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Abstract

Natural language is generated by people, yet
traditional language modeling views words
or documents as if generated independently.
Here, we propose human language modeling
(HuLM), a hierarchical extension to the lan-
guage modeling problem whereby a human-
level exists to connect sequences of documents
(e.g. social media messages) and capture the
notion that human language is moderated by
changing human states. We introduce, HaRT,
a large-scale transformer model for the HULM
task, pre-trained on approximately 100,000 so-
cial media users, and demonstrate it’s effec-
tiveness in terms of both language modeling
(perplexity) for social media and fine-tuning
for 4 downstream tasks spanning document-
and user-levels: stance detection, sentiment
classification, age estimation, and personality
assessment.1 Results on all tasks meet or sur-
pass the current state-of-the-art.

1 Introduction

Language use, like any human behavior, is moder-
ated by underlying human states of being (Mehl
and Pennebaker, 2003; Fleeson, 2001). Indeed,
different ways of incorporating human informa-
tion into NLP models have recently been shown
to improve accuracy on many NLP tasks (Hovy,
2015; Lynn et al., 2017; Huang and Paul, 2019;
Hovy and Yang, 2021). At the same time, while
language modeling has proven itself fundamental
to NLP, it is typically absent the notion of a human
producing the natural language.

From a statistical modeling perspective, this ab-
sence of human state can be seen as an instance
of the ecological fallacy – the treatment of mul-
tiple observations (i.e. text sequences) from the
same source (i.e. human) as independent (Pianta-
dosi et al., 1988; Steel and Holt, 1996).

1Code and pre-trained models available at:
https://github.com/humanlab/HaRT.

To address this, we introduce the task of human
language modeling (HULM), which induces de-
pendence among text sequences via the notion of
a human state in which the text was generated. In
particular, we formulate HULM as the task of es-
timating the probability of a sequence of tokens,
wt,1∶i, while conditioning on a higher order state
(U1∶t−1) derived from the tokens of other docu-
ments written by the same individual. Its key ob-
jective is:

Pr(wt,i∣wt,1∶i−1,U1∶t−1)
where t indexes a particular sequence of tempo-
rally ordered utterances (e.g. a document or so-
cial media post), and U1∶t−1 represents the human
state just before the current sequence, t. In one ex-
treme, U1∶t−1 could model all previous tokens in
all previous documents by the person. In the oppo-
site extreme, U1∶t−1 can be the same for all users
and for values of t reducing to standard language
modeling: Pr(wi∣w1∶i−1).2 Thus, HULM-based
models without history can be used where tradi-
tional LMs are applied (and may even perform bet-
ter).

HULM brings together ideas from human fac-
tor inclusion/adaptation (Hovy, 2015; Lynn et al.,
2017; Hovy and Yang, 2021) and personalized
modeling (King and Cook, 2020; Jaech and Os-
tendorf, 2018) into the framework of large pre-
trained language models. Compared to traditional
language modeling, HULM offers several techni-
cal advantages. First, the human state serves as
a higher order structure that induces dependence
between the text sequences of the same person/
thus posing a language modeling problem that is
a more faithful treatment of human-generated nat-
ural language. Second, conditioning on prior texts
of an individual can be seen as an implicit integra-
tion of text-derived human factors without having
to explicitly model the identity of the individual.

2See section 3 for a full HULM definition.
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This enables fine-tuning of such a model to many
downstream tasks. Third, using the temporally or-
dered prior texts for human contexts can be seen
as a way to track the dynamic nature of human
states (e.g. emotions, daily activities) and be com-
bined to yield more stable personality traits (e.g,
extraversion, openness).

To build a language model that effectively ad-
dresses the HULM task, we develop HaRT, a
human-aware recurrent transformer. HaRT is built
using a new user-state based attention layer, that
connects standard word sequence transformer lay-
ers in order to incorporate the human context. The
recurrent user state allows HaRT to effectively
model long contexts necessary to handle all the
previous messages written by an individual. We
train HaRT on the HULM task defined over a large
collection of social media texts spanning 100K
users and apply it (fine-tuning) on 2 downstream
message-level tasks: stance detection (Moham-
mad et al., 2016), and sentiment analysis (Nakov
et al., 2013) as well as 2 human-level tasks: age
estimation and personality assessment (Schwartz
et al., 2013).

Contributions. Our contributions are three-
fold: (1) We introduce the task of human lan-
guage modeling (HULM), providing a mathe-
matical definition and relation to traditional lan-
guage modeling; (2) We propose HaRT, a novel
transformer-based model for performing HULM
and capable of being fine-tuned to specific tasks
including user-level tasks for which traditoinal
language models cannot be applied without ar-
chitectural alterations; (3) We evaluate HaRT,
demonstrating state-of-the art performance on five
tasks: social media language modeling (perplex-
ity), two document-level tasks (sentiment analy-
sis and stance detection), and two user-level tasks
(personality–openness assessment, and age esti-
mation).

2 Related Work

Recent advances in language model pre-training
have led to learned representation of text. Pre-
training methods have been designed with differ-
ent training objectives, including masked language
modeling (Devlin et al., 2019) and permutation-
based auto-regressive language modeling (Yang
et al., 2019). These have contributed in build-
ing deep autoencoding architectures, allowing the
same pre-trained model to successfully tackle

a broad set of NLP tasks. While pre-training
over large collections of text helps models ac-
quire many forms of linguistic and world knowl-
edge(Petroni et al., 2019; Jiang et al., 2020;
Rogers et al., 2020), they are still devoid of the
information about the text creator.

Recently, it has been suggested that the NLP
community address the social and human fac-
tors to get closer to the goal of human-like lan-
guage understanding (Hovy and Yang, 2021). This
call builds on a series of studies suggesting that
integrating the human context into natural lan-
guage processing approaches leads to greater ac-
curacy across many applications in providing per-
sonalized information access (Dou et al., 2007;
Teevan et al., 2005) and recommendations (Guy
et al., 2009; Li et al., 2010; De Francisci Morales
et al., 2012). The idea of contextualizing language
with extra linguistic information has been the ba-
sis for multiple models: Hovy (2015) learn age-
and gender-specific word embeddings, leading to
significant improvements for three text classifica-
tion tasks. Lynn et al. (2017) proposed a domain
adaptaion-inspired method for composing user-
level, extra-linguistic information with message
level features, leading to improvements for mul-
tiple text classification tasks. Welch et al. (2020a)
propose a new form of personalized word embed-
dings that use demographic-specific word repre-
sentations.

In addition to addressing to social and human
factors, recent work has also focused on person-
alized language models (King and Cook, 2020;
Jaech and Ostendorf, 2018) learning author rep-
resentations (Delasalles et al., 2019) and person-
alized word embeddings (Lin et al., 2017) point-
ing out the importance of personalized semantics
in understanding language. Welch et al. (2020b)
explore personalized versus generic word repre-
sentations showing the benefits of both combined.
While these models are trained for singular user,
Mireshghallah et al. (2021) trains a single shared
model for all users for personalized sentiment
analysis. However, the approach is not scalable
as it is still user specific and expects a unique user
identifier.

While not the primary goal, human language
modeling may yield effective approaches to ex-
tend the context during language modeling. Thus,
an aspect of this work can be seen as part of
the recent pursuit of sequence models that cap-
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ture dependencies beyond a fixed context length
(Dai et al., 2018; Beltagy et al., 2020). For ex-
ample, Keskar et al. (2019) and Dathathri et al.
(2019) propose controllable language generation
using one or more attribute classifiers or control
codes. Guu et al. (2020) propose augmented lan-
guage model pretraining with a latent knowledge
retriever which allows the model to retrieve and
attend over documents from a large corpus. These
models extend context limits, but they do not
model the higher order structure capturing a notion
of the common source of documents i.e., the au-
thor. On the other hand, Yoshida et al. (2020) fits
a hierarchical model extension to language model-
ing by adding recurrence to a pretrained language
model. This idea forms a basis for our proposed
HULM architecture, HaRT, but Yoshida et al. do
not exploit the inherent higher order structure (i.e.
the model was not used for HULM).

3 Human Language Modeling (HULM)

Our goal is to re-formulate the language modeling
task into one that directly enables a higher-order
dependence structure that represents a human gen-
erating the language.

Language modeling formulations pose prob-
abilistic questions over text represented as se-
quences of tokens. The main goal is to model the
probability of observing a given token sequence in
the language as a whole. In particular language
models (LMs) estimate the joint probability of the
tokens in the string, defined in terms of the proba-
bilities of each token in the sequence conditioned
on the previous tokens.3 Given a string W ∈ L, a
sequence of n tokens ⟨w1, w2,⋯, wn⟩, the proba-
bility of observing the string W in the language L
is computed as:

Pr(W) =
n

∏
i=1

Pr(wi∣w1∶i−1) (1)

We pose the human language modeling problem
(HuLM), where the goal is to model the probabil-
ities of observing a sequence from the language
as generated by a specific person. An initial idea
might be to pose this task as conditioning the prob-
ability of a string, wi on a static representation of

3Traditional LMs provide estimates of the conditional
probabilities often relying on further simplifying assumptions
(e.g. Markovian assumptions to handle long sequences.).

the person (or user, Ustatic):

Pr(W∣Ustatic) =
n

∏
i=1

Pr(wi∣w1∶i−1,Ustatic)

(2)
This addresses the first of the two goals we pre-
sented in the introduction, namely avoiding the
ecological fallacy of assuming sequences from the
same person are independent. However, it does
not respect the idea that people vary in mood
and can change. More precisely, human behav-
iors (language use) are influenced by dynamic hu-
man states of being (Fleeson, 2001; Mehl and Pen-
nebaker, 2003). Thus, we pose HuLM with a
more general formulation that enables the idea of
a dynamic representation of humans, the user state
Ut

4:

Pr(Wt∣Ut−1) =
n

∏
i=1

Pr(wt,i∣wt,1∶i−1,U1∶t−1)

(3)
where t indexes a particular sequence of tempo-
rally ordered utterances (e.g. a document, or set of
social media message). While wt,i is drawn from a
multinomial distribution, U1∶t−1 can be from any
discrete or continuous multivariate distribution.

In one extreme, U1∶t−1 could model all previous
tokens in all previous documents by one person.
In the opposite extreme, U1∶t−1 can be the same
for all values of t, giving a static representation
for a user (equivalent to Equation 2) or even static
across users which reduces to a standard language
modeling version (equivalent to Equation 1). Still,
modeling a user via their previous documents pro-
vides a seamless way to integrate the user infor-
mation into language models – the only change is
that the models will now have to incorporate more
text when they are making predictions. Note that
this problem formulation does not directly require
explicit modeling of the identity of a user. This
makes it easier to handle new users in downstream
tasks and test instances, or creating models that
can be further fine-tuned to both document- and
user-level tasks.

HuLM in Practice. Like traditional langauge
models, there are two steps to applying HuLM
based models to most tasks and applications: pre-
training and fine-tuning. During pre-training, the

4We define Ut as the state after the sequence, Wt. Thus,
only Ut−1 is accessible as given when estimating Pr(Wt)
conditioned on the user state.
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model is trained on unlabeled data over Human
Language Modeling (HuLM) pre-training task
above. For finetuning, a HuLM based model is
first initialized with the pre-trained parameters,
and all of the parameters are fine-tuned using
labeled data from the downstream tasks. Each
downstream task has separate fine-tuned models,
even though they are initialized with the same pre-
trained parameters.

4 Human-aware Recurrent Transformer

This section introduces, HaRT, a human-aware re-
current transformer that trains on the human lan-
guage modeling (HULM) formulation.

HaRT is designed to produce human-aware con-
textual representations of text at multiple levels.
HaRT’s design is motivated by two goals: (i) We
want to support hierarchical modeling, i.e., to hier-
archically represent the set of all-messages written
by a user and at the same time have human-aware
contextual word representations. This implicitly
entails modeling large context size. For example,
GPT-2 (Radford et al., 2019) uses a context size of
1024 tokens, whereas our estimate of the average
context size for a Twitter user is more than 12000
tokens. (ii) To support user-level tasks (e.g. per-
sonality assessment (Lynn et al., 2020)), we need
representations of the entire set of messages writ-
ten by a user capturing the inherent human states
that broadly encompasses the user representation.

HaRT addresses the hierarchical language mod-
eling issue by processing all messages written by
a user in a temporally ordered sequence of blocks.
It uses a recurrence structure to summarize infor-
mation in each block into a user state vector, which
is then used to inform the attention between tokens
in the subsequent block. For human-level tasks the
aggregate of user states can be used as the repre-
sentation of the entire context for the user.

The idea of adding recurrence to pre-trained
transformers builds on Yoshida et al. (2020)’s
method for handling long contexts. However, the
main difference is that HaRT models the input
data (language) in the context of its source (user)
along with inter-document context, thus enabling
a higher order structure representing human con-
text.

4.1 HaRT Architecture

Figure 1 shows the overall architecture for HaRT.
It consists of a one modified transformer layer

Figure 1: HaRT architecture: HaRT processes a user’s
messages in blocks. It produces contextualized repre-
sentations of messages in each block conditioning on a
recurrently computed user state. The user state is in-
serted into an earlier layer (layer 2) to inform the self-
attention computation via a modified query transform.
The previous user state is then recurrently updated us-
ing the output of a later layer (layer 11).

with a user-state based self-attention mecha-
nism over more token-level standard self-attention
based transformer layers from a pre-trained trans-
former (GPT-2).
Inputs and Outputs Each input instance to HaRT
consists of a temporally ordered sequence of mes-
sages (by message created time) from a given user
a, Ma = ⟨M1,⋯,Mn⟩. We segment these mes-
sages into fixed sized blocks, Ba = ⟨B1,⋯, Bk⟩.
We sequentially fit messages into blocks, separat-
ing messages using a newly introduced special to-
ken < ∣insep∣ >. If the number of tokens in a
block falls short of the block size, we fill it with
padded tokens. k is a hyperparameter during train-
ing used to cap the maximum number of blocks
controlling the amount/size of user history that is
fed to the model. If the messages for a user fill
less than k blocks, we pad the rest to maintain the
same size for each instance.

For each block Bi, HaRT outputs (i) contextual-
ized representations of the tokens within the block
conditioned on the previous user state (Ui−1), and
(ii) an updated representation of the user state, Ui,
which now also includes the information from the
current block Bi. We use the representation of the
last non-pad token of a message as its representa-
tion for message-level tasks, and use the average
of the user-states from all the blocks of a user as
that user’s representation for user-level tasks.
User-State based Self-Attention HaRT con-
structs a user-state representation vector by com-
bining information from each block in a recurrent
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manner. After processing the inputs in a given
block Bi, HaRT extends the previous user state
Ui−1 with information from current block Bi us-
ing the output representations H

(E) from one of
the later layers (we denote as the extract layer LE).
The recurrence for the new user state Ui is:

Ui = tanh(WUUi−1 +WHH
(E)) (4)

The user state for the first block U0 is initialized
with the average of the (pretrained GPT-2) layer
11 outputs for words from the messages of more
than 500 users (of the train set) computed using
Schwartz et al. (2017).

To produce the user-state conditioned contex-
tual representations at a given layer, HaRT uses
a modified self-attention procedure to one of the
earlier layers, which we denote as the insert layer
(LIN ). The idea is to create a new query transform
which includes the user-state vector, so that the
attention between tokens is informed by the con-
text of the previous messages written by the user.
To this end, we take input hidden states to this
insert layer HIN−1

i , concatenate it with the user-
state vector from the previous block Ui−1 and then
apply a linear transformation (using Wq) to ob-
tain the query vectors (QIN

i ) for the self-attention
computation.

Q
IN
i =W

T
q [H (IN−1 )

i ;Ui−1 ] (5)

The key, value transforms and the rest of the
self-attention computation and further processing
in the transformer to produce the output represen-
tations from the layer, all remain the same as in the
original GPT-2 model.
Implementation Choices There are multiple al-
ternatives for a HaRT implementation including
how to construct the user state, where and how
to inject user state information. In our prelimi-
nary experiments we experimented with different
extract layers but found that constructing user state
from the penultimate layer (Layer 11) and inject-
ing the user state in a single earlier layer (Layer 2
used by Yoshida et al. (2020)) to modify the query
transformation was the most effective empirically.

4.2 Pre-training HaRT

HaRT is pre-trained using the HULM task in an
autoregressive manner.

The HULM task as defined in Equation 3 asks
to predict a token that appears in a token sequence

(i.e. a user’s social media message) given the pre-
vious tokens in the sequence while also condition-
ing on previous user states. We turn this task into
a pre-training objective defined over block seg-
mented token sequences from a user. For each
block of a given user, the task is to predict each
token in the block while conditioning on (i) the
previous tokens within the current block which
are directly available as input, and also (ii) the to-
kens from the previous blocks that are available to
HaRT through the recurrent user state. Formally,
the pre-training objective is to maximize:

∏
a∈Users

∣Ba∣
∏
t=1

∣B(a)
t ∣

∏
i=1

Pr(wt,i∣wt,1∶i−1, B
(a)
1∶t−1) (6)

where, wt,i is the i
th token in the t

th block (B(a)
t )

for user a.
Pre-training data For the pre-training corpus

we combine a subset of the Facebook posts dataset
from Park et al. (2015), a subset of the County
Tweet Lexical Bank (Giorgi et al., 2018) appended
with newer 2019 and 2020 tweets, in total span-
ning 2009 through 2020. We filter the datasets to
only include tweets marked as English from users
who have at least 50 total posts and at least 1000
words in total, ensuring moderate language history
for each user. The resulting dataset consists of just
over 100,000 unique users, which we split into a
train dataset consisting of messages from 96,000
users, a development dataset that consists of mes-
sages from 2000 users that were not part of the
training set (unseen) and new messages from 2500
users seen in the training set, and a test set of mes-
sages from a separate set of 2000 unseen users that
are neither in training or the development set.

We refer to this as the HuLM-Corpus (HLC).

4.3 Fine-tuning HaRT

In the tradition of transformers for traditional lan-
guage modeling, HaRT shares the same archi-
tecture for both pre-training and fine-tuning ex-
cept for the output layers. It has a unified ar-
chitecture across different downstream tasks. For
finetuning, HaRT is first initialized with the pre-
trained parameters, and all of the parameters are
fine-tuned using labeled data from the downstream
tasks. Each downstream task has separate fine-
tuned models, even though they are initialized
with the same pre-trained parameters. Apart from
using the labeled data from the downstream tasks,
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we also use the historical messages (when avail-
able) from the respective users to replicate the for-
mat of pre-training inputs and to benefit from the
knowledge of the user.

5 Evaluation: Human Language
Modeling

We seek to compare HaRT with a standard lan-
guage model that is exposed to the same data but
without modeling the notion of a user. Thus,
we compare HaRT’s human language modeling
performance to the model it was based, GPT-2.
For calibration we report performance on GPT-2’s
original pre-trained version (GPT-2frozen), and a ver-
sion of the LM that was fine-tuned on the HuLM-
Corpus (GPT-2HLC).

We train and evaluate the models using the train
and test splits of the HuLM-Corpus described in
Section 4.2. For hyperparameter search, we use
the full development set of both seen and unseen
users. Each training instance for HaRT is capped
to 8-blocks of 1024-tokens each. Following previ-
ous work fine-tuning transformer language models
for social media (V Ganesan et al., 2021), GPT-
2 was trained over individual messages. We train
both for five epochs and set the learning rate, batch
size, and stopping patience based on the devel-
opment set (see Appendix A.3). For HaRT, we
initialize all GPT-2 self-attention layers with the
corresponding weights in the pre-trained GPT-2.
The user-state based self-attention layer weights
(query, key, and value) are normal initialized with
0 mean and 0.02 standard deviation.

Perplexity Table 1 reports the perplexity of all
three models on the messages from the unseen
users of the development split and the entire test
split of HuLM-Corpus. The frozen pre-trained
GPT-2 (GPT-2frozen) fares poorly to the domain
mismatch while the fine-tuned version (GPT-2HLC)
fares much better. However, the human language
model HaRT achieves the best performance by a
large margin, with a significant reduction in per-
plexity by more than 46% on the test set relative
to GPT-2HLC (p < .001).5

Effect of History Size. We further analyze the
effect of history size by varying the amount of lan-
guage, in terms of blocks, used per user. Figure 2

5In addition to this improvement for unseen users, we also
see similar relative benefits when tested on instances from
seen users which we report in Appendix A.2.

Model Dev (ppl) Test (ppl)
GPT-2frozen 112.82 116.35
GPT-2HLC 47.61 48.51
HaRT 27.49* 26.11*

Table 1: Comparing HaRT as a language model to
GPT-2frozen, the frozen pre-trained GPT-2 and GPT-2HLC,
the GPT-2 model fine-tuned on the HuLM-Corpus.
HaRT shows large gains with a substantial reduction in
perplexity compared to both versions of GPT-2. Bold
font indicates best in column and * indicates statistical
significance p < .05 via permutation test w.r.t GPT-2HLC

Figure 2: . Perplexity scores, on test sets as a func-
tion of history size (number of blocks) used when
training HaRT. Each block consists of 1024 tokens.
Adding more history improves language modeling per-
formance with big reduction going from 2 to 4 blocks
and a smaller reduction from 4 to 8 blocks.

shows that adding more history in general helps,
with a big reduction in perplexity going from 2 to
4 blocks and a further reduction going from 4 to 8
blocks. Adding more context can induce a need to
effectively balance likelihood of finding more im-
portant signals against the increasing chances of it
drowning in less important information.

6 Evaluation: Fine-tuning for
Downstream Tasks

Here, we evaluate the utility of fine-tuning HaRT
for document- and user-level tasks. Just as stan-
dard transformer language models are fine-tuned
for tasks, we take our pre-trained HaRT model and
fine-tune it for stance detection, sentiment clas-
sification, age estimation, and personality (open-
ness) assessment tasks. For both sets of tasks
we compare fine-tuning the GPT-2HLC as a non-
user-based LM baseline and also report previously
published results from other task specific models,
most of which employ historical context for re-
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Model Age
(r)

OPE
(rdis)

Stance
(F1)

Sentiment
(F1)

GPT-2HLC 0.839 0.521 68.60 76.75
HaRT 0.868* 0.619* 71.10* 78.25*

Table 2: We fine-tune HaRT and GPT-2HLC (GPT-2
fine-tuned for LM on the same data) for 4 downstream
tasks: Age, Openness (OPE), Stance, and Sentiment,
and find HaRT to perform better on all 4 tasks. For
age and openness, we fine-tune HaRT only for the re-
currence module, and fine-tune only the last 2 layers
of GPT-2HLC. For stance and sentiment, we fine-tune
full models. Results are reported in pearson r for Age,
disattenuated pearson r for OPE and weighted F1 for
Stance/Sentiment. Bold indicates best in column and *
indicates statistical significance p < .05 via permtua-
tion test.

spective tasks. All hyperparameter settings and
training details for the GPT-2HLC and HaRT models
for each task are listed in Appendix A.3.

6.1 Document-Level Tasks
We consider two document-level tasks that require
models to read an input document (message) writ-
ten by a user and output a label (stance of the user
towards a topic or the sentiment expressed in the
text). To fine-tune HaRT on these tasks, with each
document we collect and attach previous mes-
sages written by the same users, represented using
the procedure we outlined in Section 4.3. Thus,
HaRT processes this input to produce message-
and human-contextualized token-level representa-
tions. We represent the document by its last non-
padded token representation and feed it to classifi-
cation layer with a prior layer norm for predicting
the output label. GPT-2HLC, without hierarchical
structure, only uses the input document to make
predictions. We fine-tune all parameters of HaRT
and GPT-2HLC, as well as the classification layer
weights using the standard cross-entropy loss (cal-
culated only over the last non-padded token of the
target (labeled) messages).

Stance Detection. For stance detection we use
the SemEval2016 dataset (Mohammad et al.,
2016), which contains tweets annotated as being
in favor of, against, or neutral toward one of five
targets: atheism, climate change as a real con-
cern, feminism, Hillary Clinton, and legalization
of abortion. This data only includes labeled tweets
from users and not any history, so we use the ex-
tended dataset from Lynn et al. (2019) and pre-

Model Stance
(F1)

Sentiment
(F1)

MFC 54.2 28.0
Lynn et al. (2019) 65.9 69.5
MeLT 66.6 63.0
BERTweet 68.8 77.9
HaRT 71.1* 78.3*

Table 3: We compare HaRT’s performance on docu-
ment level downstream tasks: Stance and Sentiment,
against state of the art results. We also fine-tuned pre-
trained GPT-2, BERTweet (Nguyen et al., 2020), and
MeLT (Matero et al., 2021) on both tasks for baselines.
HaRT performs the best in both tasks with a substan-
tial gain. Results are reported in weighted F1. Bold
indicates best in column and * indicates statistical sig-
nificance p < .05 w.r.t BERTweet via permutation test.

serve the train/dev/test split of the same. To main-
tain (message created time) temporal accuracy in
our autoregressive model, we only used the part of
the extended dataset (history) that consists of mes-
sages posted earlier than the labeled messages.

Sentiment Analysis. We use message-level sen-
timent annotations indicating positive, negative,
and neutral categories from the SemEval-2013
dataset (Nakov et al., 2013). As with stance, we
use a part of the extended dataset from Lynn et al.
(2019) to get associated message history, and pre-
serve the train/dev/test split of the same.

6.2 User-Level Tasks

We evaluate HaRT for age estimation and person-
ality (openness) assessment, social scientific tasks
which require producing outcomes at the user-
level. We use a subset of the data from con-
senting users of Facebook who shared their Face-
book posts along with demographic and personal-
ity scores (Kosinski et al., 2013; Park et al., 2015).

For these user-level tasks we can leverage the
recurrent user states in HaRT to produce a repre-
sentation of the user. We represent the input as de-
scribed in Section 4.3, and use the average of the
user-states vectors from the non-padded blocks of
each user and layer norm it to make predictions
using a linear classifying layer to predict 1 label
(regression task). We use only 4 blocks of history
when training to fine-tune.

For GPT-2HLC, since it can’t directly handle all
of the users text in one go, we replicate the user
label for each message of the respective users and

628



train the model to predict the label for each mes-
sage using the last non-padded token of the mes-
sage. To make the final prediction, we average
the predictions across all messages from respec-
tive users and calculate the performance metric us-
ing this average as in (V Ganesan et al., 2021).

For these user level tasks that require aggregate
information, for both models, fine-tuning the en-
tire set of parameters was worse than fine-tuning
fewer layers. For GPT-2HLC fine-tuning only the
last two layers gave the best performance. For
HaRT fine-tuning only the recurrence module gave
the best performance on development sets. We re-
port results with these best dev settings. We use
the mean squared error (MSE) as the training loss.

Age Estimation Similar to the pre-training data,
we filtered the above dataset for English language
instances and included only the users with a min-
imum of 50 posts and a minimum of 1000 words.
Age was self-reported and limited to those 65
years or younger. This resulted in a dataset of
56,930 users in train, 1836 users in dev, and 4438
users in test which was a subset of the test set
(5000 users) from Park et al. (2015). We evalu-
ate on both the test sets and report Pearson corre-
lation (r) metric on the latter for comparison pur-
poses. We include results with the filtered data in
Appendix (Table 8).

Personality Assessment. We evaluate on the as-
sessment of openness based on language (one’s
tendency to be open to new ideas) (Schwartz et al.,
2013). To allow for direct comparisons, we use the
same test set (n=1,943) as Lynn et al. (2020) and
use a subset of their training set (66,764 users) of
which 10% were sampled as dev set, and report
disattenuated pearson correlation (rdis) to account
for questionnaire reliability Lynn et al. (2018). As
with age estimation, we report results with the fil-
tered dataset in Appendix (Table 8).

6.3 Results
Table 2 summarizes the performance of HaRT
against the baseline of fine-tuning a non-human-
aware language model, GPT-2HLC. We see that
HaRT yields substantial gains over GPT-2HLC

across both user-level and document-level tasks,
demonstrating clear benefits in all settings.
Document-Level Tasks Table 3 compares HaRT
with task-specific baselines for stance and senti-
ment detection including (i) Lynn et al. (2020)
which used historical contexts to incorporate both

Model Age (r) OPE (rdis)
V Ganesan et al. (2021) 0.795 0.511
Sap et al. (2014) 0.831 -
Lynn et al. (2020) - 0.626
HaRT 0.868* 0.619

Table 4: Comparison of HaRT’s performance on user
level downstream tasks: Age and Openness (OPE),
against state of the art results. V Ganesan et al. (2021)
use lesser number of users (10000) in training. Re-
sults are reported in pearson r for Age and disattenu-
ated pearson r for OPE. Bold indicates best in column
and * indicates statistical significance between HaRT
and (Sap et al., 2014) (p < .05) using a bootstrap sam-
pling test. We also find no statistical difference be-
tween HaRT and (Lynn et al., 2020) (p = .35).

explicit and text-derived latent human factors, (ii)
MeLT (Matero et al., 2021) which used a super-
set of the same historical contexts used here but
for message-level language modeling, and (iii)
BERTweet (Nguyen et al., 2020) which uses a
large collection of tweets to pretrain an autoen-
coder that is then fine-tuned for target tasks. Senti-
ment results are weighted F1 scores over the three
sentiment categories. Stance results are an average
of weighted F1 scored over five different topics
from respective topic-specific fine-tuned models.
HaRT outperforms all models demonstrating the
substantial benefits of human language modeling
for these document-level downstream tasks.
User-Level Tasks Table 4 compares HaRT with
task-specific baselines for Age and Openness tasks
that use the superset of the same data used by
HaRT. For Age, HaRT outperforms all baselines
including a strong non-neural lexica based pre-
dictor (Sap et al., 2014), and a RoBERTa-based
system that uses carefully chosen frozen embed-
dings (V Ganesan et al., 2021). For Openness,
HaRT is better than the frozen RoBERTa (Liu
et al., 2019) embeddings and is comparable to
Lynn et al. (2020)’s hierarchical attention model.
These results also suggest the potential of HaRT’s
user states as a representation for user-level tasks.

6.4 No Historical Context.

HaRT can also be used anywhere a typical trans-
former language model is used by simply not feed-
ing any historical context. Here, we seek to use
our pre-trained HaRT as a language model that
is fine-tuned to the messages (for the respective
tasks) without any historical context. Table 5 com-
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Model Sentiment
(F1)

Stance
(F1)

GPT-2HLC frozen 62.7 57.7
HaRT nohist, frozen 62.7 58.6
GPT-2HLC 76.8 68.6
HaRT nohist 77.7* 70.8*

Table 5: Results with experiments on Stance and Sen-
timent downstream tasks using only the labeled in-
stances and no history. We compare HaRT with GPT-
2HLC by training only the classification head (frozen)
and additionally, by fine-tuning the models. Bold in-
dicates best in column and * indicates statistical sig-
nificance p < .05 via permutation test w.r.t GPT-2HLC.
Results are reported in weighted F1.

Model Sentiment
(F1)

Stance
(F1)

HaRT NOT PT 63.47 66.26
HaRT W/O RECUR 77.04 68.73
HaRT 78.25* 71.10*

Table 6: Results with the ablation experiments on
Stance and Sentiment downstream tasks. We experi-
ment without the recurrence module (W/o recur), and
HaRT without HuLM PT, and compare with HaRT.
Bold indicates best in column and * indicates statisti-
cal significance p < .05 via permutation test w.r.t HaRT
w/o recur. Results are reported in weighted F1.

pares the performances of HaRT and GPT-2HLC for
the two document-level downstream tasks Stance,
and Sentiment. For a fair comparison, we use the
same data inputs for both the pre-trained models
which consists of only the labeled messages and
no historical context. We evaluate in 2 ways: 1)
freezing the model and training only the classifica-
tion layer using the outputs from the penultimate
transformer layer, and 2) fine-tuning all model pa-
rameters along with a classification head with a
layer norm prior to it. HaRT is at par or better
with GPT-2HLC for both frozen and fine-tuned ver-
sions, showing that it can provide gains even when
historical context is unavailable. Hyperparameters
settings are described in Appendix A.3.

6.5 Ablation Studies
In this section, we perform ablation experiments
on HaRT to better understand their relative impor-
tance and report the results in Table 6.
Pre-training We assess the impact of pre-training
by evaluating the downstream performance of a
version of the HaRT model that has not been pre-

trained on the HuLM task. Instead of using the
weights from HuLM pre-training, we use HaRT
with initialized weights as described in Section 5.
Table 6 shows HuLM pre-training benefits – pre-
training adds substantial gain of 14.78 points and
4.84 points in weighted F1 for sentiment analysis
and stance detection respectively.
Recurrence We assess the importance of recur-
rent user state by first pre-training HaRT without
its recurrent module and then fine-tuning it for the
downstream tasks. We still use the same batch-
ing as described in Section 4.2 but the informa-
tion from a block no longer propagates to the next
block in the forward pass, and backpropagation is
still done on all blocks of a user together. With-
out the recurrence module we see a drop of 1.21
points and 2.37 points in the weighted F1 mea-
sure for sentiment and stance respectively. Inter-
estingly, HaRT outperforms HaRT without recur-
rence, consistent with the idea that models benefit
from user history on tasks that involve a user.

7 Conclusions

Language is deeply human. Yet, language mod-
els in wide-spread use today lack a notion of the
human that generates the language. Motivated by
other advances in human-centered language pro-
cessing and psychological theory that suggest lan-
guage is moderated by human states, we intro-
duced human language modeling. HULM ex-
tends LMs with the notion of a user and their
states via their previous messages. In this first
step toward large human language models, we de-
veloped a human-aware transformer (HaRT) that
uses a recurrence mechanism to model user states
and show that pre-training this transformer on the
human language modeling task yields significant
gains in both generation and fine-tuning for multi-
ple downstream document- and user-level tasks.

Overall, state-of-the-art results with HaRT, a
model neither trained on substantially larger data
nor adding many parameters, suggests progress
for transformers not based on massive increases in
data or parameters but on a task grounded in lan-
guage’s “natural” generators, people.

8 Ethical Considerations

While the multi-level human-document-word
structure within HULM can enable bias correcting
and fairness techniques (discussed next), the abil-
ity to better model language in its human context

630



also presents opportunities for unintended harms
or nefarious exploitation. For example, mod-
els that improve psychological assessment are not
only useful for research and clinical applications,
but could be used to target content for individuals
without their awareness or consent. In the con-
text of use for psychological research, such mod-
els may risk release of private research partici-
pant information if trained on private data without
checks for exposure of identifying information. To
negate this potential, we only release a version of
HaRT that is without training on the consented-
use private Facebook data until differential privacy
standards can be verified. Unlike other human-
centered approaches, HaRT is not directly fed user
attributes as part of the pre-training thus the model
parameters do not directly encode user attributes.

HULM aims to join a growing body of work to
make AI more human-centered, and thus more ap-
plicable for interdisciplinary study of the human
condition as well as leading to new clinical tools
for psychological health. At this point, our mod-
els are not intended to be used in practice for men-
tal health care nor labeling of individuals publicly
with personality or age scores. While modeling
the human state presents opportunities for reduc-
ing AI bias, prior to clinical or applied use, such
models should be evaluated for failure modes such
as error across target populations for error or out-
come disparities (Shah et al., 2020). All user-level
tasks presented here were reviewed and approved
or exempted by an academic institutional review
board (IRB).
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A Appendix

A.1 Pre-training

Twitter Data Collection As mentioned, in section
4.2, we use a combination of data from both Twit-
ter and Facebook data sources. However, since
the main Twitter corpus (Giorgi et al., 2018) only
spans the years 2009 - 2015, we wanted to supple-
ment our total corpus with newer language data.
Generally, we follow the same procedures for data
collection as introduced for the 2009 - 2015 years.
Thus, we started with a 1% random sample of pub-
licly available tweets that can be mapped to US
counties. On top of this we also applied the fol-
lowing filters: (1) Removal of non-English tweets,
(2) Removal of users who did not tweet at least
3 times a week, (3) Removal of any duplicates
among the collected data, and (4) Removal of any
tweets containing URLs. We will be including this
additional data as part of the CTLB project6.

Data Size and Splits We sample evenly be-
tween Facebook and Twitter at the user-level to
collect 50,000 from each and apply the same min-
imum language use requirement of 1,000 words
spanning 50 messages. We show the details of the
splits across training/development/testing as well
as seen/unseen user categories in figure 3. We
keep 4,000 users for development and testing, 2k
for each split, that are not at all present in the train-
ing portion. For users that we do train on, we se-
lect 4,500 to keep 20% of their messages for de-
velopment and testing sets.

A.2 Perplexity on Seen versus Unseen Users

Benefit of Seen users. By default, our experi-
ments are run under an ‘unseen user’ condition
where by the test corpus contains users that were
not in HaRT’s training corpus. However, one
could argue that this is an unnecessary impairment
since further training the human language model
doesn’t require labels and can often be run on test
data. We compare the effect of having seen users
during HaRT training by additionally calculating
perplexity on test sets with seen users. To make it
a fair comparison, since we found our “seen user”
corpus was more difficult (perplexity on seen users

6https://github.com/wwbp/county_tweet_lexical_bank

Unseen users Seen users
Model ppl adj-ppl ppl adj-ppl

GPT-2HLC 48.5 1.00 53.7 1.00
HaRT 27.5 0.57* 27.6 0.51*

Table 7: Evaluation of benefit of having seen the users
during HaRT training. We use adjusted perplexity (adj-
ppl): the ratio of the perplexity to the upper-bound from
not using HaRT during training (i.e.GPT-2HLC) on the
same test set – lower implies better performance when
normalized by difficulty of the test set. Seen users test
set is the set with the messages from the users also
available in the train set, while unseen users test set
does not have users common with the train set and is
the same as the test set in Table 1. Seen users test
set is harder for both models. However, normalizing
the scores show HaRT to have better performance over
seen users test set. Bold font indicates best in column
and * indicates statistical significance p < .05 via per-
mutation test.

test set was higher than unseen users test set for
GPT-2HLC as well), we use an adjusted perplexity,
defined as the ratio of the model’s perplexity di-
vided by a non-HULM upper-bound perplexity on
the same test set (GPT-2HLC), normalizing by the
difficulty of the test set. As shown in Table 7, we
find a small but significant benefit to having seen
the users during training.

A.3 Experimental Settings
We use Open AI’s pre-trained GPT-2 base model
from Radford et al. (2019) made available by the
Hugging Face library from Wolf et al. (2019)
(transformers version 4.5.1) as our base model.
We also make use of Hugging Face’s code base
to implement HuLM. Our training procedure in-
volves all the default training hyperparameters
from Hugging Face’s GPT2 config except learn-
ing rate and the other specific hyperparams men-
tioned in the paper. We run a learning rate search
sweep on a sampled dataset, for both HaRT and
GPT-2HLC, using the Optuna framework from Ak-
iba et al. (2019): 1) in a range of 5e-6 to 5e-4,
with 3 trials each of 5 epochs for pre-training,
2) in a range of 5e-6 to 5e-4, with 10 trials each
of 15 epochs for fine-tuning stance detection, and
3) in a range of 1e-7 to 1e-5, with 5 trials each
of 15 epochs for fine-tuning sentiment analysis.
We also setup an early stopping criteria for the
downstream task trials, such that we continue the
epoch runs till we hit an increase in loss for 3 con-
secutive runs, and pick the model with the best
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Figure 3: Structure of our pre-training dataset visually showing the data source(FB vs Twt), train-
ing/development/testing splits, and seen/unseen users for training and testing. Our dataset totals 100,000 users
and approximately 37 million messages. Due to GPU memory restrictions, we limited training to 8 blocks of
history which brought our train dataset size to 17 million messages. Dev and Test sets were not limited during
evaluation.

F1 score. We couldn’t run a similar sweep for
user-level tasks due to compute time limits so we
try a couple learning rates from document-level
tasks but found the same learning rate that we
use for pre-training to be better. Many of the ex-
perimental/hyperparameters (batch sizes, window
sequence sizes and cappings) settings mentioned
throughout this work including the number of tri-
als and the number of epochs vary because of com-
putational limitations based on data size and train-
ing time.
All pre-training runs are trained on 2 Tesla V100
GPUs of 32GB. Training HaRT takes approx 16
hours for 1 epoch (with train data consisting of
8 blocks (each of 1024 tokens) of 96000 users).
Fine-tuning tasks run on a mix of Tesla V100,
Quadro RTX 8000, and A100 GPUs based on
compute availability. All batch sizes mentioned
are per GPU.

Pre-training Settings We use 2.4447e-4 as the
learning rate for training HaRT, with 1 user train
batch size, 15 users eval batch size and early stop-
ping patience set to 3. For GPT-2HLC, we use the
default settings from Wolf et al. (2019) with train
and eval batch size set to 60 and early stopping
patience set to 3.

Document-level Fine-tuning Settings We fine-
tune HaRT for document-level tasks on their
respective training data with an input instance
capped to 8 blocks of 1024 tokens each, and no
capping during evaluation. We train for 15 epochs
using train and dev sets - along with history where
available - with 1 user train batch size, 20 users

eval batch size and early stopping patience set to
6. All models converge within 5 epochs except one
stance target - feminism. GPT-2HLC is fine-tuned
with the same data - but not history - using the
same settings except a different learning rate (from
the hyperparameter sweep mentioned above), train
and eval batch size of 60, and max tokens per mes-
sage set to 200 (consistent with pre-training).

User-level Fine-tuning Settings We fine-tune
HaRT for user-level tasks with an input instance
capped to 4 blocks of 1024 tokens each, and evalu-
ation data capped to 63 blocks (to allow for dev set
evaluation due to compute limitations). For fine-
tuning HaRT, we use 4 user train batch size and
20 eval batch size with early stopping patience set
to 3. We layer norm the user-states (hidden states
of the user state vector) from HaRT, and linearly
transform (to embedding dimensions) before aver-
aging the user-states to make the user’s age esti-
mation. We train for 30 epochs with warmup steps
equivalent to 10 epochs, and a weight decay set to
0.01. We find that for the task of Age estimation
the model converges at epoch 21, however for Per-
sonality Assessment we find a simple classifica-
tion linear layer to show better performance (with
a convergence seen at epoch 28 when run for 35
epochs). In case of GPT-2HLC we with the same
data (split into into individual messages capped to
200 tokens per message as in pre-training), for 15
epochs (much higher training time as compared to
HaRT) with train and eval batch size set to 400,
and early stopping patience set to 3.
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Model Age (r) OPE (rdis)
HaRT (Full test set) 0.868 0.619
HaRT (Filtered test set) 0.872 0.635

Table 8: HaRT’s performance on user level down-
stream tasks: Age and Openness (OPE), on full test sets
(5000 users and 1943 users respectively for Age and
OPE) from Park et al. (2015) and Lynn et al. (2020), as
well as on the resulting test set (4438 users and 1745
users respectively for Age and OPE) after filtering the
dataset for English language with users having a min-
imum of 50 posts and 1000 words (as we do for our
pre-training data).

MeLT – Sentiment Fine-tuning Settings To
apply MeLT (Matero et al., 2021) to the senti-
ment task we use use optuna (Akiba et al., 2019) to
search both learning rate and weight decay param-
eters using a search space between 6e-6 and 3e-
3 and between 1 and 1e-4 respectively. We keep
the same architecture as described in the original
MeLT paper, however we make 1 change during
fine-tuning and that is the message-vector repre-
sentation from MeLT is concatenated with the av-
erage of the observed tokens for the labeled mes-
sage to include both local and global context into
the fine-tuning layers.

No Historical Context Fine-tuning Settings
We run a hyperparameter sweep using Optuna
(Akiba et al., 2019) for all models for learning
rate (using search space between 5e-6 to 5e-4) and
weight decay(using search space between 0.0 and
1.0) with early stopping patience set to 6. We do
this for 15 and 10 trials for Stance and Sentiment
models respectively, and pick the hyperparameters
value for the best model in the same way as de-
scribed in the Experimental Settings (A.3 section
above. We use these values to fine-tune the models
for 15 epochs and get the weighted F1 results.
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