We observe that a
conservative paraphrasing model helps us to con-
trol the generated output. This is because such a
model is better at specifically changing only words
provided as negative constraints. Thus, for fine-
tuning the BART model, we select paraphrasing
sentence pairs that are semantically similar to each
other. For calculating the semantic similarity of
sentence pairs, we use the model from Reimers and
Gurevych (2019) to obtain sentence embeddings,
and then we use cosine-similarity to find the most
similar sentence pairs.

The BART model is composed of a 12-layer
encoder and a 12-layer decoder, each layer contain-
ing 16 attention heads. The model’s hidden size is
1024, and the tokenizer vocabulary size is 50265.
We use a batch size of 8 (per device). It took ap-
proximately 1.5 hours to fine-tune the model using
three NVIDIA 2080 Ti GPUs.

Complex-Simple Classifier: We use a pre-
trained DeBERTa (He et al., 2020) model imple-
mented by Wolf et al. (2020). This model is com-
posed of a 12-layer self-attentional encoder, each

layer containing 12 attention heads. The model’s
hidden size is 768, and the tokenizer vocabulary
size is 30522. To fine-tune the DeBERTa model for
the binary classification task, we use the Newsela-
Auto dataset (Jiang et al., 2020). To train the clas-
sifier, we use the AdamW (Loshchilov and Hutter,
2019) optimizer with a learning rate of 5 × 10−5

and a batch size of 16. Note that we do not use the
alignment between complex-simple sentence pairs
in the Newsela-Auto dataset. Thus, our complex-
simple classifier can be trained on any text corpora
with different complexity levels. It took approxi-
mately one hour to fine-tune the classifier using a
single NVIDIA 2080 Ti GPU. The accuracy of this
classifier is 78.46.

Meaning Preservation Module of the Scoring
Function: To obtain contextual embeddings of sen-
tences, we use the SentenceTransformers (Reimers
and Gurevych, 2019) framework, specifically, the
paraphrase-mpnet-base-v2 pre-trained model.

Linguistic Acceptability Module of the Scor-
ing Function: To score the linguistic acceptability
of a sentence, we fine-tune a pre-trained DeBERTa
model (He et al., 2020) for a binary classification
task on the CoLA (the corpus of linguistic accept-
ability) (Warstadt et al., 2019) dataset. It contains
10,657 sentences, each labelled either as grammati-
cal or ungrammatical. The configuration and train-
ing hyperparameters of this classifier are the same
as the complex-simple classifier explained above.
It took approximately 30 minutes to fine-tune the
model using a single NVIDIA 2080 Ti GPU. On the
validation set, the accuracy of the model is 79.33.

Simplification Search and Score Function:
The threshold associated with paraphrasing (tpar)
is 0.8, and the thresholds related to the removal
(tdl−rm) and extraction (tdl−ex) sub-operations of
the deletion operation are 1.1, and 1.25, respec-
tively. The score function’s meaning preservation
(Hmp) and linguistic acceptability (Hla) thresholds
are 0.7 and 0.3, respectively. We obtained these
values using the validation set. These values are
used for both ASSET and Newsela datasets.

4.3 Evaluation Metrics

To evaluate GRS and other models, we use
SARI (Xu et al., 2016) as our primary metric. SARI
(System output Against References and against the
Input sentence) evaluates the quality of the out-
put text by calculating how often the output text
correctly keeps, inserts, and deletes n-grams from
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Model SARI ↑ Add ↑ Delete ↑ Keep ↑ FKGL ↓ Len
Identity Baseline 12.24 0.00 0.00 36.72 8.82 23.04
Unsupervised Models
Zhao et al. (2020) 37.20 1.51 73.53 36.54 3.80 11.78
Kumar et al. (2020) 38.36 1.01 77.58 36.51 2.81 9.61
Martin et al. (2020b) 38.29 4.44 76.02 34.42 4.65 12.49
GRS: DL (RM + EX) 37.52 0.66 69.45 42.44 3.93 12.64
GRS: PA 36.42 3.44 69.55 36.28 5.79 19.08
GRS: PA + DL (RM + EX) 40.01 3.06 80.43 36.53 3.20 11.72
Supervised Models
Narayan and Gardent (2014) 34.73 0.77 73.22 30.21 4.52 12.40
Zhang and Lapata (2017) 38.03 2.43 69.47 42.20 4.78 14.36
Dong et al. (2019) 39.28 2.13 77.17 38.53 3.80 10.92
Zhao et al. (2020) 39.14 2.80 74.28 40.34 4.11 11.63
Martin et al. (2020b) 41.20 6.02 81.70 35.88 2.35 9.22

Table 1: Comparison of supervised and unsupervised simplification models on the Newsela test set. PA and DL
refer to paraphrasing and deletion, respectively. RM and EX refer to the removal and extraction sub-operations of
the deletion operation. ↑ denotes the higher the value, the better. ↓ denotes the lower the value, the better.

the complex sentence, compared to the reference
text, where 1 ≤ n ≤ 4. We report the overall
SARI score, as well as individual SARI scores
corresponding to n-grams correctly added (ADD),
deleted (DELETE) and kept (KEEP); the overall
SARI score is the mean of these three scores. We
also report the FKGL score, which only consid-
ers the output sentence, not the source and refer-
ence sentences. It is computed based on sentence
length and the number of syllables for each word
in the sentence. We use the EASSE package (Alva-
Manchego et al., 2019) to calculate SARI and
FKGL. We do not use the BLEU (Papineni et al.,
2002) metric since Sulem et al. (2018) showed that
BLEU does not correlate well with simplicity.

4.4 Models Tested

We evaluate GRS with different configurations:
only deletion - GRS: DL(RM+EX), only paraphras-
ing - GRS: PA, and both deletion and paraphrasing -
GRS: PA+DL(RM+EX). We also consider the com-
plex sentence itself as a trivial baseline, denoted by
‘Identity Baseline’. The ASSET dataset contains
multiple references for a sentence, so we also cal-
culate an upper bound for a given evaluation metric,
which we denote as ‘Gold Reference’. To calculate
the ‘Gold Reference’ score, each reference is se-
lected once, and the scores are calculated against
others. Finally, we average across all the reference
scores to obtain the final ‘Gold Reference’ score.

We also compare GRS with existing approaches.
From unsupervised methods, we select unsuper-
vised generative models that use Seq2Seq mod-
els Surya et al. (2019); Zhao et al. (2020). We

also compare with Martin et al. (2020b), which
leverages pretrained language models and a large
paraphrase pair dataset, and Kumar et al. (2020),
an iterative revision-based method with several ex-
plicit edit operations (deletion, lexical substitution
and reordering).

From supervised methods, we start with Narayan
and Gardent (2014) and Xu et al. (2016), which
use phrase-based MT models. We also consider
Seq2Seq generative methods: Zhang and Lapata
(2017), which uses reinforcement learning, and
Zhao et al. (2020); Martin et al. (2020a,b), which
use Seq2Seq transformer models. Next, we se-
lect Omelianchuk et al. (2021), a recent supervised
revision-based method. Finally, we consider Dong
et al. (2019), a hybrid approach using explicit edit
operations in a generative framework.

4.5 Evaluation Results

Tables 1 and 2 illustrate the results on Newsela
and ASSET, respectively. We report the overall
SARI score, the individual scores of three opera-
tions used in SARI score, the FKGL score, and the
average length of the output sentences. To evaluate
previous methods, we obtained their output sen-
tences on ASSET and Newsela from the respective
project Github pages or by contacting the respec-
tive authors, followed by calculating the SARI and
FKGL scores using the EASSE package (described
in Section 4.3). One exception is Omelianchuk et al.
(2021): since they also used the EASSE package,
we copied their reported ASSET scores in Table 2,
but they did not report the average sentence length.

For Newsela, using paraphrasing and deletion
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Model SARI ↑ Add ↑ Delete ↑ Keep ↑ FKGL ↓ Len
Identity Baseline 20.73 0.00 0.00 62.20 10.02 19.72
Gold Reference 44.89 10.17 58.76 65.73 6.49 16.54
Unsupervised Models
Surya et al. (2019) 35.19 0.83 45.98 58.75 7.60 16.81
Zhao et al. (2020) 33.95 1.99 42.09 57.77 7.51 18.80
Kumar et al. (2020) 36.67 1.29 51.33 57.40 7.33 16.56
Martin et al. (2020b) 42.42 7.15 61.32 58.77 7.49 16.36
GRS: DL (RM + EX) 37.90 0.89 62.32 50.50 4.17 11.18
GRS: PA 40.41 7.00 62.37 51.88 6.70 17.94
GRS: PA + DL (RM + EX) 37.40 3.89 67.46 40.85 3.45 10.69
Supervised Models
Narayan and Gardent (2014) 34.65 1.3 59.24 43.41 5.18 10.95
Xu et al. (2016) 37.11 5.07 45.21 61.06 7.95 20.50
Zhang and Lapata (2017) 36.59 2.38 50.10 57.30 7.66 14.37
Zhao et al. (2018) 38.67 4.36 51.37 60.29 7.73 18.36
Dong et al. (2019) 34.95 2.40 42.69 59.73 8.38 16.49
Martin et al. (2020a) 40.13 6.53 50.84 62.99 7.29 19.49
Zhao et al. (2020) 35.15 2.22 45.32 57.91 7.83 16.14
Martin et al. (2020b) 44.05 10.93 61.91 59.30 6.13 18.49
Omelianchuk et al. (2021) 43.21 8.04 64.25 57.35 6.87 ——-

Table 2: Comparison of supervised and unsupervised simplification models on the ASSET test set. PA and DL
refer to paraphrasing and deletion, respectively. RM and EX refer to the removal and extraction sub-operations, the
sub-operations of the deletion operation. ↑ denotes the higher value, the better. ↓ denotes the lower value, the better.

Value SARI ↑ Add ↑ Delete ↑ Keep ↑ FKGL ↓ Len
Effect of Meaning Preservation Threshold (Hmp)

0.25 38.18 2.15 84.64 27.76 0.42 7.68
0.5 39.49 2.30 83.58 32.59 1.63 8.99
0.6 39.78 2.59 81.94 34.80 2.46 10.29
0.7 39.99 3.16 79.81 36.99 3.27 12.16

Effect of the Removal Threshold of Deletion Operation (tdl−rm)
0.9 37.33 1.93 82.72 27.34 2.19 8.58
1.0 38.03 2.20 81.63 30.25 2.53 9.80
1.1 40.01 3.06 80.43 36.53 3.20 11.72
1.2 39.98 3.15 79.96 36.85 3.26 12.07

Effect of the Paraphrasing Threshold (tpar)
0.8 39.99 3.16 79.81 36.99 3.27 12.16
0.9 40.01 3.15 79.55 37.31 3.32 12.24
1.0 39.42 2.69 75.03 40.54 3.84 12.99
1.1 38.55 1.97 70.47 43.23 4.11 13.50

Effect of the Linguistic Acceptability Threshold (Hla)
0.6 39.42 3.06 78.19 37.00 3.65 12.54
0.7 39.52 3.00 77.98 37.57 3.68 12.67
0.8 39.69 3.08 77.60 38.40 3.79 12.85
0.9 38.41 2.93 76.87 38.42 4.04 13.04

Table 3: Impact of paraphrasing, deletion, meaning
preservation, and linguistic acceptability thresholds on
the Newsela dataset.

together (GRS: PA + DL(RM+EX)) gives the best
performance on the SARI metric. On the Newsela
dataset, our best model outperforms previous unsu-
pervised methods and achieves +1.6 SARI improve-
ment. It also outperforms all supervised methods
except Martin et al. (2020b).

For ASSET, even though Martin et al. (2020b)
perform better than our best model, we improve

the performance over Kumar et al. (2020) by +3.6
SARI points and close the gap between revision-
based and generative approaches. Compared to
supervised models, our unsupervised model again
outperforms others except Martin et al. (2020b) and
Omelianchuk et al. (2021). For the ASSET dataset,
we observe that our model with only paraphrasing
(GRS (PA)) has the best SARI score.

Analyzing the results, we observe that simpli-
fication is done differently by human annotators
in Newsela than in ASSET. In Newsela, removal
of peripheral information through content deletion
happens more aggressively. The average reference
sentence length is 12.75 compared to 23.04 for
the source sentences. However, in ASSET, con-
tent removal is conservative and can be handled
by paraphrasing alone. The average reference sen-
tence length is 16.54 compared to 19.72 for the
source sentences. Simplifications in ASSET fo-
cus on lexical simplification, sentence splitting and
word reordering.

Martin et al. (2020b) leverage a pretrained BART
model (Lewis et al., 2020) and fine-tune it on a para-
phrasing dataset containing 1.1 million sequence
pairs. Unlike traditional paraphrasing datasets that
are structured at the sentence level, their paraphras-
ing dataset contains multiple sentences in a se-
quence, thus allowing the model to learn a sentence
splitting operation as well. Thus, they outperform
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CCD-module Acc ↑ Rec ↑ Prec ↑ F1 ↑
LS-CCD 84.67 37.36 70.51 48.84
Att-Cls 84.58 47.95 72.59 57.75

Table 4: Performance of different Complex Component
Detectors (CCD) on the Complex Word Identification
(CWI) task. CWIG3G2 dataset has been used for this
evaluation. LS-CCD and Att-Cls refer to the CCD mod-
ule obtained from Lexical Simplification edit operation
of Kumar et al. (2020) and the original CCD module
used in GRS design explained in Section 3.3, respec-
tively. ↑ denotes the higher value, the better.

the previous best unsupervised models on ASSET.
On Newsela, both GRS and the model from Ku-
mar et al. (2020) perform better than Martin et al.
(2020b) since they include an explicit removal edit
operation. Martin et al. (2020b) instead do not
explicitly perform content removal and only do
content deletion by way of paraphrasing. Finally,
Kumar et al. (2020) does not perform well on AS-
SET since they do not perform paraphrasing. Our
new design thus combines the advantages of both
revision-based and generative approaches.

4.6 Controllability

By manipulating the thresholds for the components
of the score function and the edit operations, we
can control the amount of deletion, paraphrasing,
and the trade-off between simplicity and meaning
preservation. We show the results in Table 3 using
the GRS (PA + DL) model and the Newsela test
set. The column labels have the same meaning as
in Tables 1 and 2.

Meaning Preservation Threshold: As men-
tioned in Section 3.5, meaning preservation is a
hard filter in our score function. As the mean-
ing preservation threshold increases, candidate sen-
tences less similar to the original sentence are
pruned. Sentences more similar to the original
sentence have higher Keep and lower Delete SARI
scores. The SARI Add score increases since para-
phrasing is prioritized over deletion. Finally, the
length of the output sentences increases since the
model becomes more conservative.

Removal Threshold of Deletion Operation:
By increasing this threshold, the SARI Keep score
increases and the SARI Delete score decreases,
which also results in increased average length. The
SARI Add score increases as well since a higher
deletion threshold makes the model conservative on
deletions and thus candidates from the paraphras-

ing operation are more likely to be selected.
Paraphrasing Threshold: Reducing this thresh-

old results in more aggressive paraphrasing. Thus,
we observe an increase in the SARI Delete and Add
scores since paraphrasing replaces complex words
and phrases with simpler ones.

Linguistic Acceptability Threshold: Like
meaning preservation, linguistic acceptability is
a hard filter in our score function (Section 3.5).
As the linguistic acceptability threshold increases,
more candidate sentences receive a zero score. This
results in a more conservative model that makes
fewer changes to the input sentences because the
original sentences are already linguistically accept-
able. By increasing the linguistic acceptability
threshold, the SARI Deletion score drops and the
SARI Keep score increases. Also, this results in
longer sentences.

4.7 Complex Component Detector Evaluation
To show the effectiveness of the proposed Com-
plex Component Detector (CCD) mentioned in
Section 3.3, we evaluate the CCD module on the
Complex Word Identification (CWI) task. The task
is defined as a sequence tagging problem in which
each word in a sentence is tagged as complex or
not complex. We use the test set of CWIG3G2
(Yimam et al., 2017), a professionally written news
dataset. As explained in Section 3.3, the CCD mod-
ule used in GRS (denoted by Att-Cls) operates by
interpreting the attention matrix of the second layer
of the complex-simple classifier. We also compare
with the lexical simplification operation of Kumar
et al. (2020), denoted by LS-CCD. It uses the IDF
scores to find complex words in a sentence.

Table 4 shows the complex word identifica-
tion performance of the two CCD modules on
CWIG3G2. Att-Cls outperforms LS-CCD in re-
call, precision, and the F1 score. Tables 5 demon-
strates the performance of GRS with different CCD
modules on ASSET (Alva-Manchego et al., 2020)
and Newsela (Xu et al., 2015) test sets. On both
datasets, the GRS model using Att-Cls has higher
deletion and addition scores compared to the GRS
model using LS-CCD. The overall SARI score is
considerably higher when using Att-Cls on ASSET.

4.8 Simplification Search Analysis
GRS is an interpretable unsupervised simplification
method in which we can trace the simplification
process. That is, we know which edit operation
is applied on a given complex sentence in each
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Model SARI ↑ Add ↑ Delete ↑ Keep ↑ FKGL ↓ Len
ASSET

Identity Baseline 20.73 0.00 0.00 62.20 10.02 19.72
Gold Reference 44.89 10.17 58.76 65.73 6.49 16.54
GRS(PA, CCD:LS-CCD) 37.80 5.59 57.39 50.44 7.17 18.75
GRS(PA, CCD:Att-Cls) 40.41 7.00 62.37 51.88 6.70 17.94

Newsela
Identity Baseline 12.24 0.00 0.00 36.72 8.82 23.04
GRS(PA+DL(RM), 39.30 2.87 78.18 36.85 3.39 13.54
CCD:LS-CCD)
GRS(PA+DL(RM), 39.61 3.18 79.13 36.52 3.45 13.43
CCD:Att-Cls)

Table 5: Comparison of GRS versions that use different Complex Component Detectors (CCD) on ASSET and
Newsela. PA and DL refer to paraphrasing and deletion, respectively. RM refers to removal, which is the sub-
operation used in deletion operation. ↑ denotes the higher value, the better. ↓ denotes the lower value, the better.

Model Iterations/Sent PA-iterations DL-iterations
(all-Operations) RM EX

Newsela
GRS: PA 4.72 4.72 – –
GRS: DL 0.79 – 0.46 0.33
GRS: PA + DL 4.40 3.72 0.37 0.31

ASSET
GRS: PA 4.18 4.18 – –
GRS: DL 1.05 – 0.54 0.51
GRS: PA + DL 3.79 2.94 0.39 0.45

Table 6: Analysis of edit operation used during simpli-
fication search, showing the average number of simplifi-
cation iterations of GRS and the average share of each
edit operation. PA and DL refer to paraphrasing and
deletion, respectively. RM and EX refer to the removal
and extraction sub-operations of the deletion operation.

iteration. Table 6 demonstrates how many simplifi-
cation iterations were needed to simplify a complex
sentence, on average, in the Newsela and ASSET
datasets. We also show the average frequency of
each operation to simplify a given sentence.

Table 6 illustrates that when both edit operations
are allowed (GRS:PA+DL), almost four simplifica-
tion iterations are applied to a sentence, and para-
phrasing is generally more common than deletion.

4.9 Human Evaluation

We selected 30 sentences from the ASSET test set
for human evaluation. Following (Kriz et al., 2019),
we measure Fluency (whether the sentence is gram-
matical and well-formed), Simplicity (whether it
is simpler than the complex sentence), and Ade-
quacy (whether it keeps the meaning of the com-
plex sentence). We asked four volunteers to assess
the sentences based on these metrics and evalu-
ate the performance of various models, including
GRS. Results are shown in Table 7. All models are
unsupervised except Dress-Ls (Zhang and Lapata,
2017).

CCD-module Adequacy ↑ Simplicity ↑ Fluency ↑ Average ↑
Reference 4.29 4.08 4.76 4.37
GRS(PA) 3.98 4.04 4.47 4.17
(Surya et al., 2019) 3.57 3.48 4.32 3.79
(Zhao et al., 2020) 3.89 3.27 4.54 3.89
(Martin et al., 2020b) 3.95 4.17 4.78 4.30
(Kumar et al., 2020) 3.15 3.56 4.15 3.62
(Zhang and Lapata, 2017) 3.67 3.64 4.69 4.00

Table 7: Human evaluation on the ASSET dataset.
Adequacy, simplicity, and fluency are human evaluation
metrics, and in the fourth column, the average of these
metrics is shown. Each row represents a simplification
model. Human evaluation scores are based on a 1–5
Likert scale. ↑ denotes the higher value, the better.

The fourth column in Table 7 shows the average
score of all three metrics used in the human evalua-
tion. According to the average scores, MUSS (Mar-
tin et al., 2020b) has the best performance, followed
by GRS. The human evaluation demonstrates that
the automatic evaluation (SARI scores shown in
Table 2) is aligned with human evaluation scores.
GRS has the best performance in meaning preser-
vation (Adequacy). This may be because we have
a relatively conservative paraphrasing model. Also,
GRS evaluated in this study is only leveraging para-
phrasing, and this version is the most conservative.

5 Conclusion

We proposed GRS, a controllable and interpretable
method for unsupervised text simplification that
bridges the gap between previous unsupervised
generative and revision-based approaches. We com-
bined the two approaches by incorporating an ex-
plicit paraphrasing edit operation into an iterative
simplification search algorithm. Empirically, we
showed that GRS has the advantages of both ap-
proaches. GRS outperformed state-of-the-art un-
supervised methods on the Newsela dataset and
reduced the gap between generative and revision-
based unsupervised models on the ASSET dataset.
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