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Abstract
Decoding language from non-invasive brain ac-
tivity has attracted increasing attention from
both researchers in neuroscience and natural
language processing. Due to the noisy nature
of brain recordings, existing work has simpli-
fied brain-to-word decoding as a binary clas-
sification task which is to discriminate a brain
signal between its corresponding word and a
wrong one. This pairwise classification task,
however, cannot promote the development of
practical neural decoders for two reasons. First,
it has to enumerate all pairwise combinations
in the test set, so it is inefficient to predict a
word in a large vocabulary. Second, a perfect
pairwise decoder cannot guarantee the perfor-
mance on direct classification. To overcome
these and go a step further to a realistic neu-
ral decoder, we propose a novel Cross-Modal
Cloze (CMC) task which is to predict the tar-
get word encoded in the neural image with a
context as prompt. Furthermore, to address this
task, we propose a general approach that lever-
ages the pre-trained language model to predict
the target word. To validate our method, we
perform experiments on more than 20 partic-
ipants from two brain imaging datasets. Our
method achieves 28.91% top-1 accuracy and
54.19% top-5 accuracy on average across all
participants, significantly outperforming sev-
eral baselines. This result indicates that our
model can serve as a state-of-the-art baseline
for the CMC task. More importantly, it demon-
strates that it is feasible to decode a certain
word within a large vocabulary from its neural
brain activity.

1 Introduction

Neural decoding, i.e., using brain activity to make
predictions of stimuli or mental states, is a chal-
lenging cross-discipline research area. It is crucial
for developing brain-computer interfaces (BCIs)
that allow people to communicate using brain sig-
nals instead of verbal or body language (Wolpaw
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et al., 2002; Haynes and Rees, 2006). With the
development of brain imaging technology and com-
putational models, two lines of work emerge. One
is invasive decoding, which depends on invasive
brain recording methods such as electrocorticogra-
phy (ECoG). In recent years, several breakthroughs
have been made in this field and demonstrated the
feasibility to decode speech (Anumanchipalli et al.,
2019; Makin et al., 2020; Moses et al., 2021) or
handwriting (Willett et al., 2021) from neural activ-
ity at high accuracy and speed. Despite the impres-
sive performance, invasive decoding is unlikely to
be used except in rare medical situations since it
needs invasive surgery on the brain.

In contrast, non-invasive decoding uses atrau-
matic neuroimaging technologies such as func-
tional magnetic resonance imaging (fMRI) to col-
lect brain signals, having wider applicable groups
and applications prospects. However, progress in
this field is relatively slow after the pioneering work
of Mitchell et al. (2008) that shows the feasibil-
ity to discriminate an fMRI image between two
words. For a decade, this pairwise classification
task (shown in Table 1) has been used as default
on non-invasive brain-to-word decoding (Palatucci
et al., 2009; Pereira et al., 2013; Anderson et al.,
2017; Pereira et al., 2018; Wang et al., 2020). Nev-
ertheless, it is quite limited to developing practical
neural decoders. On the one hand, to predict a word,
it has to enumerate all pairwise combinations in the
test set and thus is inefficient. On the other hand,
a decoder with high pairwise accuracy can fail to
capture the similarity structure of the gold semantic
space (Minnema and Herbelot, 2019). And hence it
may not perform well on classifying fMRI images
into vocabulary words, which is the ultimate goal
of brain-to-word decoding.

Recently, Affolter et al. (2020) argues that we
should move on to a more difficult but direct clas-
sification task rather than staying on the simple
pairwise classification. In their work, they experi-

648



Task Input Target Input modalities Target space

Pairwise
(Mitchell et al., 2008)

An fMRI image for dog dog fMRI Two words

Direct
(Affolter et al., 2020)

An fMRI image for dog dog fMRI Vocabulary from stimuli

CMC
(Ours)

An fMRI image for dog
Context: a ____ is a great companion.

dog fMRI & text Vocabulary from corpus

Table 1: Brain-to-word decoding tasks. Our CMC task takes an fMRI image and a context as input and outputs a
word related to the fMRI image in a large vocabulary.

ment on direct classification (shown in Table 1) and
demonstrate the feasibility of multi-class classifica-
tion using fMRI data to a certain extent. However,
their direct classifier cannot predict words that do
not appear in the training set, so it cannot perform
zero-shot learning (ZSL). ZSL is essential for a
practical neural decoder because it is impossible
to collect brain images for every word in the vo-
cabulary used daily. In addition, they ignore the
context of word stimuli, which is ready-to-use and
can serve as a prompt for brain-to-word decoding.

To overcome these and facilitate the develop-
ment of pragmatic neural decoders, we propose
a new brain-to-word decoding task called Cross-
Modal Cloze (CMC) task. As illustrated in Ta-
ble 1, the CMC task is to classify a brain image
with a context into a word from a large vocabulary.
Intuitively, the given context should provide ex-
tra information for predicting words by narrowing
down possible candidates. In addition, introducing
contexts into brain-to-word decoding may bring
some inspirations for brain-to-text decoding word
by word.

Furthermore, to address this task, we propose
a general approach that leverages the pre-trained
language model BERT (Devlin et al., 2019) to pre-
dict the target words. The challenge lies in how to
extract useful features carried by brain signals that
can be integrated into BERT to facilitate predic-
tion. We handle this problem by combining regres-
sion and representational similarity analysis (RSA)
(Kriegeskorte et al., 2008) to transform fMRI data
to feature vectors in a specific semantic space of
BERT.

In this paper, we focus on non-invasive single-
subject zero-shot brain-to-word decoding. Our
main contributions can be summarized as follows:

• We propose a more challenging but practical
Cross-Modal Cloze (CMC) task for brain-to-
word decoding, which is a departure from the

naive pairwise classification task. Hopefully
this task could serve as a bridge from decod-
ing individual words to decoding continuous
sentences, paving the way to build a practical
neural language decoder.

• We propose a general approach to address the
CMC task. In particular, we propose Repre-
sentational Similarity Retrieval (RSR) method
to extract feature vectors from fMRI images,
which can also be used for direct classifica-
tion.

• We perform extensive experiments on 24 par-
ticipants from two fMRI datasets collected on
English word stimuli. Experimental results
show the effectiveness of our method, indi-
cating that our method can serve as a strong
baseline for the CMC task.

2 Related Work

2.1 Neural Decoding Tasks
In this paper, we focus on non-invasive decod-
ing methods, especially fMRI, which provides the
best spatial resolution among all non-invasive neu-
roimaging techniques. This line of research starts
from Mitchell et al. (2008), who for the first time
show that it is feasible to decode words from fMRI
data by leveraging the semantic representations
of words and learning a cross-modal mapping be-
tween fMRI images and word vectors. They adopt
pairwise classification task to evaluate the learned
neural decoders, which is a binary classification
task that discriminates which one in two stimuli
corresponds to the fMRI image. Since then, pair-
wise classification is widely used by researchers
in non-invasive neural decoding to decode words
(Palatucci et al., 2009; Pereira et al., 2011; Chang
et al., 2011; Pereira et al., 2013; Anderson et al.,
2017; Pereira et al., 2018; Wang et al., 2020) as
well as sentences (Pereira et al., 2018; Sun et al.,
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2019; Sun et al., 2020). Recently, there are some
voices in the BCI community arguing that pairwise
classification is quite limited and more challenging
but direct tasks need to be set up to push current
neural decoding to a higher level (Affolter et al.,
2020; Zou et al., 2021). They directly classify an
fMRI image into vocabulary words. In contrast
to pairwise classification, direct classification is a
much harder task since the decoder needs to pre-
dict the correct words in a much larger space. In
this paper, we propose to address the CMC task, a
multi-class classification task with brain image and
context as input.

2.2 Neural Decoding Methods
Regression-based Decoding Regression-based
decoding is a prevalent approach to address the
pairwise classification task and it is designed with
the goal to perform ZSL. It first leverages a word
embedding model to represent the word stimuli and
then learns a regression model from fMRI images
to each semantic dimension of the word vectors
(Palatucci et al., 2009; Pereira et al., 2018; Wang
et al., 2020). The learned models can predict word
vectors for new brain images, which are used for
pairwise matching.

Similarity-based Decoding Based on RSA, An-
derson et al. (2016) have proposed a similarity-
based decoding method to address pairwise classi-
fication. The basic idea is to re-represent the neural
activity in neural similarity space and the word vec-
tors in semantic similarity space. Then the two
similarity spaces are used for pairwise matching. It
is a non-parametric method that does not require
model training. However, how to construct similar-
ity space for direct classification is non-trivial.

Deep Learning based Decoding To address di-
rect classification, Affolter et al. (2020) train an
end-to-end deep learning model, taking fMRI im-
ages directly as input without dimension reduction.
Their model can output a predicted probability for
each word in a small vocabulary. However, their
model is designed specifically for the fMRI dataset
from (Pereira et al., 2018). And extending it to
other datasets is not easy. Besides, it needs more
data for training compared to statistical models.

2.3 Pre-trained Language Model
The CMC task can be viewed as a combination
of a direct classification task and a Cloze task. In
natural language processing, Cloze task has been

well addressed by BERT (Devlin et al., 2019), a
pre-trained masked language model that randomly
masks some of the words from the input and then
predicts the masked word based on its context dur-
ing pre-training. This pre-training strategy makes
it especially appropriate for the Cloze task. We can
use BERT to predict a word using only the context
as input and this can serve as a weak baseline for
the CMC task.

3 Task

First of all, we specify some notations and formal-
ize the data set for our Cross-Modal Cloze (CMC)
task for clarity. Let DS

train = {({xSi , cti}, yi)|t =
1, · · · , Ti, i = 1, · · · ,M} be the training set for
subject S, where xSi denotes a brain image evoked
by word yi from S, cti denotes a context related
to word yi, Ti denotes the number of contexts
for word yi, and y1, · · · , yM denote M distinct
words. For each word, we have only one brain im-
age for each subject. Similarly, we define DS

test =
{({xSi , cti}, yi)|t = 1, · · · , Ti, i = 1, · · · , N} be
the test set, where yi denotes a word that is not in
the training set.

Now, we give the definition of our CMC task.
Given a brain image xSi and a context ci related to
word yi, the goal of CMC task is to predict yi from
a given vocabulary V .

There are two major differences between our
CMC task and the other two brain-to-word decod-
ing tasks. The first one is that the CMC task takes a
context as input in addition to an fMRI image. No-
tice that communication generally happens under
a certain context. With the context as the back-
ground, it is relatively easier to guess what other
people think since possible candidates usually fall
in a much smaller space constrained by the context.
Contexts are very useful and easily accessible in-
formation and it would be beneficial to use them in
neural decoding. The second difference is the size
of the target space. The decoding space in the CMC
task is the vocabulary from a corpus instead of just
the word stimuli as in the direct classification, let
alone the pairwise classification.

Evaluation Metric For an input sample {xSi , cti}
in DS

test, if the top-k predictions contain yi or its
synonyms, then the classification is deemed cor-
rect. Let n′ denote the number of correct top-k
classifications, top-k accuracy is computed using
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the following equation:

Top-k acc =
n′

T1 + · · ·+ TN
(1)

Meanwhile, the predicted probability of the target
word yi (and its synonyms) can be used as an aux-
iliary metric. It is obtained through the following
equation:

Prob =

∑i=N
i=1

∑t=Ti
t=1 P (yi|cti, xSi )

T1 + · · ·+ TN
(2)

4 Method

To address the CMC task, we propose a general
two-step approach: 1) extract semantic features
from fMRI images by cross-modal retrieval, and 2)
fuse the semantic features into BERT to perform
the Cloze task. The fMRI image in a masked sen-
tence is like a “switched” code, and the intuition of
our method is to decode the code by utilizing the
codes in natural language.

4.1 Step 1: Feature Extraction

The goal of Step 1 is to extract semantic features
from the fMRI images that can be directly fused
into the hidden states in the embedding layer of
BERT 1. To this end, the intuitive way would be di-
rectly learning a cross-modal mapping from fMRI
images to their word embedding extracted from the
embedding matrix in the embedding layer of BERT
(BERT embedding for short). However, by investi-
gating the 5 nearest neighbours (NN) of each word
in fMRI180 using BERT embedding, we find that
BERT embedding does not capture semantics well
compared to other widely used word embedding
such as GloVe (Pennington et al., 2014) or the con-
textualized word embedding derived from deeper
layers of BERT. And it suffers from a more se-
vere “hubness” problem (Radovanovic et al., 2010),
a problem that the same point tends to be near-
est neighbors of many points in high-dimensional
spaces. To overcome this, we introduce an interme-
diate word embedding and design a retrieval-based
method. The basic idea is to use the intermediate
word embedding to perform cross-modal mapping
and then transform the predictions into the BERT
embedding space by retrieval.

1We choose the embedding layer of BERT as a proof of
concept and other layers are similar.

Figure 1: Feature extraction method, including two main
steps: (1) Cross-modal mapping; and (2) Representa-
tional similarity retrieval (RSR). “Embed” represents
the intermediate word embedding, such as GloVe, and
it is different from BERT embedding.

Cross-Modal Mapping Let W ′
M×d′ be the

BERT embedding of words in DS
train (Dtrain for

simplicity) where d′ denotes the dimension of the
BERT embedding. Similarly, we have W ′

N×d′ for
words in Dtest. Let W denote the intermediate
word embedding and d denote its dimension. As
shown in Figure 1, we first use W in cross-modal
mapping and train a linear regression model fj to
map xi to wij (i = 1, · · · ,M ) for each seman-
tic dimension j (j = 1, · · · , d) on the training set.
Each regression model has v + 1 trainable parame-
ters, where v denotes the number of selected voxels
of fMRI images. And each model is trained inde-
pendently. After the training, we use the mapping
to obtain the predictions ŴN×d for fMRI images
in the test set Dtest.

Representational Similarity Retrieval Now the
goal is to retrieve k NN words in the vocabulary
for each predicted intermediate word vector of
fMRI images. To this end, we construct a simi-
larity space based on the M ground-truth interme-
diate word vectors in the training set. As shown
in Figure 1, similarity2 between the predicted em-
bedding ŵi(i = 1, · · · , N) and all M words in
the training set are computed, resulting in an M -
dimensional vector ŝi in the similarity space. Sim-
ilarly, similarity between the ground-truth word
embedding wi(i = 1, · · · ,M + N) and all M
words in the training set are computed, giving an
M -dimensional vector si in the similarity space.

2We use Pearson correlation coefficient as the default simi-
larity function in this work unless otherwise specified.
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Figure 2: Feature fusion method. The pre-trained lan-
guage model BERT is used to predict target words.

Based on these new representations, we retrieve k
NN words in vocabulary V for each fMRI test sam-
ple xi. For xi, its k NN word indices are obtained
through the following equation:

j1, · · · , jk = topk({sim(ŝi, sj)|j = 1, · · · , |V|})
(3)

where sim(., .) represents a similarity function, and
j1, · · · , jk denote the indices of the top-k similar
vectors in S(M+N)×M . Then the feature vector fi
for fMRI test sample xi is computed as follows:

fi =
1

k

k∑
t=1

w′
jt (4)

where i = 1, · · · , N and w′ denotes BERT embed-
ding.

4.2 Step 2: Feature Fusion

The goal of Step 2 is to integrate the feature vector
fi extracted from fMRI image xi into BERT for
better word prediction. Intuitively, if the feature
vector fi carries useful information of the target
word yi, then fusing it into the model should im-
prove the performance in predicting yi than merely
using context ci as input.

To be specific, let hi
mask denote the hidden states

of the [MASK] token in ci, we directly update
hi
mask using the following equation:

hi
mask := (1− α)hi

mask + αfi (5)

where α ∈ [0, 1] is a tuning parameter that controls
how much information to fuse in. The feature fu-
sion method is shown in Figure 2. It only operates
at the embedding layer of BERT and does not re-
quire fine-tuning the pre-trained model, which is
quite straightforward.

In general, our two-step approach for the CMC
task contains one trainable cross-modal transfor-
mation matrix (size (v + 1) × d) and two main
hyperparameters k and α. This pipeline approach
is designed for small datasets considering that the
sample size of a brain imaging dataset is often very
small. And it is a general method that can be ap-
plied to any fMRI dataset.

5 Datasets

5.1 Brain Imaging Datasets
According to our knowledge, there are two open-
source fMRI datasets collected from subjects ex-
posed to English word stimuli and concentrated on
thinking about the meaning of words. The first one
is from (Mitchell et al., 2008), which contains 60
word stimuli. And the second one is from (Pereira
et al., 2018), which consists of 180 word stim-
uli. For clarity, we denote them as fMRI60 and
fMRI180 respectively.

fMRI603 fMRI60 contains the neural activity
collected from 9 human participants while view-
ing 60 different concrete nouns. Some examples
include: carrot, dog, hammer, igloo, skirt. During
the brain recording process, each participant was
shown a word and a small line drawing of the con-
crete object the word represents. The participants
were asked to think about the properties of these ob-
jects. For each word, six fMRI scans with roughly
20,000 voxels are available. To reduce noise, we
average the six scans to create a single fMRI image
for each of the 60 words and each participant. The
statistics of fMRI60 are shown in Table 2.

fMRI1804 fMRI180 contains the neural activity
observed from 15 human participants while view-
ing 180 content words. Some examples include:
ability, big, damage, experiment, seafood. During
the fMRI scanning process, each participant was
shown a word presented in a sentence with itself in
bold to highlight the relevant meaning. They were
asked to think about the meaning of the target word
in the context. There are two other paradigms as
well, one uses pictures instead of sentences, and the
other uses word clouds instead of sentences. For
each word in each paradigm, 4-6 fMRI scans were
taken with context varying and then were combined
into a single fMRI image by using a general lin-
ear model. The data available online is one fMRI

3http://www.cs.cmu.edu/~tom/science2008/index.html
4https://osf.io/crwz7/
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Subject Voxel fMRI Word Sent Syon

fMRI60 9 ∼20,000 60 60 360 0.28

fMRI180 15 ∼200,000 180 180 1080 0.29

Table 2: Statistics about the fMRI datasets. “Voxel”
refers to the number of voxels (similar to pixels in a
2-dimensional image) containing in a 3-dimensional
fMRI image. “Syon” denotes the average number of
synonyms for the word stimuli.

fMRI60_CMC:
carrot the [MASK] is his favorite vegetable.
hammer she puts the [MASK] down on the ground.

fMRI180_CMC:
ability he has the [MASK] to cultivate creativity.
damage the accident left some serious [MASK].

Table 3: Context examples for word stimuli in the CMC
datasets.

image per word per paradigm. To further reduce
noise, we average the data across three paradigms
to generate a single fMRI image for each of the
180 words, for each participant. The statistics of
fMRI180 are shown in Table 2.

5.2 CMC Datasets
fMRI60_CMC For each of 60 words in fMRI60,
we create 6 sentences, 4-13 words long (mean
= 6.68, std = 1.57), and each containing the tar-
get word used in the intended sense. To create
contexts for the CMC task, we remove the tar-
get word in its corresponding sentences by using
a [MASK] token to replace it. Two context ex-
amples are shown at the top of Table 3. Further-
more, to create synonyms for the word stimuli,
we first use WordNet (Miller, 1995) to find possi-
ble candidates and then manually proofread all the
words to make sure they have the same meaning
as the word stimuli. We obtain 0.28 synonyms
per stimulus on average. Combining the brain
imaging data, the contexts and the target words
into the form we describe in Section 3, a dataset
fMRI60_CMC is generated for the CMC task.
It is publicly available at https://github.com/
LittletreeZou/Cross-Modal-Cloze-Task.

fMRI180_CMC For words in fMRI180, we
use the sentences in the presentation scripts in
Pereira et al. (2018)’s experiment. These sen-
tences are 4–11 words long (mean = 6.85, std =
1.22) and also contain the target words used in

the intended meaning. Similarly, we create con-
texts and collect synonyms for each word stimulus
(0.29 synonyms per stimulus on average). Then a
dataset fMRI180_CMC for the CMC task is gener-
ated. Two context examples of fMRI180_CMC are
shown at the bottom of Table 3.

6 Experiments

6.1 Experimental Settings
Voxel Selection As shown in Table 2, fMRI data
is very high-dimensional, containing up to 200,000
voxels, while the sample size is very small. To
avoid overfitting and reduce the computational
complexity in cross-modal mapping, voxel selec-
tion is often performed to reduce the dimensions.
Following the method proposed by (Pereira et al.,
2018), we select the most informative 5,000 voxels
for each subject in each fMRI dataset. Then we
obtain a 5000-dimensional vector for each fMRI
image. We use these fMRI vectors in the following
experiments and still use the term “fMRI image” to
refer to them.

Data Partition Since the CMC datasets are quite
small, we split each dataset into 10 folds by word
stimuli to allow cross-validation. For each fold,
8 folds are used for training, 1 fold is used for
validation and 1 fold is used for test. The data
partition is the same across subjects, with the same
word stimuli in the same fold.

Models For the CMC task, we use BERT5 with-
out fine-tuning. In the cross-modal mapping, we
use the most commonly used ridge regression in
neural decoding literature as default. It is a lin-
ear regression model with L2 regularization, which
can regulate overfitting since we have 5,000 input
features. The regularized hyperparameter is auto-
matically optimized based on Pearson correlation
coefficient of the predicted values and the true val-
ues on the validation data. And we experiment on
three types of word embedding, including BERT
embedding, GloVe6 and contextualized embedding
BERT LayerAvg7. Our best model uses BERT Lay-
erAvg. The hyperparameter k is tuned to 5, and α
is tuned to 0.7 based on the top-5 accuracy on the
validation set.

5https://huggingface.co/bert-base-uncased
6https://nlp.stanford.edu/data/glove.840B.300d.zip
7For each word, 6 sentences containing that word are fed

to BERT and the corresponding hidden states of the word
in layer 7-12 are collected and further averaged into a word
vector.
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(%)
fMRI60_CMC fMRI180_CMC

Top-1 acc Top-5 acc Prob Top-1 acc Top-5 acc Prob

BERT 27.50 45.56 17.20 26.02 50.93 17.13
BERT-Direct Fusion 27.78 49.54 18.33 26.51 51.78 17.88
BERT-Retri Fusion (random) 24.81 44.01 16.04 25.91 50.83 17.60
BERT-Retri Fusion 31.08 55.99 21.24 27.60 53.11 18.99

Table 4: Performance on the CMC task. “BERT-Retri Fusion (random)” is a random version of “BERT-Retri Fusion”
where feature vectors are randomly shuffled and do not match the contexts. The results are first averaged among
10-fold cross-validation data and then averaged across subjects. The best results are shown in bold.

(%) Min Max Mean SigFrac

fMRI60_CMC
48.61 61.39 55.99
+3.06 +15.83 +10.43 8/9

fMRI180_CMC
51.30 55.19 53.11
+0.37 +4.26 +2.19 11/15

Table 5: Statistical analysis of performance on subjects.
Top-5 accuracy of “BERT-Retri Fusion” and the abso-
lute improvement over BERT are reported in this table.
“Min”, “Max” and “Mean” denote the worst, best and
average results on all subjects respectively. “SigFrac”
denotes the fraction of participants with significant im-
provement over BERT.

6.2 Main Results

As shown in Table 4, the first three rows are three
weak baselines for the CMC task. BERT achieves
quite good results on both datasets, demonstrat-
ing the power of pre-trained models on Cloze task.
Our method – BERT-Retri Fusion – achieves the
best results on this task. On fMRI60_CMC, it
achieves 31.08% top-1 accuracy and 55.99% top-5
accuracy on average across 9 subjects, outperform-
ing BERT by absolute improvement of +3.58%
and +10.43% respectively. On fMRI180_CMC, it
achieves 27.60% top-1 accuracy and 53.11% top-
5 accuracy on average across 15 subjects, outper-
forming BERT by absolute improvement of +1.59%
and +2.19% respectively. Furthermore, the pre-
dicted probability of the target words in our method
increases by 4.04% and 1.86% on the two datasets
respectively, indicating our model is more confi-
dent about the correct answer. These results indi-
cate three things: 1) The feature vectors derived
from the fMRI data are informative and can be uti-
lized by BERT to better predict the target word; 2)
Our method is effective and can serve as a strong
baseline for the CMC task; 3) It is feasible to de-
code an fMRI image with context as prompt into a

word from a large vocabulary.
Moreover, when comparing the performance of

BERT, BERT-Direct Fusion and BERT-Retri Fu-
sion, the fusion of feature vectors does not neces-
sarily result in significant improvement unless the
feature vectors are good enough. When comparing
the performance of BERT, BERT-Retri Fusion and
its random version, fusing the mismatched feature
vectors from other fMRI images into BERT de-
creases the performance a little bit while fusing the
correct one increases the performance by a signifi-
cant margin. This result indicates that the feature
vectors derived from fMRI data by our method
carry a certain amount of semantic information
about the target words.

Finally, we investigate the performance of our
method on different subjects. For each subject, we
perform a significance test on the top-5 accuracy
to see whether our method is significantly better
than BERT. The data points are the 10-fold top-5
accuracy of our model and BERT. The statistical
test we used is paired t-test with significance level
0.1 and FDR controlled for multiple comparisons
(Benjamini and Hochberg, 1995). As shown in Ta-
ble 5, on both datasets, all results of our method are
better than BERT and most of them are statistically
significant.

7 Analysis

Ablation Study The feature extraction step is
a key step in our method. In this step, we use
retrieval-based method. Hence the direct classifi-
cation accuracy can also be used to evaluate the
quality of feature vectors. We perform ablation
experiments to understand the relative importance
of each facet of our method. As shown in Table 6,
using non-parametric RSR to match fMRI images
and word vectors is better than using regression.
And combining the two methods achieves the best
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(%)
Direct Classification CMC Task

fMRI60 fMRI180 fMRI60_CMC fMRI180_CMC

Top-1 acc Top-5 acc Top-1 acc Top-5 acc Top-1 acc Top-5 acc Top-1 acc Top-5 acc

Baseline 1.67 8.33 0.56 2.78 27.50 45.56 26.02 50.93
REG-NN 1.11 14.26 1.26 7.19 24.78 45.03 25.83 50.77
RSR 10.19 33.33 3.41 11.93 29.23 53.24 26.38 52.20
REG-RSR 22.78 55.19 13.37 34.22 31.08 55.99 27.60 53.11

Table 6: Ablation study on fMRI feature extraction. “Baseline” for direct classification refers to random baseline
while for CMC task it refers to BERT. “REG” denotes regression. “REG-RSR” denotes our method. The results are
first averaged among 10-fold cross-validation data and then averaged across subjects. The best results are shown in
bold.

result, indicating that both regression and RSR are
important for extracting fMRI semantic features.

Effect of Word Embedding In theory, our
method can work with any type of word embedding.
We perform experiments on two major types of
word embedding, one is non-contextualized GloVe
and the other is contextualized BERT Layeravg.
As shown in Table 7, the performance on the CMC
task using the two different types of word vectors
are quite similar on both datasets. In contrast to pre-
vious work done on pairwise classification which
focuses on finding better representations of words,
the CMC task is not so sensitive to the types of
word embedding.

(%) Embedding Top-1 acc Top-5 acc

fMRI60_CMC
GloVe 29.85 54.88
BERT Layeravg 31.08 55.99

fMRI180_CMC
GloVe 27.81 52.96
BERT Layeravg 27.60 53.11

Table 7: Effect of word embedding used in our method
for the CMC task. The results are first averaged among
10-fold cross-validation data and then averaged across
subjects.

Effect of α The hyperparameter α controls how
much information from fMRI to fuse into BERT.
As shown in Figure 3, as α increases from 0 to 0.7
gradually, the performance of the model steadily
increases and reaches the maximum performance
when α = 0.7 on both datasets. This tendency
demonstrates that the fusion of fMRI information is
helpful for predicting words. However, when α be-
comes too large, the performance will drop quickly.
We speculate that this is because the BERT em-
bedding of the mask token is useful for predicting
words, since that is how BERT was pre-trained.

Figure 3: Effect of α. The blue line denotes top-1
accuracy while the orange one represents top-5 accuracy.
k is set to 5 for all subjects.

Figure 4: Effect of k. The blue line denotes top-1 accu-
racy while the orange one represents top-5 accuracy. α
is set to 0.7 for all subjects.

Effect of k The hyperparameter k controls how
many neighbors we want to engage with to derive
the feature vector for an fMRI image. Intuitively,
if we retrieve more words for an fMRI image, we
have a larger probability to recall the target word.
However, a larger k will diminish the utility of the
feature vector since it is the average of word vectors
corresponding to the k retrieved words. As shown
in Figure 4, increasing k from 1 to 3 gives a large
gain in decoding accuracy on both datasets. When
k > 5, the decoding accuracy declines slowly. Gen-
erally, k = 5 is the best tradeoff between the prob-
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ability of recalling the target word and the informa-
tiveness of the feature vector.

Limitations Our experiments are largely limited
by three characteristics of fMRI signals, which
are low temporal resolution with delayed hemo-
dynamic response, noisy, 3D volume containing
hundreds of thousands of voxels with small sam-
ple size. Correspondingly, there are three major
limitations in our work. First and foremost, the
context we use is not the actual context in which
the fMRI images were collected. The reason that
we use synthesised context is to avoid word-level
alignment of fMRI data, which is currently too
difficult when they are presented as continuous
stimuli (Hollenstein et al., 2020). Second, to re-
duce noise, we use brain activity averaged across
multiple trails rather than single-trail-based brain
activity, which is different from the real scenarios
of BCI applications. Third, we do not consider the
spatial structure of brain images, but flatten them
directly into vectors. While this is common prac-
tice in fMRI decoding, exploring spatial patterns
may help deepen our understanding of the brain
and improve neural decoding accuracy.

8 Conclusions and Future Work

In this paper, intending to build practical neural
language decoders, we investigate the feasibility
of large-vocabulary zero-shot brain-to-word decod-
ing. Large-vocabulary classification is much harder
than pairwise classification. By introducing context
as a prompt, we formalize it as a cross-modal Cloze
task, which alleviates the decoding difficulty while
keeping the essence of neural decoding. Further-
more, if we assume the past and the future content
of brain activity has been decoded, our CMC task
can be viewed as a simplified version of brain-to-
text decoding. Based on this task, we find that
decoding brain activity into words from a large
vocabulary is possible to a certain extent, which
lays the foundation for decoding text word by word
from the brain.

To move towards brain-to-text decoding, we can
use a generative pre-trained language model to re-
place BERT. The biggest challenge lies in how to
align fMRI signals to individual words when the
stimuli are presented as a continuous time series
of words. In the future, we are going to address
this problem since it is fundamental for building
powerful neural language decoders that translate
brain activity into text.
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