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Abstract

Few-Shot Relation Extraction aims at predict-
ing the relation for a pair of entities in a sen-
tence by training with a few labelled examples
in each relation. Some recent works have intro-
duced relation information (i.e., relation labels
or descriptions) to assist model learning based
on Prototype Network. However, most of them
constrain the prototypes of each relation class
implicitly with relation information, generally
through designing complex network structures,
like generating hybrid features, combining with
contrastive learning or attention networks. We
argue that relation information can be intro-
duced more explicitly and effectively into the
model. Thus, this paper proposes a direct addi-
tion approach to introduce relation information.
Specifically, for each relation class, the relation
representation is first generated by concatenat-
ing two views of relations (i.e., [CLS] token
embedding and the mean value of embeddings
of all tokens) and then directly added to the
original prototype for both train and prediction.
Experimental results on the benchmark dataset
FewRel 1.0 show significant improvements and
achieve comparable results to the state-of-the-
art, which demonstrates the effectiveness of our
proposed approach. Besides, further analyses
verify that the direct addition is a much more
effective way to integrate the relation represen-
tations and the original prototypes. 1 2

1 Introduction

Relation Extraction (RE) (Bach and Badaskar,
2007) is a fundamental task of Natural Language
Processing (NLP), which aims to extract the re-
lations between entities in sentences and can be

†Corresponding author.
1The code is released at https://github.com/

lylylylylyly/SimpleFSRE.
2Main results in this paper can be found in the CodaLab

competition (liuyang00) at https://competitions.
codalab.org/competitions/27980#results.

Figure 1: The figure is an intuitive illustration of the
difference in ways to introduce relation information be-
tween most existing works and our proposed approach.
The orange vector and the blue vector denote represen-
tations of relations and prototypes, respectively.

applied to other advanced tasks (Li et al., 2021; Hu
et al., 2021). However, RE usually suffers from la-
beling difficulties and train data scarcity due to the
massive cost of labour and time. In order to solve
the problem of data scarcity, Few-Shot Relation
Extraction (FSRE) (Han et al., 2018; Gao et al.,
2019a; Qu et al., 2020; Yang et al., 2021) task has
become a research hotspot in academia in recent
years. The task is firstly to train on large-scale data
on existing relation types, and then quickly migrate
to a small amount of data on new relation types.

Inspired by the success of few-shot learning in
the computer vision (CV) community (Sung et al.,
2018; Garcia and Bruna, 2018), various methods
are introduced into FSRE. One of the popular algo-
rithms is the Prototype Network (Snell et al., 2017),
which is based on the meta-learning framework
(Vilalta and Drissi, 2002; Vanschoren, 2018). In
detail, collections of few-shot tasks sampled from
the external data containing disjoint relations are
used as the training set for the model optimization.
For each few-shot task, the center of each relation
class is calculated and used as the prototype of the
relation class. Then, the model can be optimized by
reducing the distances between the query samples
and their corresponding prototypes. Given a new
sample, the model calculates which of the class
prototypes is nearest to the new sample and assign
it to this relation class.

In order to get better results, many works have

757

https://github.com/lylylylylyly/SimpleFSRE
https://github.com/lylylylylyly/SimpleFSRE
https://competitions.codalab.org/competitions/27980##results
https://competitions.codalab.org/competitions/27980##results


utilized relation information (i.e., relation labels or
descriptions) to assist model learning. TD-proto
(Yang et al., 2020) enhanced prototypical network
with both relation and entity descriptions. CTEG
(Wang et al., 2020) proposed a model that learns
to decouple high co-occurrence relations, where
two types of external information are added. An-
other intuitive idea is to hope that the model can
learn good prototypes or representations , that is, to
reduce the distances of the intra-class while widen-
ing the ones among different classes (Han et al.,
2021; Dong et al., 2021), where Han et al. (2021)
introduced a novel approach based on supervised
contrastive learning that learns better prototype rep-
resentations by the utilization of prototypes and
relation labels and descriptions during the model
training; Dong et al. (2021) considered a seman-
tic mapping framework, MapRE, which leverages
both label-agnostic and label-aware knowledge in
pre-training and fine-tuning processes.

However, there are two limitations in how these
works introduce relation information. The first is
that most of them take implicit constraints, like
contrastive learning or relation graphs, instead of
the direct fusion, which can be weak facing the
remote samples. The second is that they usually
adopt complicated designs or networks, like hybrid
features or elaborate attention networks, which can
bring too many or even harmful parameters. There-
fore, in this paper, we propose a straightforward
yet effective way to incorporate the relation infor-
mation into the model. Specifically, on the one
hand, the same encoder is used to encode relation
information and sentences for mapping them into
the same semantic space. On the other hand, we
generate the relation representation for each rela-
tion class by concatenating two relation views (i.e.,
[CLS] token embedding and the mean value of
embeddings of all tokens), which allows relation
representations and prototypes to form the same
dimension. Afterwards, the generated relation rep-
resentation is directly added to the prototype for
enhancing model train and prediction.

Figure 1 shows an intuitive illustration of the dif-
ference in ways to introduce relation information
between most existing works and our proposed
approach. Based on the mentioned two limita-
tions of previous works, we provide two possible
high-level ideas about why our proposed approach
should work for few-shot relation extraction. The
first is that the direct addition is a more robust

Figure 2: The overall structure of our proposed ap-
proach, in which the sentence and the relation infor-
mation share the same encoder, and then the relation
representation is generated through

⊕
operation with

two views of relations and added to the original proto-
type representation.

⊕
and

∑
denote the concatenation

and addition operations, respectively.

way to generate promising prototypes than implicit
constraints when facing the remote samples. The
second is that the direct addition does not bring
extra parameters and simplifies the model. Due to
possible over-fitting, fewer parameters are always
better than more parameters, especially for few-
shot tasks. We conduct experimental analyses in
the experiment section for further demonstration.

We conduct experiments on the popular FSRE
benchmark FewRel 1.0 (Han et al., 2018) under
four few-shot settings. Experimental results show
considerable improvements and achieve compara-
ble results to the state-of-the-art, which demon-
strates the effectiveness of our proposed approach,
i.e., the direct addition operation.

2 Proposed Method

In this section, we present the details of our pro-
posed approach. Figure 2 shows the overall struc-
ture, where the blue and yellow lines represent
the flow of sentences and relation information, re-
spectively. In order to map the representations of
sentences and relation information into the same
semantic space, the shared sentence encoder is uti-
lized. Then, we concatenate two views of the rela-
tion representations for obtaining the same dimen-
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Encoder Model 5-w-1-s 5-w-5-s 10-w-1-s 10-w-5-s

CNN
Proto-HATT 72.65 / 74.52 86.15 / 88.40 60.13 / 62.38 76.20 / 80.45
MLMAN 75.01 / — — 87.09 / 90.12 62.48 / — — 77.50 / 83.05

BERT

BERT-PAIR 85.66 / 88.32 89.48 / 93.22 76.84 / 80.63 81.76 / 87.02
Proto-BERT∗ 84.77 / 89.33 89.54 / 94.13 76.85 / 83.41 83.42 / 90.25
REGRAB 87.95 / 90.30 92.54 / 94.25 80.26 / 84.09 86.72 / 89.93
TD-proto — — / 84.76 — — / 92.38 — — / 74.32 — — / 85.92
CTEG 84.72 / 88.11 92.52 / 95.25 76.01 / 81.29 84.89 / 91.33
ConceptFERE — — / 89.21 — — / 90.34 — — / 75.72 — — / 81.82
HCRP (BERT) 90.90 / 93.76 93.22 / 95.66 84.11 / 89.95 87.79 / 92.10
Ours (BERT) 91.29 / 94.42 94.05 / 96.37 86.09 / 90.73 89.68 / 93.47
MTB — — / 91.10 — — / 95.40 — — / 84.30 — — / 91.80
CP — — / 95.10 — — / 97.10 — — / 91.20 — — / 94.70
MapRE — — / 95.73 — — / 97.84 — — / 93.18 — — / 95.64
HCRP (CP) 94.10 / 96.42 96.05 / 97.96 89.13 / 93.97 93.10 / 96.46
Ours (CP) 96.21 / 96.63 97.07 / 97.93 93.38 / 94.94 95.11 / 96.39
∆ +5.09 +2.24 +7.32 +3.22
∆ (CP) +1.53 +0.83 +3.74 +1.69

Table 1: Experimental results of FSRE on FewRel 1.0 validation / test set, where N -w-K-s stands for the
abbreviation of N -way-K-shot. The table divides the method with BERT as the encoder into two parts, from top to
bottom including approaches with the original BERT, and approaches with additional pre-training on BERT. Note
that ∗ represents the results of our implementation, others are obtained from results reported by papers or CodaLab.

sion as prototypes and integrate relation represen-
tations into original prototypes by direct addition.

2.1 Sentence Encoder
We employ one BERT (Devlin et al., 2019) as the
encoder to obtain contextualized embeddings of
support set S and query set Q. For instances in
S and Q, the intermediate states are obtained by
concatenating the hidden states corresponding to
start tokens of two entity mentions following Bal-
dini Soares et al. (2019), i.e., [hentity1;hentity2],
hentity1, hentity2 ∈ Rd, where d is the size of the
contextualized representations of sentence encoder.
Then, we average intermediate states of each rela-
tion class in S to obtain the initial prototype rep-
resentation for each relation class. Denote the set
of prototype representations as {Pi ∈ R2d; i =
1, 2, .., c}, where c is the number of relation classes.
For each relation, we concatenate the name and
description and feed the sequence into the BERT
encoder. We treat the embedding of the "[CLS]"
token, i.e., {Rview1

i ∈ Rd, i = 1, 2, ..., c}, and
the average of the embeddings of all tokens, i.e.,
{Rview2

i ∈ Rd, i = 1, 2, ..., c}, as two different
views from the relation representation.

2.2 Relation Representation Generation
As described in Section 2.1, Pi ∈ R2d for proto-
types and Rview1

i ,Rview2
i ∈ Rd for relations. In

order to minimize the introduction of additional
linear layers (or parameters) and make the direct
addition operation possible, we combine Rview1

and Rview2 together by simple concatenation oper-
ation ⊕ as the following.

Rfinal = Rview1 ⊕Rview2 (1)

where Rfinal ∈ R2d same as P .

2.3 Relation Classification
The final prototype representations are obtained
by the direct addition of the original prototype
representations P and the relation representations
Rfinal:

Pfinal = P +Rfinal = {Pf
i ∈ R2d} (2)

The model uses the vector dot product way to
calculate the distance between the query instance
Q and each class prototype {Pfinal

i ∈ R2d, i =
1, 2, .., c}, and selects the relation class with the
shortest distance as the prediction result. We em-
ploy the cross-entropy (CE) loss as the loss func-
tion simply:

LCE = −log(zy) (3)

where y is the class label, and zy is the estimated
probability for the class y.
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Settings CP HCRP (CP) Ours (CP)
5-w-1-s 95.10 96.42 96.63↑
5-w-5-s 97.10 97.96 96.93↓
10-w-1-s 91.20 93.97 94.94↑
10-w-5-s 94.70 96.46 96.39↓
Average 94.53 96.20 96.47↑

Table 2: The comparison with HCRP on the test set.

HCRP Ours
Para. 110.66M 109.48M

Parameters to be adjusted

Training
learning rate

batch size
max iteration

Loss
λ

none
γ

Table 3: Comparison on the model complexity.

3 Experiment

3.1 Dataset, Training, Evaluation and
Comparable Models

Dataset Our proposed approach is evaluated
on the commonly used large-scale FSRE dataset
FewRel 1.0 (Han et al., 2018), which consists of
100 relations, each with 700 labeled instances. Our
experiments follow the splits used in official bench-
marks, which split the dataset into 64 base classes
for training, 16 classes for validation, and 20 novel
classes for testing.

Training We use BERT-base-uncased and CP
(Wang et al., 2020) as the sentence encoder, where
CP is a further pre-trained model based on BERT
with contrastive learning. We set the train iteration
number as 30,000, validation iteration number as
1,000, batch size as 4, learning rate as 1e-5 and
5e-6 for BERT and CP respectively.

Evaluation N -way-K-shot (N -w-K-s) is com-
monly used to simulate the distribution of FewRel
in different situations, where N and K denote the
number of classes and samples from each class,
respectively. In the N -w-K-s scenario, accuracy is
used as the performance metric. Since the label of
the test set of the FewRel is not publicly available,
we submit the prediction of our model to CodaLab
to obtain the accuracy on the test set.

Comparable Models The comparable models
contain two CNN-based models Proto-HATT (Gao
et al., 2019a) and MLMAN (Ye and Ling, 2019),
as well as nine BERT-based models BERT-PAIR

(Gao et al., 2019b), REGRAB (Qu et al., 2020),
TD-proto (Yang et al., 2020), CTEG (Wang et al.,
2020), ConceptFERE (Yang et al., 2021), MTB
(Baldini Soares et al., 2019), CP (Peng et al., 2020),
MapRE (Dong et al., 2021), and HCRP (Han et al.,
2021). Since our proposed approach is based on the
Prototype Network with BERT, we also compare
the Proto-BERT without relation information.

3.2 Results

All experimental results are shown in Table 1.
CNN-based and BERT-based methods are both
contained in the table. There are two parts to
BERT-based methods. The first one utilizes the
original BERT without any external pre-training.
Proto-BERT represents the method on which our
model is based, which means that this is the re-
sult of the model without introducing the improve-
ments we propose. This result will also be analyzed
and displayed again in Section 3.3. The second
one contains the methods that employ additional
pre-training on BERT with Wikipedia data or con-
trastive learning to get better contextual represen-
tations. We apply our approach to BERT and CP.
For obvious comparison, the former is shown in
the first part of BERT-based models, and the latter
is shown in the second part of BERT-based models.
The last two rows show the increase on the test set
compared to the basic models used by our approach
(i.e., Proto-BERT and CP).

From the table, we can obtain three observations.
First, when using BERT as the backend model,
our approach Ours (BERT) outperforms the state-
of-the-art, which is listed in the first part of the
BERT-based model in Table 1. Most of these meth-
ods are designed with relatively complex network
structures and implementations. Second, Ours (CP)
utilizes CP as the backend model and outperforms
the state-of-the-art, i.e., HCRP (CP), on two few-
shot settings, i.e., 5-way-1-shot and 10-way-1-shot,
which also reflects from the side that our approach
is more suitable for few-shot scenarios. Third, the
improvements compared to the basic model, i.e.,
Proto-BERT and CP, are rather considerable, which
are shown in the last two rows of Table 1. These
observations demonstrate the effectiveness of our
proposed approach.

Comparision with HCRP In this part, we com-
pare our approach with the state-of-the-art model,
i.e., HCRP, on the test set based on CP, which is
shown in Table 2. It can be seen that the result
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Model 5-w-1-s 10-w-1-s
Ours 91.29 86.09
w/o relation info. 84.77 76.85
w/ concat 79.16 65.12
w/ linear layer

view#1 89.04 80.29
view#2 89.39 80.14

Table 4: Ablation Study on validation set of FewRel
1.0. w/o, w/, and info. are the abbreviations of without,
with, and information.

of our approach is slightly lower than HCRP on
5-way-5-shot and 10-way-5-shot, while the aver-
age accuracy of four settings is higher than HCRP.
However, HCRP designed three modules, including
hybrid features, contrastive learning, and task adap-
tive loss function. On the contrary, our approach
is more straightforward and achieves comparable
results to HCRP. Table 3 shows the comparison
of the model complexity between Ours and HCRP.
It can be seen that the total number of model pa-
rameters and parameters to be adjusted of Ours are
both less than HCRP. Thus, we may argue that the
lower results on 5-way-5-shot and 10-way-5-shot
than HCRP can not deny the effectiveness of our
proposed approach.

3.3 Ablation Study

Since the label of the test set of FewRel 1.0 is not
public, in this section, we conduct an ablation study
on 5-way-1-shot (5-w-1-s) and 10-way-1-shot (10-
w-1-s) based on BERT with the validation set. Fol-
lowing HCRP and the official setting, the validation
iteration step is set to 1000. Results are shown in
Table 4. There are two types of ablation study. One
type is "w/o relation info.", where only the original
prototype network is utilized without introducing
any relation information (i.e., Proto-BERT). The
second type is ablation study in the integration way
of relation representations and prototypes. Instead
of the direct addition operation, we adopt another
two kinds of integration way, i.e., "w/ concat" and
"w/ linear layer". For “w/ concat”, after obtain-
ing the relation representation Rfinal ∈ R2d (the
symbol appeared in Section 2.2) with two views of
relations, we perform "w/ concat" by concatenating
Rfinal and P first, i.e., Rfinal ⊕P ∈ R4d. Then a
4d-2d linear layer is applied on the concatenation
embedding to obtain the final prototype represen-
tation. For "w/ linear layer", a extra linear layer
is introduced. Specifically, only one view of rela-

tions, i.e., Rview1 ∈ Rd or Rview2 ∈ Rd, is used in
the model. Then, we perform a 1d-2d linear layer
and addition operation to obtain the final prototype
representation.

From the results in Table 4, we can see that rela-
tion information is essential for few-shot relation
extraction. The result ("w/o relation info.") drops
sharply compared to "Ours". Besides, results of
another integration way have poor performance
compared to "Ours". Especially, "w/ concat" are
quite poor, probably because it requires the use of
a 4d-2d linear layer, which introduces too many pa-
rameters. These observations demonstrate that our
proposed approach is a straightforward yet effec-
tive way to integrate relation representations and
original prototypes.

4 Conclusion
In this paper, we proposed a simple yet effective
approach with relation information based on Pro-
totype Network. The core idea is to introduce rela-
tion representations by the direct addition operation
instead of designing complex structures. Experi-
mental results on FewRel 1.0 achieve comparable
results to the state-of-the-art and demonstrate the
effectiveness of our proposed approach. Moreover,
we provide two high-level ideas, i.e., explicit con-
straints and fewer parameters, about why the direct
addition is so effective. We believe that the idea
of finding global information to perform the direct
addition with original prototypes is general and
can be extended to other few-shot tasks that can be
modeled based on the prototype network.

Since the direct addition way of introducing re-
lations is simple and efficient, we also believe that
future work should focus more on generating bet-
ter relation representations rather than designing
fusion methods between relations and prototypes.
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Appendix

A. Hyper-parameter Settings

Hyper-parameter settings for two backend models,
i.e., BERT and CP, are shown in Table 5 and Table
6. We experiments the model on three different
learning rate and select the best learning rate that is
bolded in the table. Besides, the validation iteration
is set to 1000.

COMPONENT PARAMETER VALUE

BERT
TYPE base-uncased
HIDDEN SIZE 768
MAX LENGTH 128

TRAINING
LEARNING RATE 9e-6,1e-5, 2e-5
BATCH SIZE 4
MAX ITERATIONS 30,000

Table 5: The hyper-parameters that we have experi-
mented on the datasets with BERT.

COMPONENT PARAMETER VALUE

CP
TYPE base-uncased
HIDDEN SIZE 768
MAX LENGTH 128

TRAINING
LEARNING RATE 5e-6, 7e-6, 9e-6
BATCH SIZE 4
MAX ITERATIONS 30,000

Table 6: The hyper-parameters that we have experi-
mented on the datasets with CP.

B. Results on Different Learning Rates

We explore the effect of two different learning rates
with CP as the backend model, which is shown in
Table 7. Note that lr is short for learning rate. From
the results in Table 7, we can see that when CP is
used as the backend model, our method has better
performance with a smaller learning rate.

Settings lr=5e-6 lr=9e-6
5-w-1-s 96.63 96.54
5-w-5-s 97.93 97.98
10-w-1-s 94.94 94.04
10-w-5-s 96.39 96.08
Average 96.47 96.16

Table 7: Test accuracy on four settings with two differ-
ent learning rates based on CP.

C. Comparison with different modules of
HCRP
HCRP contains three modules including hybrid
features generation, relation-prototype contrastive
learning (RPCL), and task adaptive loss function.
HCRP reported the ablation study in the paper with
different modules. We further do the comparison
with different modules of HCRP on FewRel 1.0
validation set based on BERT model. The compar-
isons are based on 5-way 1-shot and 10-way 1-shot
settings.

MODEL 5-W-1-S 10-W-1-S

Ours 91.29 86.09
HCRP 90.90 84.11
w/o local prototype 88.37 82.31
w/o global prototype 86.42 77.86
w/o RPCL 87.85 79.76
w/o task adaptive loss 88.96 82.75

Table 8: Comparisons with different modules of HCRP
on FewRel 1.0 validation set with BERT model, where
w/o denotes without.
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