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Abstract

The application of Natural Language Inference
(NLI) methods over large textual corpora can fa-
cilitate scientific discovery, reducing the gap be-
tween current research and the available large-
scale scientific knowledge. However, contem-
porary NLI models are still limited in interpret-
ing mathematical knowledge written in Natural
Language, even though mathematics is an inte-
gral part of scientific argumentation for many
disciplines. One of the fundamental require-
ments towards mathematical language under-
standing is the creation of models able to mean-
ingfully represent variables. This problem is
particularly challenging since the meaning of
a variable should be assigned exclusively from
its defining type, i.e., the representation of a
variable should come from its context. Recent
research has formalised the variable typing task,
a benchmark for the understanding of abstract
mathematical types and variables in a sentence.
In this work, we propose VarSlot, a Variable
Slot-based approach, which not only delivers
state-of-the-art results in the task of variable
typing, but is also able to create context-based
representations for variables.

1 Introduction

The articulation of mathematical arguments is a
fundamental part of scientific reasoning and com-
munication. Across many scientific disciplines, ex-
pressing relations and inter-dependencies between
quantities is at the centre of its argumentation. One
of the particular linguistic elements used for such
argumentation is variables: they are essential for
expressing complex mathematical ideas, allowing
scientists to refer to a set of values compactly and
rigorously. Given the essential nature of variables,
models that perform inference over scientific and
mathematical text should be able to meaningfully
represent and leverage such elements to understand
mathematical language and improve downstream
inference performance.

While there is still debate on a universally ac-
cepted definition for variables, their functional as-
pects within mathematical text are well established.
A variable is usually defined as a symbol standing
as a referent for a set consisting of at least two
elements (Philipp, 1992). Given their nature of ab-
stract and dynamic referents, two aspects make the
representation of variables particularly challenging
in the field of NLP: (i) The meaning of a variable is
exclusively determined by its context (Schoenfeld
and Arcavi, 1988), a variable carries no meaning
when considered in isolation, behaving unlike any
word in English; (ii) The same variable symbol
(e.g., the variable x) can be reused in an unlim-
ited number of sentences and expressions, possibly
assuming different meanings and referring to dif-
ferent sets of values while keeping the same name.
While a similar problem can also be found for the
representation of words (i.e., word sense disam-
biguation), the scale of ambiguity is more marked,
due to the fact that variable names, unlike words,
are not grounded a priori to any particular set of
concepts.

In order to understand mathematical text, the
meaning of variables (i.e., their type) needs to be
implicitly or explicitly inferred at some point from
the text. Identifying and qualifying the binding
between variables and their types, therefore, is cru-
cial for reasoning with mathematical text, given
that any form of inference on a variable is funda-
mentally constrained by the possible values it can
take, and those values are uniquely determined by
its type. For example, we can only correctly predict
the entailment between two sentences containing
variables if we infer their types beforehand.

As a benchmark for variable comprehen-
sion in mathematical text, the variable typing
task (Stathopoulos et al., 2018) requires finding
the connections between variables and their respec-
tive types in a sentence. Despite its importance for
scientific inference, the task is still widely unex-
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plored. Most of the existing work focusing on the
representation of mathematical elements, in fact,
has been carried out in a non-textual setting, where
the mathematical elements are represented inde-
pendently from any textual content (Aizawa and
Kohlhase, 2021). While some expressions and for-
mulas are universal enough to be encoded without
context (e.g., Pythagoras theorem), variables have
no meaning in isolation and different symbols can
be arbitrarily chosen to indicate variables with the
same meaning. Therefore, an important principle
for designing and evaluating a variable representa-
tion is that such a representation should be agnostic
to the specific symbols adopted as referents in the
text – i.e., the variable names. This is because
the variable names contained in a generic passage
can be opportunely renamed without altering the
sentences’ meaning. For instance, a robust vari-
able representation should be able to encode the
sentences “Let x be an integer” and “Let y be an in-
teger” in exactly the same way, if they are inserted
in the same context.

However, while this characteristic seems to be in-
trinsic in the nature of variables, it has been largely
ignored by current evaluation frameworks, where
there is no agnostic way to verify the quality of the
generated variable representation independently of
their surface form. To move a step forward to-
wards more robust and generalisable representa-
tions, this work proposes a new testing and mod-
elling framework based on the property of gener-
alisation to variable renaming. Specifically, we
define a model to be generalisable to variable re-
naming if the model’s performance does not de-
crease when renaming variables in the test set with
variable names never seen during training. Through
testing such a property, since the renaming of vari-
ables does not alter the context or meaning of the
sentences, we are verifying whether the context is
correctly moulding the variable encoding and, at
the same time, whether the performance is not due
to overfitting to the surface form of the text.

To address and study generalisation to variable
renaming, this work proposes VarSlot (Variable
Slot), a model for variable typing that represents
variables in a surface agnostic way. To achieve
a generalisable representation, VarSlot initialises
variables as blank slots and employs a multi-slot
mechanism, extending from slot attention (Lo-
catello et al., 2020), to iteratively specialise the
representation. Specifically, VarSlot leverages self-

attention to conform the representation of each vari-
able to its context (i.e., its surrounding words and
other variables), where each surrounding element
has a different influence on the final representa-
tion. Experiments adopting VarSlot to extend sen-
tence embeddings based on Transformers (Devlin
et al., 2019) demonstrate not only that the proposed
framework is able to achieve state-of-the-art results
on the variable typing task, but also, in contrast
with previous work, that VarSlot allows for better
generalisation to variable renaming. To the best
of our knowledge, this is the first work that fo-
cuses on generalisation and robustness for variable
representation in mathematical text, providing, at
the same time, a critical analysis of large language
models (LLMs) targeting the scientific domain. To
summarise, the contributions of this paper are as
follows:

• We propose a new evaluation framework for
testing the property of generalisation to vari-
able renaming;

• We systematically analyse the understanding
of variables in large language models, demon-
strating their limitations when handling vari-
able renaming;

• We propose a state-of-the-art model for the
variable typing task, demonstrating, at the
same time, that it significantly outperforms
large language models when analysing the
property of generalisation to variable renam-
ing;

2 Variable Typing problem

This work follows the same definition of a variable
used in (Stathopoulos et al., 2018), considering as
variables simple expressions composed of a single,
possibly scripted, base identifier. The variable typ-
ing task requires the assignment between variables
in the sentence and its respective types. We use the
same setting as (Stathopoulos et al., 2018) for this
task: given a sentence s with a pre-identified set of
variables V and types T , the task is defined as a bi-
nary classification of all edges V ×T , where a pos-
itive edge means that the variable is assigned that
type and negative otherwise. Figure 1 introduces an
example of a mathematical statement, containing
one variable b with type persistence length. The
edge linking to this type is a positive one, while the
one linking to type chains is a negative edge.

While the task carries some similarity to two
other well-known tasks in NLP, Coreference Res-
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The restriction on the allowed conformational space
is so severe that it is able to induce a finite

persistence length in the modelled chains.
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Figure 1: Example of a mathematical statement con-
taining one variable. This example shows two different
edges (variable→type), with a positive and a negative
binding.

olution and Relation Extraction, there are some
fundamental differences. Variables have a partic-
ular behaviour, where there is a disconnection be-
tween the variable name and its meaning. Also, the
variable typing task mainly involves intra-sentence
dependencies and does not rely on a predicate-
argument relation.

3 Our Approach: Variable Slots (VarSlot)

Following the recent literature (Stathopoulos et al.,
2018), this work frames the variable typing prob-
lem as binary classification, where each variable
is tested against all possible types. Given a sen-
tence s from a mathematical text containing known
variables V = {v1, v2, . . . , vnv} and types T =
{t1, t2, . . . , tnt}, VarSlot aims at finding a func-
tion such that f(vi, tj) = 1 if vi has type tj and
f(vi, tj) = 0 otherwise. In this section we detail
our approach, VarSlot, illustrated in Figure 2.

3.1 From types and expressions to hypotheses
A novel framing for the variable typing problem
is proposed in this work. Instead of treating sen-
tences, types and variables as different features
of the problem (Stathopoulos et al., 2018), each
sentence si is converted to a set of hypotheses
Hsi = {h(v1,t1), h(v1,t2), . . . , h(vnv ,tnt )

} of size
nv×nt by adding to the end of the sentence, the fol-
lowing phrase: “Then [variable] is of type [type]”
where variable and type are replaced by the ones
being evaluated at that instance. For example, if
one wants to test if the variable x is of type integer
in the sentence “Let x be an integer and y be a real”,
it can be converted to a hypothesis by adding “Then
x is of type integer” after the initial sentence. This
modification will allow our approach to leverage
pre-trained sentence encoders, obtaining enriched
representations.

3.2 Encoding the sentences
Previous research has shown that LLMs strug-
gle to understand concepts such as numeracy (Sp-

ithourakis and Riedel, 2018) and solving math
word problems (Piękos et al., 2021), but there is
still no research on the representation of variables
inside the mathematical text for such models, de-
spite their higher performance for different infer-
ence tasks (Rogers et al., 2020).

We hypothesise that it is possible to leverage
pre-trained sentence representations to obtain an
initial encoding for each hypothesis. By using an
encoder, each hypothesis h of size N is mapped to
a representation E ∈ RN×D, where each token is
assigned a vector of size D, regardless of being a
variable or a word. At this point, the representation
is unable to distinguish between both modalities of
elements.

3.3 Representing Variables with Multi-Slots

Variables represent a set of possible values, acting
as a place-holder element for any possible value
inside that set (Schoenfeld and Arcavi, 1988). This
set of values is attached to the type corresponding
to that variable; for example, if a variable is typed
as an integer, we expect it to take values from that
set only. A variable with the symbol x can refer to
completely different sets depending on its context.
Therefore, when representing a variable, its surface
form (or symbol) should not interfere with its rep-
resentation; the semantics of the variable should be
guided exclusively by the defined type. We aim to
approximate this behaviour by representing each
variable using slots (Locatello et al., 2020). Slots
use a common representational format, where each
slot can store any object from the input, rendering
it a suitable candidate for obtaining a latent repre-
sentation of variables since the same variable name
can take many different contexts and possible types.
We extend previous work by designing an approach
that combines the representations obtained from
different slots (multi-slot).

Given a hypothesis h(vi,tj) containing the vari-
ables V = {v1, . . . , vnv}, a pre-trained sentence
embedding is used to obtain a representation E for
this hypothesis. In order to obtain a representa-
tion that can better distinguish from symbol and
abstraction of the variables, we generate a new rep-
resentation E(vi−) ∈ RN×D for each variable in
the sentence, where the vectors representing the
variables are all replaced by zeroes. For each vari-
able, the representation obtained from the encoder
is dropped, preserving only the other tokens. This
step allows our model to learn the representation of
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Figure 2: Our model takes as input a statement containing words and variables. These tokens are encoded using
a pre-trained language model. Then, the variables’ representation is enriched using slot attention. The final
representation is obtained as the mean of all tokens. In the end, we obtain the classification of the hypothesis.

the variables based on their context and abstraction,
diminishing the weight from its surface features.

A representation e(vi) ∈ RD is obtained for each
variable through iterative Scaled Dot-Product At-
tention. First, in order to obtain an initial repre-
sentation, we initialise e(vi) by sampling from a
Gaussian distribution N (µ, σ), with learnable pa-
rameters µ ∈ RD and σ ∈ RD. This will generate
an empty slot, which will be iteratively conformed
into a representation for the variable vi.

Previous work has shown that having a sepa-
rated representation for mathematical elements and
words can be beneficial for performing inference
over mathematical text (Ferreira and Freitas, 2021).
We hypothesise that allowing our model to learn
a new representation for variables will naturally
separate it from other elements.

We apply the linear transformation k and v over
E(vi−) and q over e(vi) to compute the Scaled Dot-
Product Attention (Vaswani et al., 2017):

Att = softmax(
q(e(vi))k(E(vi−))

T

√
D

)v(E(vi−))

(1)
The obtained attention is applied to a Gated Re-

current Unit (Cho et al., 2014) with hidden size
D and transformed with a multi-layer perceptron
(MLP) with ReLU activation in order to obtain the
new value for e(vi). This process is repeated for T
iterations, for each variable in the sentence.

After obtaining the representation for each vari-
able e(vi), we need to match it again with the origi-
nal representation. This is achieved by mapping the
obtained variable representations to their original
positions in E(vi−). The final matrix is encoded

by a BiLSTM layer, obtaining a final enriched rep-
resentation E for the sentence. The algorithm de-
scribing this process can be found in Appendix C.

3.4 Classifying hypotheses

Finally, we obtain a representation for the hypothe-
sis as a single vector of dimension D by computing
the mean over the rows of E . In order to obtain the
classification for each hypothesis, we use a final
linear layer, with as training objective function the
Binary Cross-Entropy Loss.

4 Experiments

This section presents the experiments performed to
evaluate the performance of VarSlot for the variable
typing task. The models and datasets used are made
available in our repository1. As the encoder for the
model, we use the Sentence Transformers (Reimers
and Gurevych, 2019) version of SciBERT (Beltagy
et al., 2019) pre-trained for NLI tasks (SciBERT-
NLI)2. We compare our approach with previous
research and standard pre-trained language mod-
els. The evaluation is conducted in two different
settings:

1. Classic Variable Typing: This setting rep-
resents the canonical evaluation of variable
typing task, as it was initially described
in (Stathopoulos et al., 2018).

2. Variable Typing with Renaming: In order to
evaluate the model’s ability to abstract from
the surface form of the variables and gener-
alise to variable renaming, we replace all the

1Anonymous repository.
2The model gsarti/scibert-nli from Hugging

Face is used.
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variables in the test set with new symbols,
unseen in the Train and Dev set without modi-
fying the sentence’s meaning.

4.1 Dataset
The dataset used in this work to evaluate the per-
formance of the proposed model is the Variable
Typing Dataset (Stathopoulos et al., 2018). This
dataset was manually curated and annotated from
mathematical statements contained in scientific pa-
pers.

For the Renaming setting, the Train and Dev
set is the same as the previous setting, but the
Test set contains only variable names in the for-
mat x1, x2, x3, ..., xn. The Test set in both settings
has the same hypotheses with identical semantic
meaning but different variable names. For exam-
ple, the fragment “Let b be ...” becomes “Let x1
be ...” in the Renaming setting. For reproducibility
purposes, we make this expanded dataset available
in our repository.

4.2 Baselines
We compare our approach to the following models:

• (Stathopoulos et al., 2018): This architecture
is based on a Bidirectional LSTM. The model
uses one string feature, which is referred to as
supertype. If the token is a type, then this fea-
ture is the string key of the embedding vector
of its supertype or NONE otherwise. These
features are mapped to a separate embedding
space and then concatenated with the word
embedding to form a single task-specific word
representation.

• BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), SciBERT (Beltagy et al., 2019)
and MathBERT (Peng et al., 2021): To as-
sess the understanding of variables in pre-
trained language models, we use the men-
tioned models as baselines for the Variable
Typing task. For all models we use the base
and uncased version. The models are fine-
tuned as a classic NLI model, using a [SEP]
token to separate the original sentence with
our new typing sentence. All models are fine-
tuned with batch size of 32, for 10 epochs.
The full list of used hyper-parameters can be
found in the Appendix A.

4.3 Quantitative results
We present the results for the Variable Typing task
in both the classic setting (Table 1) and the renam-

ing setting (Table 2). We include here our approach
with T = 3 and T = 2. We will start our discus-
sion with the results from the classic setting and
then move to the renaming setting.

4.3.1 Classic Setting
Considering first the classic setting (Table 1), we
can observe that both BERT and RoBERTa achieve
good results, outperforming the approach proposed
by (Stathopoulos et al., 2018), which was designed
explicitly for variable typing and uses specific typ-
ing embedding. Such performance does not come
as a surprise since, as discussed previously, vari-
able typing carries some similarity to tasks that
these models have excelled in the past. However,
such performance does not imply that these mod-
els have a good understanding of the meaning of
variables; most likely, they are leveraging the syn-
tactic knowledge they possess to connect types and
variables.

Model Test (Classic)

P R F1

Stathopoulos et al. (2018) 83.10 74.70 78.90
BERT 77.8 82.98 80.31
RoBERTa 82.32 80.13 81.21

MathBERT 81.85 73.76 77.59
SciBERT 77.26 87.54 82.08

VarSlot (T=3) 83.18 81.36 82.26
VarSlot (T=2) 83.95 79.08 81.44

Table 1: Comparison of our approach with different
baselines for Variable Typing for classic setting. We
present the values for precision (P), recall (R) and F1-
score.

MathBERT and SciBERT are models specialised
in scientific and mathematical knowledge. While
SciBERT is pre-trained using corpora from sev-
eral scientific disciplines, MathBERT was exclu-
sively trained on mathematical text. We initially
expected both models to excel on this task since
they have been previously exposed to mathematical
notation. However, as seen from our results, Math-
BERT was the worst-performing model from our
baselines, while SciBERT was the best perform-
ing one. While we cannot establish the reasons
for MathBERT’s lower performance, since this is
outside the scope of this work, we hypothesise that
training a model with a large amount of mathemat-
ical notation without explicitly designing an en-
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coding which reflects its abstract semantics can be
damaging to a model’s performance. For example,
many variable names are reused across different
mathematical disciplines, and as we will see in the
renaming setting, most models cannot abstract vari-
able meaning from their surface form. SciBERT
has been exposed to a smaller mathematical corpus,
and usually inside non exclusively mathematical
contexts (e.g., computer science papers). Therefore,
it is able to achieve higher performance. Given the
results obtained from SciBERT, we decided to use
the Sentence-Transformers version of this model
as our encoder.

We can see that for T = 3, VarSlot can outper-
form all of the models for the classic setting. Even
though VarSlot uses SciBERT as part of its model,
we can still see an improvement when combining it
with multi-slots. For T = 2 we still obtain compet-
itive results, being outperformed only by SciBERT.

4.3.2 Renaming setting
In this setting (Table 2), we have the same sen-
tences as in the previous setting, but the variables
in the Test split have now different names. Con-
sidering the semantic of variables, the previous re-
sults should not change, considering the sentence’s
meaning remains untouched; only the surface of the
variables have been altered. However, the obtained
results prove otherwise. For all the approaches,
there is a decrease relative to the results obtained
in the classic setting. Such results hint at the fact
that the models still do not encode the expected
variable behaviour.

Model
Test (Renaming) Average (C+R)

P R F1 Decrease F1

BERT 54.00 78.23 63.89 20.44% 72.1
RoBERTa 55.43 68.34 61.21 24.62% 71.21

MathBERT 54.37 44.29 48.82 37.07% 63.21
SciBERT 30.25 93.15 45.67 44.35% 63.88

VarSlot (T=3) 60.86 73.47 66.58 19.06% 74.42
VarSlot (T=2) 69.80 79.04 71.86 11.76% 76.65

Table 2: Results for VarSlot and baselines for Variable
Typing for renaming setting. We include here also the
decrease in score relative to the classic setting and the
average score for both classic and renaming setting.

Looking at the obtained results, we can notice
that the results obtained using SciBERT suffers
from a more remarkable decrease, with a 44.35%
(82.08→45.67) decrease in performance for this
new setting, even though it was the best perform-
ing model for the previous setting. These results

hint that SciBERT is overfitting to the names of the
variables instead of abstracting from its symbols
and adapting from context. A significant decrease
can also be seen for MathBERT. The best perform-
ing baseline for this setting is BERT, which is likely,
as previously mentioned, using syntactical cues to
obtain the correct types.

We can see that VarSlot with T = 2 is more
robust to this transition, having a less promi-
nent decrease when compared to the other results
(81.44→71.86), while we see a slight larger de-
crease for T = 3. The results suggest that our
model better understands the difference in be-
haviour between variables and words and the sur-
face agnostic aspect of variables, not over-fitting as
much as the baselines for names of the variables.
The results also hints that our model can correctly
obtain the meaning of the variables from the con-
text.

4.4 Robustness to substitution

In a more practical scenario, a model should har-
monise a combination of the classic and renaming
settings. During inference time, a mixture of seen
and unseen variables is likely to be present. In this
section, we evaluate the robustness of the model
for the duplication of hypotheses with substituted
variable names.

We add n repetitions of the same hypothesis in
the test set for this experiment but with different
variable names. For n = 0, the Test set is the same
as the classic setting. For n > 0, we follow the
same procedure as the renaming setting; however,
we change the letter being used when adding more
repetitions. For instance, for n = 1 the variables
have format x[variable_index], while for n = 2 we
use the format y[variable_index]. For n = 10, we
will have the same hypothesis appear ten times, but
all with different variable names.
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0.65
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Figure 3: F1 score obtained for different models when
adding the same hypotheses with different variable name
substitutions.
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This test allows us to compare the robustness of
each model to the addition of different variables
names. Figure 3 presents the performance of the
different models in this task, considering the F1
score and number of added substitutions n. For
n = 0 the results are the same as the ones present
in Table 1.

We can observe that all the models suffer degra-
dation in the performance as we add more dupli-
cated modified hypotheses. While the models start
at a close point, we can notice that as we increase
the value of n, the gap between the proposed ap-
proach and the others models increases. Again,
we note a big decrease in SciBERT’s performance.
The performance obtained for VarSlot shows how
using multi-slots for representation of variables can
increase the robustness of the model for variable
name substitution through the test set.

4.5 Ablation Studies
In order to establish what components are impact-
ing on VarSlot comprehension of variables, we per-
form different ablation studies. Table 3 presents
the F1 score for different tests. The first row shows
the results for considering only the encoder of our
approach (SciBERT-NLI), removing the enriched
variable representations and fine-tuning for the clas-
sification task. We can notice that our approach im-
proves on top of the sentence representation, with
significantly better results on the Renaming setting,
showing that multi-slots plays a crucial role on that
task.

Ablation Classic Renaming

1. Encoder only (SciBERT-NLI) 80.92 58.88

2. Encoder only (BERT-NLI) 80.67 66.63
3. Using BERT-NLI as encoder 81.24 69.19

4. VarSlot (T = 1) 79.52 68.03
5. VarSlot (T = 2) 81.44 71.86
6. VarSlot (T = 3) 82.26 66.58
7. VarSlot (T = 4) 80.42 65.88

Table 3: Comparison of our approach for the different
settings.

We also tested the generalisability of our ap-
proach to different encoders. Row 2 presents the
results for the hypothesis classification only us-
ing BERT-NLI3, and Row 3 presents our approach
combined with BERT-NLI. We found that by using
BERT-NLI instead of SciBERT-NLI for encoding

3Model obtained from Hugging Face:
bert-base-nli-mean-tokens

our hypothesis, we could still observe an increase
in performance for both classic and renaming set-
tings. The proposed model consistently increases
the understanding of variables for different sen-
tence representation models.

The number of iterations T can also have an
impact on the generalisation abilities of VarSlot.
Rows 4-7 presents how its performance changes as
the number of iterations increases. We can notice
that we can obtain best results for the renaming
setting with T = 2, while the best performance for
the classic setting comes for T = 3. Our model
requires a few iterations to conform the variable
representation into the correct shape. When adding
more iterations, VarSlot is more likely to overfit,
leading to a degradation in performance with in-
creasing number of iterations.

4.6 Qualitative Analysis
Previous work (Ferreira and Freitas, 2021) has
found that having separate embedding spaces for
mathematical elements and natural language when
representing mathematical text can be beneficial
for performance in other mathematical language
processing tasks. We initially hypothesised that by
allowing our model to learn the representation of
variables, such separation would naturally happen
when starting from a Gaussian initialised slot.

In order to verify if the model can discrimi-
nate between variables and natural language, we
compare the embedding of words obtained from
SciBERT-NLI (fine-tuned for the Variable Typing
task) and our approach. We selected ten random
sentences from the test set, obtained their embed-
ding using both and reduced them to three dimen-
sions using Principal component analysis4. The
results are presented in Figure 4.

(a) SciBERT-NLI
(b) VarSlot

Figure 4: Embedding of the words and variables ob-
tained from the test set for SciBERT-NLI and VarSlot.

The embeddings for the variables are represented
here using the yellow diamond. From the figure,

4We use the PCA implementation from Scikit-learn
library with the default parameters.
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we can immediately observe that our model easily
distinguishes between words and variables, creat-
ing a clear separation. The same is not observed
for SciBERT-NLI: there is no sharp separation be-
tween words and variables, suggesting that the
model might not recognise the distinct semantic
behaviour.

We also designed a probing test to quantify
which model generates a more separable represen-
tation for variables. We obtained the representa-
tions for every token present in the test set, gen-
erating a representation for each word and vari-
able using VarSlot and SciBERT-NLI. Then, given
each representation, we trained a Linear Model
to classify these representations into variables or
non-variables. For the Linear Model, we use the
standard configurations from the Probe-Ably5 (Fer-
reira et al., 2021) probing framework. The results
can be observed in Figure 5. In terms of accuracy,
we can notice that the representation generated by
our model allows for an easier disentanglement be-
tween variables and words, with a Linear model
achieving maximum accuracy for linear models
with different complexity (evaluated in terms of the
norm). Following the classic probing protocol (He-
witt and Liang, 2019; Rozanova et al., 2021), we
also provide the results for the Probing selectivity
in Appendix B.
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Figure 5: Results for the probing task, where we com-
pare the representations generated from SciBERT-NLI
(yellow) and VarSlot (blue).

Such finding reinforces the idea that variables
requires a specialised representation. The slots for
variables could have potentially relearned to repli-
cate the original representations obtained from the
encoder, however, a natural separation has been

5The parameters used for the Linear Model and splits
are found in the Probe-Ably repository https://github.
com/ai-systems/Probe-Ably

obtained between variables and words without ex-
plicitly being trained for that. This hints to the fact
that such separation is beneficial for a better perfor-
mance on tasks involving mathematical knowledge
and models dealing with mathematical knowledge
could benefit from explicitly defining such prop-
erty.

5 Related Work

Even though mathematical text is often a crucial
element of scientific discourse, the area of math-
ematical language processing is still widely un-
explored (Ferreira and Freitas, 2020b,a). While
initial efforts have focused on rule-based and bag
of words-based approaches (Pagael and Schubotz,
2014; Schubotz et al., 2016; Alexeeva et al., 2020;
Kristianto et al., 2012), recent work transitioned to
supervised-learning methods. (Stathopoulos et al.,
2018) presents three different models for address-
ing this problem, framing it as a binary classifica-
tion between a variable and a type. The models
proposed are an SVM model using features that
are type and variable-centric, a ConvNet using pre-
trained embeddings to represent the input tokens
and a Bidirectional LSTM model that takes as input
the full sentence along with the pairs for classifi-
cation. (Stathopoulos et al., 2018) shows that neu-
ral models vastly outperform models with manual
feature engineering. The authors also introduce a
dataset for the task.

6 Conclusion

In this paper, we introduced VarSlot, a model for
solving the task of variable typing generating a
more generalisable representation of variables. In
order to evaluate the proposed encoding, with a par-
ticular emphasis on variable semantics, we propose
a new setting for the variable typing task, where
during inference type, the model is only exposed
to new variable names. We observed that in this
setting, there is a decrease in performance for all
tested models; however, VarSlot was the most ro-
bust model. As future work, we leave the appli-
cation of these specialised embeddings for differ-
ent downstream tasks, similar to the work done
in (Stathopoulos et al., 2018). We expect that gen-
erating better representations for variables will en-
able an increase in performance across different
mathematical language inference tasks.
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A Hyperparameters

The list of used hyper-parameters, which are shared
across baselines and our approach are as follows:

• Seed: 42
• Batch size: 32
• Train Epochs: 10
• Learning Rate: 1e-5 (5e-5 for MathBERT)
• Gradient Accumulation Steps: 1
• Weight Decay: 0.0
• Adam Epsilon: 1e-8
• Warmup Steps: 0
• Max Grad Norm: 1.0

For fine-tuning all the models, we used 4 Tesla
16GB V100 GPUs.

B Probing Selectivity

The selectivity score, namely the difference in ac-
curacy between the representational probe and a
control probing task with randomised labels, serves
as an indicator that the probe architectures used are
not expressive enough to "memorise" unstructured
labels. Ensuring that there is no drop-off in se-
lectivity increases the confidence that we are not
falsely attributing strong accuracy scores to the rep-
resentational structure where they could have been
explained by over-parameterized probes.
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Figure 6: Results for the probing task, where we com-
pare the representations generated from SciBERT-NLI
(yellow) and VarSlot (blue), evaluating in terms of se-
lectivity

Figure 6 presents the selectivity results for our
probing task. We can notice that the selectivity
remains stable for more complex probes, indicating
that these are in fact, probes that are more reliable.

C VarSlot approach algorithm

This section presents Algorithm 1 used for obtain-
ing the encoded representations of each hypothesis.
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Algorithm 1: Learning the representation of mathe-
matical statements with variables.

Input: Encoded representation of the hypothesis E,
variables in the hypothesis v1, v2, ..., vnv , and
positions of each variable in the hypothesis
Pv1 , Pv2 , ...Pvnv

.
Output: New hypothesis representation E .
E(vi−) ← E
for j← Pv0 to Pvn /* Discard variable

representations */
do

E(vi−)j ← [0 0 . . . 0 0]

end
for i← 0 to nv /* For all variables */
do

e(vi) ∼ N (µ, σ); /* Initialise new
representation */

for t← 0 to T /* Iterate over
representation T times */

do
e(vi)t−1

← e(vi)
e(vi)← LayerNorm(e(vi))
K ← k(E(vi−))
Q← q(e(vi))
V ← v(E(vi−))
A← Att(Q,K, V )
e(vi)← GRU(e(vi)t−1

, A)
e(vi)← e(vi)+ MLP(LayerNorm(e(vi)))

end
for j← Pvi0 to Pvin /* Replace with

new representation */
do

E(vi−)← e(vi)
end

end
E ← BiLSTM(E(vi−))
return E
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