
Findings of the Association for Computational Linguistics: ACL 2022, pages 31 - 44
May 22-27, 2022 c©2022 Association for Computational Linguistics

Input-specific Attention Subnetworks for Adversarial Detection

Emil Biju, Anirudh Sriram, Pratyush Kumar, Mitesh M. Khapra
Indian Institute of Technology Madras

{emilbiju@alumni, ee18b073@smail}.iitm.ac.in
pratyushkpanda@gmail.com
miteshk@cse.iitm.ac.in

Abstract

Self-attention heads are characteristic of Trans-
former models and have been well studied for
interpretability and pruning. In this work, we
demonstrate an altogether different utility of
attention heads, namely for adversarial detec-
tion. Specifically, we propose a method to
construct input-specific attention subnetworks
(IAS) from which we extract three features to
discriminate between authentic and adversar-
ial inputs. The resultant detector significantly
improves (by over 7.5%) the state-of-the-art
adversarial detection accuracy for the BERT
encoder on 10 NLU datasets with 11 different
adversarial attack types. We also demonstrate
that our method (a) is more accurate for larger
models which are likely to have more spurious
correlations and thus vulnerable to adversarial
attack, and (b) performs well even with modest
training sets of adversarial examples.

1 Introduction

Self-attention heads are characteristic of Trans-
former models. Individual attention heads are inter-
pretable in different ways. One, for a token in an
input sentence, we can visualize the attention paid
by a head to all other tokens. Such attention pat-
terns are attractive linguistically and have come to
define roles for attention heads (Pande et al., 2021).
Two, the output of attention heads from various
layers can be probed for their ability to encode in-
formation related to the “NLP pipeline” (Jawahar
et al., 2019; Tenney et al., 2019; van Aken et al.,
2019). Three, attention patterns of heads can repre-
sent knowledge learnt by a teacher model when dis-
tilling to a smaller student model (Jiao et al., 2020).
While individual attention heads are interpretable
in the above ways, it is found that attention heads
in models such as BERT are over-provisioned and
can be pruned. For instance, Michel et al. (2019)
showed that a model with 16 attention heads per
layer can be pruned to just one. Voita et al. (2019)

and Budhraja et al. (2020) have shown similar re-
sults with different pruning techniques across tasks.

In the above methods, while interpretation of
attention heads is input-specific, pruning of heads
is input-agnostic. Can these two be combined, i.e.,
can we prune attention heads in an input-specific
manner creating opportunities for interpretation?
We explore this idea to identify an altogether differ-
ent utility of attention heads - namely adversarial
detection which is the task of differentiating be-
tween authentic and adversarial inputs. Specifically,
we propose a method to obtain an input-specific at-
tention subnetwork (IAS), which is a subnetwork
where a subset of attention heads is masked with-
out affecting the output of the model for that input.
Such subnetworks could vary across inputs repre-
senting how the model works for each input. This is
particularly important for adversarial detection, as
adversarial inputs do not reveal themselves in what
the model outputs but may leave tell-tale signs in
how the model computes this output.

In this work, we present a technique to efficiently
compute IAS and demonstrate its utility in adversar-
ial detection with significantly improved accuracy
over all current methods. To this end, we propose
three sets of features from IAS. The first feature,
Fmask, is simply the attention mask that identifies if
an attention head is retained or pruned in IAS. The
second feature, Fflip, characterizes the output of a
“mutated” IAS obtained by toggling the mask used
for attention heads in the middle layers of IAS. The
third feature, Flw, characterizes the outputs of IAS
as obtained layer-wise with a separately trained
classification head for each layer. We train a classi-
fier, called AdvNet, with these features as inputs to
predict if an input is adversarial.

We report results on 10 NLU tasks from the
GLUE benchmark (SST2, MRPC, RTE, SNLI,
MNLI, QQP, QNLI) and elsewhere (Yelp, AG
News, IMDb). For each of these tasks, we first
create a benchmark of adversarial examples com-

31

bining 11 attack methodologies like Word order
swap (Pruthi et al., 2019), embedding swap (Mrkšić
et al., 2016), word deletion (Feng et al., 2018), etc.
In total, the benchmark contains 5,686 adversarial
examples across tasks and attack types. To the best
of our knowledge, this dataset is the most exten-
sive benchmark available on the considered tasks.
Across all these tasks and attack types, we compare
our adversarial detection technique against state-of-
the-art methods such as DISP (Zhou et al., 2019),
NWS (Mozes et al., 2021), and FGWS (Mozes
et al., 2021). Our method establishes the best re-
sults in all tasks and attack types, with an average
improvement of 7.45% over the best method for
each task. Our detector achieves an accuracy of
80–90% across tasks suggesting effective defense
against adversarial attacks.

Having established the utility of attention heads
for adversarial detection, we perform several ab-
lation studies. First, we compare different combi-
nations of the features demonstrating that they are
mutually informative and thus combining them all
works best. Second, we show that CutMix data
augmentation (Yun et al., 2019) improves accu-
racy, demonstrating the first use of this method
in adversarial detection in NLP tasks. Third, we
show that the detector is more accurate as the size
of the language model scales. This is encourag-
ing because larger language models are expected
to have increased spurious correlations and thus
are more vulnerable to adversarial attacks. Fourth,
we show that the detector performs well even for
modest training sizes of adversarial examples, sug-
gesting effective generalization. In summary, we
propose a novel relation between attention heads
and adversarial detection. The effectiveness of the
resultant detector establishes that the mask of atten-
tion heads captures critical information about how
a Transformer model works for a given input.

The rest of the paper is organized as follows. We
detail our core method of computing IAS in the
next section. In Section 3 we discuss the features
from IAS for adversarial detection. We detail the
experimental setup along with the dataset creation
process in Section 4. We present our results in
Section 5 and conclude in Section 6.

2 Input-Specific Attention Subnetworks

In this section, we describe Input-specific Atten-
tion Subnetworks (IAS) and the computational ap-
proach to identify IAS for a given input.

2.1 Notation

We consider a BERT-style encoder model where
each layer consists of multi-headed self-attention
and position-wise FFN. Let an input x consist of
T tokens each represented by dv-dimensional vec-
tors. Let Xj ∈ RT×dv be the representation at the
input of the jth layer. Let WQ

ji ,W
K
ji ,W

V
ji be the

projection matrices of the ith self-attention head
in the jth layer. We define Qji = XjW

Q
ji ,Kji =

XjW
K
ji , Vji = XjW

V
ji as the query, key, and value

corresponding to the head respectively. Each self-
attention head performs a scaled dot-product atten-
tion on the query, key, and value to generate the
head’s output. The output of all the heads in a layer
are concatenated and passed through the FFN.

Headji(Xj) = softmax

(
QjiK

T
ji√

dk

)
Vji (1)

Layerj(Xj) = concati[Headji(Xj)]W
O
j (2)

where dk is the dimensionality of each key vector
and WO

j is a learnable parameter.
A pre-trained model is fine-tuned on a specific

task, such as sentiment classification. Let θ be
the set of trainable network parameters which are
optimized to minimize a task-specific training loss
for each input x:

Lθ(x) = LCE(f(x, θ), y), (3)

where f(·) is the function computed by the model
with parameters θ for input x, LCE is the stan-
dard cross-entropy loss function and y is the ex-
pected model output for input x. The overall
training loss is averaged across all |x| inputs, i.e.,
Lθ = 1

|x|
∑

x Lθ(x). Let f̂(·) represent the out-
put class generated from f(·) and θ∗ be the set of
optimal network parameters obtained after training.

2.2 Representing IAS

In an IAS, a subset of attention heads are pruned.
We represent a continuous relaxation of pruning by
modifying Eqn. 1 to weigh the output of each head
by a scalar gating value gji ∈ [0, 1]. The jth layer
of the modified network is given by

Layermj (Xj) = concati[gji·Headji(Xj)]W
O
j (4)

During inference, we constrain the gating values
to be binary to characterize either exclusion or in-
clusion of a head: gji is replaced by gbji ∈ {0, 1}
which defines the attention mask for the input x:
gb(x) = {gbji} ∈ {0, 1}nm, where n is the number

32

P(negative) = 0.015
P(positive) = 0.985

the acting, costumes, music,
cinematography and sound are all astounding

given the production's austere locales.

the acting, costumes, music,
cinematography and sound are all astuonding

given the production's austere lcoales.

P(negative) = 0.981
P(positive) = 0.019

Figure 1: The IAS (with active heads in green) com-
puted for two inputs on the SST-2 task, left is authentic
while right is adversarial. Notice how a small adversar-
ial perturbation in the input leads to very distinct sub-
networks being computed. The class predicted by each
IAS agrees with the prediction of the full network.

of layers and m is the number of heads per layer.
We represent the output class predicted by the IAS
for an input x by f̂g(x, θ∗, gb). We call the subset
of attention heads that are assigned a gating value
of 1 as active heads and note that the active heads
jointly define a subnetwork, called IAS. We illus-
trate IAS with an example. Figure 1 shows the
BERT-Base model with 12 layers and 12 heads per
layer. For two specific inputs, the corresponding at-
tention masks are shown with their active heads in
green. Thus, IAS is input-specific and characterizes
how the model processes the input in a relatively
low-dimensional space of [0, 1]144.

2.3 Computing IAS
We compute IAS by treating the gating values
as free variables to optimize the task-specific
loss (Eqn. 3) for a given input x. In this op-
timization, the network parameters θ are frozen.
Each gating value, gji is defined as gji =
fHC(pji), where pji is the free variable that is
optimized and fHC is a version of the hard con-
crete distribution (Louizos et al., 2017) given as

1

1+eα·(log(1−pji)−log(pji))
, where, α=6 gave the best

results for our work. Let g be the gating vector
as optimized by minimizing the loss for a specific
input. We need to enforce that g is binary. Unlike
approaches by Voita et al. (2019) and Wang et al.
(2020), we do not include a regularization term in
the training objective. Instead, we retain only those
heads for which the gating values ascend the fastest
towards 1, as measured after a certain η number
of epochs. Specifically, each binary value gbji is

derived from gji after η epochs as:

gbji(x) =

{
1, if gji(x) ≥ β ·max(g(x))

0, otherwise
(5)

where, β(< 1) is a thresholding parameter and
max(g(x)) is the largest among nm gating values.
For our work, we set η = 10 and β = 0.8.

Two exceptional cases may arise. First, if the bi-
nary gating values of all heads in a layer are thresh-
olded to 0, then the largest gating value in that layer
is forced to 1 to ensure information flows through
the network. Second, if the IAS predicts the wrong
class for that input, then β is reduced successively
in steps of 0.2 until the output of the IAS is correct.
For 98% of the inputs, the subnetwork predicted
the target class within β = 0.6.

3 Model for Adversarial Detection

In this section, we explain how we extract features
from the IAS and the design of the classifier for
adversarial detection. We use the term target class
to refer to the class predicted by the complete fine-
tuned network for an input. For authentic inputs,
this translates to the true class while for adversarial
inputs, this refers to the adversarial class that the
model is fooled into predicting.

3.1 Attention mask Fmask

The IAS identifies a subnetwork through which
important information flows for a particular input.
We hypothesize that this flow could be different
for authentic and adversarial inputs. Thus, the first
feature we extract, Fmask, is just the pre-activation
value p for the gating values of each head in the
IAS. Thus, for a BERT-base model with 12 layers
and 12 heads per layer, Fmask is a 144 dimensional
vector. We also define Fbmask which uses the binary
gated values gb instead of the real-values.

3.2 Features from flipping heads in IAS Fflip

Adversarial inputs rely heavily on the network ar-
chitecture and specific parameter combinations to
fool the model (Wang et al., 2019). Hence, slight
changes to network parameters can render an ad-
versarial perturbation non-adversarial. We thus
hypothesize (and later illustrate in Section 5.2) that
if we flip some of the heads in the IAS, it could sig-
nificantly change the output for adversarial inputs
but not by as much for authentic inputs. Which
heads should we flip? We take motivation from
studies that show that middle layers of BERT cap-
ture syntactic relations (Hewitt and Manning, 2019;

33

Goldberg, 2019) and are multi-skilled (Pande et al.,
2021), making them crucial for prediction. In con-
trast, the initial layers are responsible for phrase-
level understanding while the last few layers are
highly task-specific (Jawahar et al., 2019). Hence,
we choose to flip the gating values gb of heads in
the middle layers of IAS, specifically, the middle
dn3 e layers, i.e., we drop heads that were earlier ac-
tive and include earlier inactive heads. We denote
the modified gating vector after flipping as gf .

gfji =

{
gbji, if j ≤ bn3 c or j ≥ 2dn3 e
1− gbji, if dn3 e ≤ j < 2dn3 e

(6)

We run each input x through this mutated sub-
network and obtain a 4-dimensional feature vector,
Fflip consisting of the predicted class given by
f̂g(x, θ

∗, gf), the target class y, the confidence of
prediction, and a flag asserting equality between
predicted and target classes.

3.3 Layer-wise auxiliary features Flw

Studies (Wang et al., 2020; Xie et al., 2019) have
shown that intermediate representations of adver-
sarial inputs diverge from those of authentic inputs
as we progress into deeper layers. This indicates
that layer-wise information may be discriminative
of adversarial inputs. Hence, instead of having a
single classifier head processing the output of the
final layer, we propose to train a classifier head at
the output of each layer and use the classes pre-
dicted by them as features in adversarial detection.
Specifically, on the fine-tuned complete model, we
freeze the standard model parameters to θ∗ and
train n − 1 classifiers separately with a classifier
head attached to each of the first n − 1 layers to
predict the target class. Following the convention
in Eqn. 3, the training loss for the lth classifier
head with parameters Ωl on input x is given by:
LΩl(x) = LCE(f lg(x, θ

∗ ∪ Ωl, {1}nm), y), (7)

where f lg(·) gives the output class computed by
the lth classification head of a network with gat-
ing vector g. The overall training loss is given by
LΩ = 1

(n−1)|x|
∑

x

∑
l LΩl(x). Let Ω∗ be the set

of optimal parameters obtained after training.
Then for a given input, we construct the IAS

after flipping heads as given by the gating vector
gf and compute the outputs of the n− 1 layer-wise
classifiers, i.e., the output of the lth classifier head
is given by f̂ lg(x, θ

∗ ∪ Ω∗l, gf). We then create an
n+ 1 dimensional feature, Flw, which consists of

0
1

0

1

1-λ
λ

λ.L (1-λ).L

original data

augmented data
ground

truth

mixed
labels

Figure 2: Demonstration of CutMix used to mix
patches from two input feature vectors of length L each.

the n− 1 output labels with two other scalars: (a)
the number of these outputs that match the target
class, and (b) the number of times these outputs
change when traversed in the order of layers.

In summary, we compute the features as follows.
First, the model is fine-tuned on the task. Then,
layer-wise classification heads are trained while
keeping the model parameters frozen. Thus, given
an input, we first optimize and compute IAS from
which we extract Fmask. Then, the gating values of
the middle layers are flipped and we extract Fflip.
Finally, on the IAS with flipped heads, layer-wise
classifier outputs are used to extract Flw.

3.4 Classifier for adversarial detection

We refer to our classifier as AdvNet, which takes as
input, an (nm+ n+ 5)-dimensional vector F (x)
which is the concatenation of Fmask, Fflip, Flw and
generates a binary output classifying if a given in-
put is authentic or adversarial. AdvNet consists
of two 1-D convolutional layers with ReLU acti-
vation, two fully connected layers with sigmoid
activation, and a final classification layer with soft-
max activation. Since adversarial inputs are slow
and computationally expensive to generate, we
employ the CutMix algorithm (Yun et al., 2019)
for data augmentation. In CutMix, we slice out
patches from feature vectors of multiple inputs in
the training set, each of which could be authen-
tic or adversarial, and combine them to generate
new feature vectors. Their respective ground truth
labels are mixed in proportion to the length con-
tributed by each patch (see Figure 2). Formally,
if {xi}Ri=1 is a random subset of training set sam-
ples, an augmented feature vector from CutMix
is defined by F (x̃) = concati[F (xi)[pi : pi+1]],
where 0 = p1 < p2 < ... < pR+1 = nm+ n+ 5
and the mixed ground truth label is given by ỹ =∑

i yi(pi+1 − pi). Using soft labels by mixing
ground truth labels also offers better generalization
and learning speed (Müller et al., 2019).

34

4 Experimental Setup

4.1 NLU tasks for evaluation

We choose the following 10 standard NLU tasks
for performing our experimental studies: SST-2
(Socher et al., 2013), Yelp polarity (Zhang et al.,
2015a), IMDb (Maas et al., 2011), AG News
(Zhang et al., 2015b), MRPC (Dolan and Brockett,
2005), RTE (Wang et al., 2018), MNLI (Williams
et al., 2018), SNLI (Bowman et al., 2015), QQP1

and QNLI (Wang et al., 2018; Rajpurkar et al.,
2016). We refer the reader to Appendix A for fur-
ther details on these datasets.

4.2 Dataset creation

To perform adversarial detection, we require a
combined set of authentic and adversarial samples
for each task. First, we fine-tune a BERT-based
model for each task using its publicly available
training set. Then, samples from its test set for
which the fine-tuned model makes correct predic-
tions constitute the set of authentic samples for
that task. Second, we generate adversarial samples
by attacking the fine-tuned model using a broad
set of 11 hard attack types to comprehensively
test AdvNet’s performance and its generalizabil-
ity to diverse perturbations. The attacks include
word-level attacks: deletion (Feng et al., 2018),
antonyms, synonyms, embeddings (Mrkšić et al.,
2016), order swap (Pruthi et al., 2019), PWWS
(Ren et al., 2019), TextFooler (Jin et al., 2020) and
character-level attacks: substitution, deletion, in-
sertion, order swap (Gao et al., 2018). We use the
popular TextAttack framework (Morris et al., 2020)
for implementations of these attacks. Resulting per-
turbed samples that successfully fool our complete
fine-tuned model constitute the set of adversarial
samples for that task. On the combined authentic
and adversarial set, we make a 70-10-20 split for
creating training, validation and test sets for adver-
sarial detection using AdvNet. Our dataset contains
a total of 5,686 adversarial inputs across tasks and
attack types and is publicly available at https:
//github.com/emilbiju/Bert-Paths.

4.3 Implementation details

Our adversarial detection model, AdvNet, contains
two 1D convolutional layers followed by two fully
connected layers. The two convolutional layers

1quoradata.quora.com/First-Quora-Data
set-Release-Question-Pairs

have a kernel size of 3 and generate 32 and 16 out-
put feature maps. The two fully connected layers
have output dimensions of 32 and 16 with dropout
rates of 0.1. We use the binary cross-entropy loss
function and the Adam optimizer with a learning
rate of 0.001. We train the model for 100 epochs
with early stopping on an NVIDIA K80 GPU.

1 2 3 4 5 6 7 8 9 10
Epoch number

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Ga
tin

g
va

lu
e

Progression of gating values over 10 epochs

inactive head
active head

max(g(x))

Figure 3: The trajectory of gating values of individual
heads during the optimization to compute IAS. Only
a few heads (in green) reach the threshold and remain
active in IAS.

Figure 4: Fraction of inputs with a given number of ac-
tive heads from BERT-Base. Notice that in most cases,
only 20-40 heads out of 144 remain active.

5 Results & Discussion

In this section, we first analyse the IAS (Section
5.1) and the constituent features of AdvNet (Sec-
tion 5.2). We then perform a comparative study
with state-of-the-art adversarial detection methods
(Section 5.3). Lastly, we perform ablation studies
to understand the effect of task, model size, fea-
ture combinations and training set attacks on the
performance of AdvNet (Section 5.4). Unless oth-
erwise stated, the plots pertain to experiments on
the SST-2 dataset with the BERT-Base model.

35

https://github.com/emilbiju/Bert-Paths
https://github.com/emilbiju/Bert-Paths
quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

7.5 5.0 2.5 0.0 2.5 5.0 7.5

10

5

0

5

10

t-SNE on attention mask: SST-2
class 0
class 1

20 10 0 10 20 30

20

10

0

10

20

30
t-SNE on attention mask: AGNews

class 0
class 1
class 2
class 3

20 10 0 10 20
40

30

20

10

0

10

20

30

40

t-SNE on attention mask over
authentic & adversarial samples: SST-2

Aut: targ class 0
Adv: targ class 0
Aut: targ class 1
Adv: targ class 1

Figure 5: Projections with t-SNE on the attention mask for (a) SST-2, (b) AG News, and (c) authentic and adver-
sarial inputs. Projection of attention masks are strongly discriminative of class and weakly of adversarial inputs.

5.1 Active heads in IAS
We first check the number of active heads in IAS
for a given input. To do so, we plot the progression
of gating values with epochs when optimizing them
for a given input (see Figure 3). We observe that
only a small fraction of heads (shown in green) are
active at the end of the optimization process, thus
resulting in a sparse vector. The green curves that
are below the blue (threshold) line correspond to
the two exceptional cases discussed at the end of
Section 2.3. While the above plot was for a single
randomly selected input, in Figure 4 we show the
fraction of inputs with a given number of active
heads for all the datasets used in this work. The
relatively small modes and the right skew distribu-
tions imply that the extracted IAS are often sparse.

5.2 Feature-specific analysis
We now analyze the individual effectiveness of the
three features proposed in Section 3.
Attention mask (Fmask). We first show that the
attention mask is strongly correlated with the in-
put’s target class. To do so, we project the binary
vector g(x) for each authentic input x onto a 2D-
plane using the t-SNE method (van der Maaten and
Hinton, 2008) as shown in Figure 5(a), (b). We
observe that inputs from different classes separate
into distinctly separate clusters. Thus, the attention
mask is discriminative of an input’s target class as
the choice of active heads depends on it. Interest-
ingly, even if the attention computed for the same
word location in two distinct inputs are the same,
the heads attending to each word and responsible
for generating different output classes are different.

We present a similar plot with both authentic
and adversarial inputs in Figure 5(c). We note that
adversarial inputs group together with the authentic
inputs whose true class is the same as their adversar-
ial/target class. Within clusters of the same target

0.0 0.2 0.4 0.6 0.8 1.0
Logit value

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 ta

rg
et

 c
la

ss
 lo

gi
t

Target class logit distribution
Aut: targ class 0
Adv: targ class 0
Aut: targ class 1
Adv: targ class 1

Figure 6: CDF over the target class output logit of the
mutated IAS. The large area below the green curve with
logit value<0.5 corresponds to a large number of adver-
sarial inputs whose mutated IAS predict a non-target
class.

class, there is a only a moderate distinction between
adversarial and authentic inputs. But we show in
further experiments that a better separation is pos-
sible when the complete nm-dimensional vector is
used as opposed to a 2D projection.
Features from flipping heads in IAS (Fflip). For
each of the datasets, we compute the percentage of
authentic and adversarial inputs which generated
non-target class predictions. We find that the mu-
tated IAS after flipping heads in the middle layers
is more likely to predict the correct target class out-
put for an authentic input than an adversarial one.
We also study the confidence of the mutated IAS in
making these predictions using a CDF plot (Figure
6) over the output logit corresponding to the target
class.

We observe that Fflip predicts the target class
with higher confidence in case of authentic inputs
than adversarial ones. Specifically, only 9% of
authentic inputs had prediction confidence lower
than 0.85 as compared to 20% of adversarial in-
puts. Further, it predicts a non-target class with
high confidence for some adversarial inputs. For

36

1 2 3 4 5 6 7 8 9 10 11
Layer Number

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6
Fr

ac
tio

n
of

 sa
m

pl
es

 w
ith

no

n-
ta

rg
et

 c
la

ss
 o

ut
pu

ts

Mismatches in Auxiliary outputs

Aut: targ class 0
Aut: targ class 1

Adv: targ class 0
Adv: targ class 1

Figure 7: Fractions of authentic and adversarial inputs
that generate a non-target class prediction at each layer-
wise classification head.

example, 30% of adversarial inputs with prediction
confidence higher than 0.85 gave the wrong pre-
diction. In contrast, flipping the initial/final layers
of the IAS instead of the middle layers did not sig-
nificantly change the model prediction for either
authentic or adversarial samples, making it difficult
it to distinguish them.
Layer-wise auxiliary features (Flw). In Figure 7,
we plot the distribution of auxiliary output mis-
matches (non-target class predictions) across net-
work layers. We observe that for most layers, the
fraction of authentic inputs having target class pre-
dictions is higher than adversarial inputs. The dif-
ferences are particularly large for the last few lay-
ers. On average across datasets, we observed that
52.5% of adversarial inputs generate more than 2
auxiliary output predictions that do not match the
target class while only 23.1% of authentic inputs do
the same. Additionally, when traversing the layer-
wise outputs in order, we observed that the output
predictions of adversarial inputs switch among pos-
sible classes more often than for authentic inputs
(see Appendix D). These observations justify the
features that we include in Flw.

Based on the above analyses, we have demon-
strated that all 3 features of IAS are informative
for adversarial detection. Our results in the next
section corroborate these findings.

5.3 Performance on Adversarial Detection

Following the observations in the previous sec-
tion, we use AdvNet with the identified features
for adversarial detection. We compare the per-
formance of AdvNet with the current state-of-the-
art approaches for detecting adversarial inputs for

BERT-based models, viz., FGWS (Mozes et al.,
2021), NWS (Mozes et al., 2021), DISP (Zhou
et al., 2019) and FreeLB (Zhu et al., 2019). We
briefly describe these methods in Appendix C.

As seen in Table 1, AdvNet significantly outper-
forms existing approaches across all 10 datasets
with an average improvement of 7.45%. We re-
port an improvement of 6.53% for the 3 sentiment
analysis datasets (SST-2, Yelp, IMDb), 8.05% for
the 4 NLI datasets (RTE, SNLI, MNLI, QNLI)
and 6.98% for the 2 paraphrase detection datasets
(MRPC, QQP) over the respective best methods.

Another baseline that we compare with is Certi-
fied Robustness Training (Jia et al., 2019). While
this work is not aimed at adversarial detection, it
provides bounds on model robustness for word sub-
stitution perturbations. For making a comparison
with our work, we note that the fraction of adver-
sarial samples that are correctly detected as adver-
sarial translates to robustness for binary classifica-
tion tasks. We report robustness of 87% for word
substitution-based attacks and 81% across all 11
attacks for IMDb, while the best upper bound ob-
tained through certified robustness training is 75%.

When comparing across datasets, we observe
that AdvNet performs better on simpler sentence
labelling datasets like SST-2 and AG News when
compared to more complex tasks like RTE and
MRPC which require comparison between sen-
tences. Existing work (Pande et al., 2021) shows
that for simpler tasks, the BERT heads perform
discrete non-overlapping roles, while for complex
tasks, there is greater overlap in head roles and a
few heads perform more than one role. We hypothe-
size that this nature implies that the attention masks
for different inputs even belonging to the same type
(authentic or adversarial) can vary widely. This re-
duces the consistency of features across input types
making the detection harder. Nevertheless, AdvNet
establishes state-of-the-art results across datasets.
A detailed analysis of the performance of AdvNet
across tasks and attack types is provided in Ap-
pendix E.

5.4 Ablation studies

We now evaluate how variations in model size,
training set size, and the choice of feature com-
binations effect performance of AdvNet.
Effect of model size. IAS can be computed for
Transformer networks of any size. We compare
BERT-Small and BERT-Base models in terms of

37

Model SST-2 Yelp AG News MRPC IMDb SNLI RTE MNLI QQP QNLI
FGWS 71.93 78.36 70.41 69.85 75.98 75.41 71.23 60.23 73.52 78.14
NWS 70.31 74.72 65.62 68.02 65.72 71.82 64.27 56.94 70.20 74.58
DISP 68.73 70.15 66.38 62.22 75.23 72.92 66.40 59.34 69.86 76.92

FreeLB 77.60 82.54 75.55 72.41 79.85 79.80 64.29 58.10 65.69 76.40
AdvNet

w/ BERT-Small 78.57 76.72 78.63 75.05 74.09 72.07 73.64 64.26 68.71 74.47
w/ BERT-Base 90.74 87.68 91.78 84.61 81.18 82.50 80.43 72.61 75.27 86.07

Table 1: Comparison of the adversarial detection accuracy of AdvNet using features extracted from fine-tuned
BERT-Small and BERT-Base models with other state-of-the-art approaches for adversarial detection.

40 50 60 70 80 90
Percentage of data used for training

70

75

80

85

90

Te
st

 A
cc

ur
ac

y
(%

)

Variation in Accuracy with Train set size

SST2
YELP
AGNEWS
MRPC

IMDB
SNLI
RTE

MultiNLI
QNLI
QQP

Figure 8: Effect of training set size on accuracy of ad-
versarial detection with AdvNet.

performance of AdvNet as shown in Table 1. We
observe that, across datasets, AdvNet performs bet-
ter in detecting adversarial inputs fed to the larger
BERT-Base model (108M parameters) as opposed
to the smaller BERT-Small model (25M parame-
ters). The increase in accuracy averaged across
tasks is a significant 10.76%. We hypothesize that
this is because models with more layers encode
more information and allow for a better build-up of
semantic information which means that individual
heads play more discrete roles. This better perfor-
mance for the larger model is encouraging as the
more accurate and larger language models are ex-
pected to be more vulnerable to adversarial attacks.
Effect of training set size. In Figure 8, we show
how the performance of AdvNet changes as the
amount of training data changes. We observe that
AdvNet performs well even when it uses only a
fraction of the training set. Specifically, even at
40% of the training examples used, AdvNet out-
performs the results obtained with existing state-of-
the-art models on most tasks. This suggests that the
CutMix data augmentation is effective and the Ad-
vNet model is sample-efficient. This is particularly
important because designing adversarial examples
for each dataset remains a challenging task.

Datasets Fmask Fflip Flw Bin w/o CM
SST-2 82.87 74.07 64.79 85.59 82.23
Yelp 80.23 62.08 66.01 84.30 83.57

AG News 83.11 76.41 57.14 90.47 83.11
MRPC 76.35 68.82 59.40 80.27 77.35
IMDb 74.54 60.00 55.45 73.78 74.23
SNLI 80.83 57.91 58.83 75.64 70.41
RTE 74.44 60.88 56.67 77.21 74.06

MNLI 66.95 51.30 60.00 66.85 69.95
QQP 66.41 61.63 62.64 71.88 64.50
QNLI 79.65 55.69 59.36 81.42 73.11

Table 2: Results on feature combinations.

Using different feature combinations. We had
shown that each of the three features are infor-
mative in Section 5.2. In Table 2, we report the
performance of AdvNet by ablating various model
components. The first 3 columns report accuracies
when only one of the three features is passed at a
time to the model. We observe that Fmask performs
better than Fflip and Flw. This suggests that the
attention mask is the most important feature input
to the model. We analyze the roles of individual
gating values using GradCAM (see Appendix F).
Next, we test the performance when the boolean
attention mask Fbmask is used instead of the real-
valued vector Fmask along with Fflip and Flw. The
lower accuracy indicates that the real values are
more informative. Finally, we test the model perfor-
mance when CutMix is not used and conclude that
augmenting the training set using CutMix provides
higher accuracy as seen in the last row of Table 1
which uses all 3 features along with CutMix.
Defense Transferability Analysis. Next, we per-
form a study to understand how well the model
can perform on unseen attack types. For this pur-
pose, we train AdvNet with samples from only x%
of the 11 attack types and report results both on

38

test samples from the remaining attack types and
the complete test set for x ∈ {25, 50, 75} in Table
3. We observe that even when AdvNet is trained
with only 75% of the attack types, the test results
on new attacks outperform existing approaches for
most datasets, thus showing that our model can
generalize to unseen attack methods. Besides, at
all three values of x, the results on the complete
test set closely agree with the results on the new
attack types. This indicates that the reduction in
accuracy at lower x values can largely be attributed
to a smaller training set than to a lack of defense
transferability.

Dataset 25% 50% 75%
SST-2 (57.8, 58.9) (69.9, 68.4) (82.7, 80.7)
Yelp (63.1, 61.8) (70.3, 69.9) (77.8, 78.4)

AG News (63.7, 62.1) (71.4, 69.9) (83.6, 78.4)
MRPC (63.2, 60.1) (73.2, 74.5) (81.5, 82.3)
IMDb (66.8, 64.8) (71.6, 73.1) (77.4, 79.1)
SNLI (57.9, 57.6) (67.2, 66.6) (73.4, 72.3)
RTE (63.8, 62.4) (70.8, 69.7) (76.4, 75.5)

MNLI (57.4, 58.8) (62.3, 61.3) (67.0, 68.9)
QQP (59.7, 60.2) (64.0, 64.2) (69.0, 69.6)
QNLI (61.8, 60.6) (69.3, 67.2) (75.7, 77.5)

Table 3: Defense transferability study of AdvNet with
varying percentages of attack types included in the train
set. Each tuple contains the test accuracy on new attack
types and on all attack types respectively.

In summary, our results show that (a) the 3 IAS
features are individually informative, (b) AdvNet
significantly improves on baseline methods across
datasets, (c) AdvNet performance improves with
model size and does not drop much on reducing
training sets, (d) AdvNet achieves the best per-
formance when all 3 features are used along with
CutMix augmentation, and (e) AdvNet generalizes
well to new attack types.

6 Conclusion and future work

In this work, we present an altogether new utility of
attention heads in Transformer networks - to detect
adversarial attacks. We defined input-specific atten-
tion subnetworks (IAS) and proposed a method to
compute them efficiently. We extracted 3 features
from IAS and showed their utility in distinguish-
ing adversarial samples from authentic ones. We
demonstrated that our approach significantly im-
proves the state-of-the-art accuracy across datasets
and attack types. Our work suggests that input-

specific model perturbations provide strong sig-
nals to interpret Transformer-based models such
as large language models. Further, the sparse na-
ture of the identified IAS indicate opportunities for
input-specific model optimization. In future work,
we would like to extend this study to tasks beyond
NLU, including vision and speech-related tasks.

Discussion on Ethics and broader impact

One of the main challenges with deep neural mod-
els is their lack of explainability. These models
typically have inherent biases resulting from the
training data, parameter combinations and other
factors that lead to unexpected responses to certain
inputs. This is further complicated when adversar-
ial agents target to manipulate the output of deep
neural models. We see our work on creating and us-
ing attention subnetworks for adversarial detection
as a part of the broader effort towards Responsi-
ble AI. Such a solution is particularly important
in situations where deep neural models make deci-
sions that affect physical safety, digital security and
equal opportunity. However, we acknowledge that
this additional visibility into the model comes at an
added cost - inference under uncertainty of adver-
sarial detection is more expensive. We encourage
system designers to trade-off computational and
runtime considerations for security when deploy-
ing such solutions.

Acknowledgements

We thank Samsung and IITM Pravartak for sup-
porting our work through their joint fellowship
program. We also wish to thank the anonymous
reviewers for their efforts in evaluating our work
and providing us with constructive feedback.

References
Emil Biju, Anirudh Sriram, Mitesh M. Khapra, and

Pratyush Kumar. 2020. Joint transformer/RNN ar-
chitecture for gesture typing in indic languages.
In Proceedings of the 28th International Confer-
ence on Computational Linguistics, pages 999–
1010, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

39

https://doi.org/10.18653/v1/2020.coling-main.87
https://doi.org/10.18653/v1/2020.coling-main.87
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075

Aakriti Budhraja, Madhura Pande, Preksha Nema,
Pratyush Kumar, and Mitesh M. Khapra. 2020. On
the weak link between importance and prunability
of attention heads. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 3230–3235, Online. As-
sociation for Computational Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer,
Pedro Rodriguez, and Jordan Boyd-Graber. 2018.
Pathologies of neural models make interpretations
difficult. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3719–3728, Brussels, Belgium. Association
for Computational Linguistics.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yan-
jun Qi. 2018. Black-box generation of adversarial
text sequences to evade deep learning classifiers. In
2018 IEEE Security and Privacy Workshops (SPW),
pages 50–56. IEEE.

Yoav Goldberg. 2019. Assessing bert’s syntactic abili-
ties. arXiv preprint arXiv:1901.05287.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word repre-
sentations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4129–4138, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does bert learn about the structure of
language? In ACL 2019-57th Annual Meeting of the
Association for Computational Linguistics.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and
Percy Liang. 2019. Certified robustness to adversar-
ial word substitutions. In EMNLP.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural lan-
guage understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4163–4174, Online. Association for Computational
Linguistics.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is BERT really robust? A strong
baseline for natural language attack on text clas-
sification and entailment. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY,

USA, February 7-12, 2020, pages 8018–8025. AAAI
Press.

Christos Louizos, Max Welling, and Diederik P
Kingma. 2017. Learning sparse neural net-
works through l_0 regularization. arXiv preprint
arXiv:1712.01312.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

John X. Morris, Eli Lifland, Jin Yong Yoo, Jake
Grigsby, Di Jin, and Yanjun Qi. 2020. Textattack:
A framework for adversarial attacks, data augmenta-
tion, and adversarial training in nlp.

Maximilian Mozes, Pontus Stenetorp, Bennett Klein-
berg, and Lewis Griffin. 2021. Frequency-guided
word substitutions for detecting textual adversarial
examples. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 171–186,
Online. Association for Computational Linguistics.

Nikola Mrkšić, Diarmuid O Séaghdha, Blaise Thom-
son, Milica Gašić, Lina Rojas-Barahona, Pei-
Hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve Young. 2016. Counter-fitting word vec-
tors to linguistic constraints. arXiv preprint
arXiv:1603.00892.

Rafael Müller, Simon Kornblith, and Geoffrey E Hin-
ton. 2019. When does label smoothing help? In
Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Madhura Pande, Aakriti Budhraja, Preksha Nema,
Pratyush Kumar, and Mitesh M Khapra. 2021. The
heads hypothesis: A unifying statistical approach to-
wards understanding multi-headed attention in bert.
arXiv preprint arXiv:2101.09115.

Danish Pruthi, Bhuwan Dhingra, and Zachary C Lip-
ton. 2019. Combating adversarial misspellings
with robust word recognition. arXiv preprint
arXiv:1905.11268.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

40

https://doi.org/10.18653/v1/2020.emnlp-main.260
https://doi.org/10.18653/v1/2020.emnlp-main.260
https://doi.org/10.18653/v1/2020.emnlp-main.260
https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/I05-5002
https://doi.org/10.18653/v1/D18-1407
https://doi.org/10.18653/v1/D18-1407
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://aaai.org/ojs/index.php/AAAI/article/view/6311
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://proceedings.neurips.cc/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
http://arxiv.org/abs/2005.05909
http://arxiv.org/abs/2005.05909
http://arxiv.org/abs/2005.05909
https://www.aclweb.org/anthology/2021.eacl-main.13
https://www.aclweb.org/anthology/2021.eacl-main.13
https://www.aclweb.org/anthology/2021.eacl-main.13
https://proceedings.neurips.cc/paper/2019/file/f1748d6b0fd9d439f71450117eba2725-Paper.pdf
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial ex-
amples through probability weighted word saliency.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
1085–1097, Florence, Italy. Association for Compu-
tational Linguistics.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam,
D. Parikh, and D. Batra. 2017. Grad-cam: Visual ex-
planations from deep networks via gradient-based lo-
calization. In 2017 IEEE International Conference
on Computer Vision (ICCV), pages 618–626.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Betty van Aken, Benjamin Winter, Alexander Löser,
and Felix A. Gers. 2019. How does bert answer
questions? a layer-wise analysis of transformer rep-
resentations. CIKM ’19, page 1823–1832, New
York, NY, USA. Association for Computing Machin-
ery.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-
head self-attention: Specialized heads do the heavy
lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang,
and Peixin Zhang. 2019. Adversarial sample detec-
tion for deep neural network through model muta-
tion testing. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages
1245–1256. IEEE.

Yulong Wang, Hang Su, Bo Zhang, and Xiaolin Hu.
2020. Interpret neural networks by extracting criti-
cal subnetworks. IEEE Transactions on Image Pro-
cessing, 29:6707–6720.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Cihang Xie, Yuxin Wu, Laurens van der Maaten,
Alan L Yuille, and Kaiming He. 2019. Feature de-
noising for improving adversarial robustness. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 501–
509.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh,
Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
2019. Cutmix: Regularization strategy to train
strong classifiers with localizable features. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6023–6032.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015a.
Character-level Convolutional Networks for Text
Classification. arXiv:1509.01626 [cs].

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun.
2015b. Character-level convolutional networks for
text classification. In NIPS.

Yichao Zhou, Jyun-Yu Jiang, Kai-Wei Chang, and Wei
Wang. 2019. Learning to discriminate perturbations
for blocking adversarial attacks in text classification.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4904–
4913, Hong Kong, China. Association for Computa-
tional Linguistics.

Chen Zhu, Yu Cheng, Zhe Gan, S. Sun, Tom Goldstein,
and Jingjing Liu. 2019. Freelb: Enhanced adver-
sarial training for language understanding. ArXiv,
abs/1909.11764.

41

https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ICCV.2017.74
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.1145/3357384.3358028
https://doi.org/10.1145/3357384.3358028
https://doi.org/10.1145/3357384.3358028
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
http://arxiv.org/abs/1509.01626
http://arxiv.org/abs/1509.01626
https://doi.org/10.18653/v1/D19-1496
https://doi.org/10.18653/v1/D19-1496

A Datasets used for authentic examples

The 10 datasets used in this work were listed in Sec-
tion 4.1. Here, we provide additional details about
these datasets. SST-2 (Socher et al., 2013), Yelp po-
larity (Zhang et al., 2015a) and IMDb (Maas et al.,
2011) are binary sentiment classification datasets.
AG News (Zhang et al., 2015b) consists of news
headlines classified into one of 4 categories (world,
sports, business, sci/tech) and MRPC (Dolan and
Brockett, 2005) is a paraphrase dataset which con-
tains sentence pairs with binary labels indicating
whether they are semantically equivalent or not.
RTE (Wang et al., 2018), MNLI (Williams et al.,
2018), SNLI (Bowman et al., 2015) contain sen-
tence pairs with labels indicating whether one sen-
tences entails, contradicts or is neutral with respect
to the other sentence. QQP is again a paraphrase
dataset but unlike MRPC which contains sentences,
it contains question pairs taken from Quora with
binary labels indicating whether they are semanti-
cally equivalent or not. QNLI contains question-
context pairs with a binary label indicating whether
the context sentence contains the answer to the
question or not.

B Examples of adversarial attacks

In Table 4, we provide examples for each of the
11 attack types that we use to generate adversarial
inputs for this work.

C Other methods for Adversarial
Detection

We briefly describe the four methods that we com-
pare with in Table 1.
• FGWS (Mozes et al., 2021): Here, a word

frequency-guided approach is used to identify in-
frequent words in an input sentence and replace
them with more frequent, semantically similar
words. Then, the difference in prediction confi-
dence of the Transformer-based model between
the original and substituted sentences is consid-
ered. If this value is above a threshold, the sen-
tence is predicted to be adversarial.

• NWS: This is the naive word substitution base-
line used in Mozes et al. (2021). Here, each
out-of-vocabulary word in an input sentence is
replaced with a random word from a set of se-
mantically related words, following which the
same process as above is used to predict input
authenticity.

• DISP (Zhou et al., 2019): In this approach, a
BERT-based perturbation discriminator predicts
whether each token in the input sentence is au-
thentic or perturbed. If none of the tokens are
predicted to be perturbed, the input sentence is
considered authentic.

• FreeLB (Zhu et al., 2019): This is an adversar-
ial training approach where adversarial pertur-
bations are added to word embeddings and the
resulting adversarial loss is minimized to pro-
mote higher invariance in the embedding space.

• Certified Robustness Training (Jia et al.,
2019): This approach uses Interval Bound Prop-
agation (IBP) to obtain an upper bound on
the worst-case loss resulting from any word
substitution-based perturbation. This has been
applied to CNN and LSTM-based language mod-
els.

D Analysing Fflip and Flw

In the second column of Table 5, for each of the
datasets, we show the percentage of authentic and
adversarial inputs which generated non-target class
predictions. Further, in the third column of Table 5
we show the percentage of (authentic, adversarial)
inputs whose layer-wise outputs showed more than
one switch. These results show that the Fflip and
Flw are individually informative.

E Adversarial detection accuracy for
different attack types

In Table 6, we present the breakup of model ac-
curacy across individual attack types. We observe
that for text classification tasks like SST-2, Yelp
and AG News the accuracy for Embedding and Syn-
onym swap attack types are much higher compared
to other datasets. We also note that in case of both
word and character-level attacks, Deletion and Sub-
stitution operations are the ones with least detection
accuracy across almost all datasets. Finally, we ob-
serve that the performance for detecting adversarial
inputs generated by PWWS and TextFooler attacks
remain fairly consistent across datasets.

F Refereeing heads in adversarial
detection

In this section, we explore the influence of each gat-
ing value in generating the prediction for our adver-
sarial detection model. We make use of the Grad-
CAM (Selvaraju et al., 2017) approach to identify
critical neurons in the input layer of AdvNet that

42

Attack Type Perturbed Text
Original Text it ’s a charming and often affecting journey.

Word-level attacks
Deletion it’s a _ and often affecting journey.

Antonyms it’s a repulsive and often affecting journey.
Synonyms it’s a charming and often affecting passage.

Embeddings it’s a charming and quite affecting journey.
Order Swap it’s charming and affecting a often journey.

PWWS it’s a entrance and often strike journey.
TextFooler it’s a charming and _ affecting journey.

Original Text a sometimes tedious film.
Character-level attacks

Substitution a sometimes tidious fylm.
Deletion a som_times tedio_s film.
Insertion a sometimeDs tvedious film.

Order Swap a smoetimes tedoius film.

Table 4: Examples of 11 attack types used for adversarial data creation. ‘_’ represents a deleted character and there
is no character present at that position in the adversarial sample.

Dataset (Mutated)
Non-target o/p

(Layer-wise)
Switches>1

SST-2 (12.3, 34.2) (37.9, 54.8)
IMDb (0.33, 2.18) (0.16, 1.45)
Yelp (3.8, 5.3) (0.83, 1.08)

AG News (6.6, 22.8) (3.2, 17.0)
MRPC (21.3, 24.3) (10.3, 8.77)
RTE (24.5, 22.2) (44.2, 50.9)
SNLI (2.83, 96.0) (11.6, 41.0)
MNLI (11.0, 24.8) (24.3, 42.5)
QQP (3.2, 1.3) (6.2, 6.8)
QNLI (5.7, 1.0) (13.8, 11.1)

Table 5: Percentages of (authentic, adversarial) inputs
whose (a) mutated subnetworks generated non-target
class predictions; (b) layer-wise outputs showed more
than one switch.

have large gradients from the target class (authentic
or adversarial) flowing through them. Among these,
we consider neurons that correspond to the gating
values, i.e, Fmask and call the heads corresponding
to them as refereeing heads. From Figure 9, we
observe that word swap attacks like antonyms, syn-
onyms, and embeddings require a greater number
of refereeing heads, while character-level attacks
need fewer. This is because character-level changes
make the token invalid, i.e, the model treats it as a
unknown token absent in the vocabulary. Since this
changes the input embedding sequence more dra-
matically (Biju et al., 2020), small deviations from
standard gating patterns are sufficient to mislead
the model leading to fewer refereeing heads. Since
introducing synonym and embedding based pertur-
bations change the embeddings input to the model
by a smaller extent, larger deviations from the gat-
ing pattern are required to block or pass selective
chunks of information to mislead the model.

43

Dataset #Adv Word-level attacks Character-level attacks
samples DEL ANT SYN EMBED SWAP PWWS TF SUB DEL INS SWAP

SST-2 739 0.84 0.96 0.95 0.96 0.75 0.81 0.76 0.92 0.80 0.87 0.89
Yelp 589 0.75 0.92 0.92 0.96 0.88 0.80 0.95 0.93 0.77 0.88 0.88

AG News 829 0.88 0.96 0.92 0.96 0.82 0.83 0.84 0.89 0.84 0.85 0.88
MRPC 712 0.75 0.75 0.9 0.72 0.94 0.84 0.82 0.86 0.79 0.76 0.92
IMDb 321 0.80 0.76 0.85 0.89 0.80 0.82 0.81 0.94 0.75 0.96 0.79
SNLI 1262 0.61 0.80 0.78 0.88 0.78 0.76 0.79 0.85 0.88 0.65 0.83
RTE 541 0.75 0.84 0.86 0.87 0.79 0.77 0.73 0.82 0.76 0.82 0.82

MNLI 548 0.67 0.80 0.72 0.85 0.78 0.80 0.76 0.78 0.80 0.86 0.76
QQP 307 0.70 0.82 0.74 0.80 0.75 0.76 0.74 0.78 0.81 0.86 0.77
QNLI 395 0.80 0.90 0.92 0.92 0.90 0.82 0.86 0.82 0.86 0.82 0.82

Table 6: Accuracies across datasets for each attack type. Legend: SUB-substitution, DEL-deletion, SYN-synonym,
EMBED-embedding, INS-insertion, SWAP-order swap, TF-TextFooler. Refer Section 4.1 for descriptions of at-
tack types. The second column provides the number of adversarial samples generated by us for each task across
all 11 attack types.

W
-D

EL

W
-A

NT

W
-S

YN

W
-E

M
B

W
-S

W
AP

W
-P

W
W

S

W
-T

F

C-
SU

B

C-
DE

L

C-
IN

S

C-
SW

AP

Attack Types

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
op

or
tio

n
of

 re

fe
re

ei
ng

 h
ea

ds

Refereeing heads across attack types
upper 4 layers
middle 4 layers
lower 4 layers

Figure 9: Fraction of refereeing heads used by the ad-
versarial detection model across various adversarial at-
tack types. The split of these across 4 layer subsets is
also shown.

44

