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Abstract

Task-oriented personal assistants enable people
to interact with a host of devices and services
using natural language. One of the challenges
of making neural dialogue systems available
to more users is the lack of training data for
all but a few languages. Zero-shot methods
try to solve this issue by acquiring task knowl-
edge in a high-resource language such as En-
glish with the aim of transferring it to the low-
resource language(s). To this end, we intro-
duce CrossAligner, the principal method of
a variety of effective approaches for zero-shot
cross-lingual transfer based on learning align-
ment from unlabelled parallel data. We present
a quantitative analysis of individual methods
as well as their weighted combinations, sev-
eral of which exceed state-of-the-art (SOTA)
scores as evaluated across nine languages, fif-
teen test sets and three benchmark multilingual
datasets. A detailed qualitative error analysis
of the best methods shows that our fine-tuned
language models can zero-shot transfer the task
knowledge better than anticipated.

1 Introduction

Natural language understanding (NLU) refers to
the ability of a system to ‘comprehend’ the mean-
ing (semantics) and the structure (syntax) of hu-
man language (Wang et al., 2019) to enable the
interaction with a system or device. Cross-lingual
natural language understanding (XNLU) alludes to
a system that is able to handle multiple languages
simultaneously (Artetxe and Schwenk, 2019; Hu
et al., 2020). We focus on task-oriented XNLU
that comprises two correlated objectives: i) Intent
Classification, which identifies the type of user
command, e.g. ‘edit_reminder’, ‘send_message’
or ‘play_music’ and ii) Entity/Slot Recognition,
which identifies relevant entities in the utterance in-
cluding their types such as dates, messages, music

∗Work conducted as Research Intern at Huawei’s Noah’s
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tracks, locations, etc. In a modular dialogue system,
this information is used by the dialogue manager
to decide how to respond to the user (Casanueva
et al., 2017; Gritta et al., 2021). For neural XNLU
systems, the limited availability of annotated data
is a significant barrier to scaling dialogue systems
to more users (Razumovskaia et al., 2021). There-
fore, we can use cross-lingual methods to zero-shot
transfer the knowledge learnt in a high-resource
language such as English to the target language of
choice (Artetxe et al., 2020; Siddhant et al., 2020).
To this end, we introduce a variety of alignment
methods for zero-shot cross-lingual transfer, most
notably CrossAligner. Our methods leverage un-
labelled parallel data and can be easily integrated
on top of a pretrained language model, referred
to as XLM1, such as XLM-RoBERTa (Conneau
et al., 2020). Our methods help the XLM align its
cross-lingual representations while optimising the
primary XNLU tasks, which are learned only in
the source language and transferred zero-shot to
the target language. Finally, we also investigate
the effectiveness of simple and weighted combi-
nations of multiple alignment losses, which leads
to further model improvements and insights. Our
contributions are summarised as follows:

• We introduce CrossAligner, a cross-lingual
transfer method that achieves SOTA perfor-
mance on three benchmark XNLU datasets.

• We introduce Translate-Intent, a simple and
effective baseline, which outperforms its com-
monly used counterpart ‘Translate-Train’.

• We introduce Contrastive Alignment, an aux-
iliary loss that leverages contrastive learning
at a much smaller scale than past work.

• We introduce weighted combinations of the
above losses to further improve SOTA scores.

• Qualitative analysis aims to guide future re-
search by examining the remaining errors.

1Not to be confused with Lample and Conneau (2019).
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2 Related Work

Several approaches to zero-shot cross-lingual trans-
fer exist and can broadly be divided into: a) Data-
based Transfer, which focuses on training data
transformation and b) Model-based Transfer that
centres around modifying models’ training routine.

Data-based Transfer Translating utterances for
the intent classification task is relatively straight-
forward so previous works focused on projecting
and/or aligning the entity labels between translated
utterances. This is followed by standard supervised
training with those pseudo-labels and is commonly
known as the translate-train method. One of the
earliest works still being used for this purpose is
fastalign (Dyer et al., 2013). It’s an unsupervised
word aligner trained on a parallel corpus to map
each word (thus its entity label) in the source ut-
terance to the word(s) in the target user utterance.
Projecting the entity labels can also be done with
word-by-word translation and source label copy-
ing (Yi and Cheng, 2021). A teacher model then
weakly labels the target data, which is used to train
the final student model. Sometimes, this type of la-
bel projection is complemented with an additional
entity alignment step (Li et al., 2021a). Better per-
formance can be achieved by using machine trans-
lation with entity matching and distributional statis-
tics (Jain et al., 2019) though this can be a costly
process for each language. A category of ‘word
substitution’ methods such as code-switching (Qin
et al., 2020; Kuwanto et al., 2021) or dictionary-
enhanced pretraining (Chaudhary et al., 2020) have
also been shown to improve cross-lingual transfer.

Model-based Transfer Prior to the adoption of
multilingual transformers (Lample and Conneau,
2019), task-oriented XNLU methods employed a
BiLSTM encoder combined with different multi-
lingual embeddings (Schuster et al., 2019). Newer
approaches usually involve a pretrained XLM and
the addition of some new training component(s)
with the inference routine remaining mostly un-
changed. Xu et al. (2020) learn to jointly align and
predict entity labels by fusing the source and target
language embeddings with attention and using the
resulting cross-lingual representation for entity pre-
diction. Qi and Du (2020) include an adversarial
language detector in training whose loss encour-
ages the model to generate language-agnostic sen-
tence representations for improved zero-shot trans-
fer. Pan et al. (2020) and Chi et al. (2020) added a

contrastive loss to pretraining that treats translated
sentences as positive examples and unrelated sen-
tences as negative samples. This training step helps
the XLM produce similar embeddings in different
languages. However, these methods require large
annotated datasets and expensive model pretraining
(Chi et al., 2020). Our proposed methods only use
the English task data (which is relatively limited)
and its translations for each language.

The most related prior works are Arivazhagan
et al. (2019) for machine translation and Gritta and
Iacobacci (2021) for task-oriented XNLU. Both
of these are cross-lingual alignment methods that
use translated training data to zero-shot transfer the
source language model to the target language. We
focus on the latter work, called XeroAlign, which
reported the most recent SOTA scores on our eval-
uation datasets. XeroAlign works by generating a
sentence embedding of the user utterance for each
language, e.g. English (source) and Thai (target)
using the CLS token of the XLM. A Mean Squared
Error loss function minimises the difference be-
tween the multilingual sentence embeddings and
is backpropagated along with the main task loss.
XeroAlign aims to bring sentence embeddings in
different languages closer together with a bias to-
wards intent classification due to the CLS embed-
ding, which is the standard input to the intent clas-
sifier. We reproduce this method for analysis and
comparisons but add a small post-processing step
that distinctly improves the reported scores.

3 Methodology

3.1 CrossAligner

Intuition We introduce CrossAligner, the most
notable of our proposed cross-lingual alignment
methods, outlined in Algorithm 1. CrossAligner en-
ables effective zero-shot transfer by leveraging un-
labelled parallel data for our new language-agnostic
objective created through a transformation of the
English entity labels. CrossAligner was borne out
of early error analysis where we observed that the
model incorrectly predicted entities that didn’t oc-
cur in the input and failed to predict entities that did
occur in the input. Using this insight as our main
motivation, the essence of CrossAligner is being
able to exploit information about the presence of
entities/slots in the user utterance.

Algorithm We have used a proprietary service
(Huawei Translate) to translate the English user ut-
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terances XEng into each target language XTar, how-
ever, a publicly available translator can also be
used. Note that we use the same translations for
each of our alignment methods to compare them
fairly. Our language-agnostic objective is created
by transforming the English slot labels yec into a
fixed binary vector yca indicating which entities
are present in the input (lines 1-7 in Algorithm 1),
irrespective of the frequency of their occurrence.

The standard XNLU training (lines 15-20) fea-
tures an Intent Classifier (IC) and an Entity Clas-
sifier (EC). Each computes a cross-entropy loss
(ce_loss) with a softmax activation using English la-
belled data (multi-class classification). This yields
the standard losses Lic and Lec. The CrossAligner
(CA) classifier then pools the EC logits matrix by
reshaping it into a long vector (lines 24 and 29) and
predicts which entities are present in the user utter-
ance (multi-label classification). We compute a Bi-
nary Cross-Entropy loss (bce_loss) with a sigmoid
activation between the predicted labels predeng and
predtar (for English and Target languages respec-
tively) and our language-agnostic labels yca (lines
26 and 31). This yields the CrossAligner losses
Leng and Ltar. The fact that these gradients are
propagated through the EC to the XLM token em-
beddings ensures a good alignment for entity/slot
recognition, as shown in the results section. Note
that EC, IC and CA are shared between languages
to aid zero-shot cross-lingual transfer.

BIO versus IO Using the BIO sequence tagging
format (Sang and De Meulder, 2003) can intro-
duce easily avoidable model errors, e.g. predicting
a B-tag after an I-tag, two B-tags in succession
or skipping the B-tag altogether. We have there-
fore simplified the training process by making it
agnostic w.r.t. the entity’s BI order. The B-tags
were removed in preprocessing, meaning the entity
classifier predicts only IO-tags. At inference, the B-
tags get restored with a simple post-processing rule.
Note that all our models use this IO-only training.

Architecture We use a common task-oriented
XNLU model that employs a pretrained XLM,
e.g. JointBERT (Chen et al., 2019). The IC, EC
and CA each feature a single multi-layer percep-
tron of sizes: [hidden_size, len(intent_classes)],
[hidden_size, len(entity_classes)] and [seq_len×
len(entity_classes), len(entity_classes)]. Depend-
ing on the dataset, seq_len varies between 50-100
tokens. The model architecture is shown in Fig 1.

Algorithm 1 The CrossAligner alignment/loss.

1: function TRANSFORMLABELS(yec)
2: yca← zeros(len(entity_classes))
3: for entity ∈ yec do
4: yca[index_of(entity)]← 1
5: end for
6: return yca
7: end function

8: XLM← Cross-lingual language model
9: IC← Intent Classifier

10: EC← Entity Classifier
11: CA← CrossAligner Classifier
12: XEng ← Standard training data in English
13: XTar ← XEng translated into Target language

14: for (xeng, y), (xtar, y) ∈ XEng,XTar do
—Standard XNLU Training—

15: yic, yec← y
16: clseng, tokenseng ← XLM(xeng)
17: predic← IC(clseng)
18: Lic← ce_loss(predic, yic)
19: predec← EC(tokenseng)
20: Lec← ce_loss(predec, yec)

—CrossAligner Training—

21: yca← TRANSFORMLABELS(yec)
22: shape← (seq_len× len(entity_classes))
23: logitseng ← EC(tokenseng)
24: logitseng.reshape_matrix_into(shape)
25: predeng ← CA(logitseng)
26: Leng ← bce_loss(predeng, yca)
27: clstar, tokenstar ← XLM(xtar)
28: logitstar ← EC(tokenstar)
29: logitstar.reshape_matrix_into(shape))
30: predtar ← CA(logitstar)
31: Ltar ← bce_loss(predtar, yca)
32: Ltotal←Lic + Lec + Leng + Ltar
33: end for

3.2 Contrastive Alignment for XNLU

Our contrastive alignment is based on InfoNCE
(Oord et al., 2018). Previous work has employed
a contrastive loss for cross-lingual alignment (Pan
et al., 2020), however, the datasets were out-of-
domain and orders of magnitude larger. We show
that strong results can be obtained using only in-
domain (fine-tuning) data. Similar to (Wu et al.,
2021), if given a randomly sampled batch of N
English sentences XEng and its parallel sentences
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Figure 1: The architecture of CrossAligner. The param-
eters of the XLM model and all classifiers are shared
between languages to enable cross-lingual transfer.

XTar in the target language, then the loss on the ith

sentence pair xengi ∈ XEng and xtari ∈ XTar equals:

ℓ(xengi , xtari) = − log
esim(xengi ,xtari )∑N
k=1 e

sim(xengi ,xtark )
(1)

where sim(u, v) = u · v / ||u||2 · ||v||2 is the cosine
similarity between two sentence embeddings. A
sentence xengi ∈ XEng symmetrically forms a posi-
tive pair with its translation xtari ∈ XTar while the
other N− 1 sentence embeddings are treated as
negative samples. The batch loss is calculated as
the average of all positive pair losses. Algorithm 2
below shows the steps that replace/complement the
CrossAligner block (lines 21-32 in Algorithm 1).

Algorithm 2 The Contrastive Alignment loss.

1: clseng, tokenseng ← XLM(xeng)
2: clstar, tokenstar ← XLM(xtar)
3: sim← batch_cosine_sim(clseng, clstar)
4: labels← arange(batch_size)
5: Lcl← ce_loss(sim, labels)
6: Ltotal←Lic + Lec + Lcl

3.3 Translate-Intent
The translate-train method is used in multilingual
NLP as a competitive baseline (Liang et al., 2020;
Hu et al., 2020). After machine translation, the
sequence tagging tasks require an additional trans-
formation, i.e. entity label projection and/or word
alignment (Schuster et al., 2019; Li et al., 2021b;
Xu et al., 2020). This is followed by supervised
fine-tuning with the new pseudo-labels. How-
ever, both label projection and word alignment are
sources of common errors. We therefore introduce
a simpler baseline called Translate-Intent, which to
the best of our knowledge, has not been featured
in task-oriented XNLU. We omit the entity/slot
recognition for the target language (given the un-
reliable pseudo-labels) and only use the IC, which

Algorithm 3 The Translate-Intent loss.

1: clstar, tokenstar ← XLM(xtar)
2: predic← IC(clstar)
3: Lti← ce_loss(predic, yic)
4: Ltotal←Lic + Lec + Lti

is trained with the parallel data XTar (labels copied
from English). Algorithm 3 above shows the steps
that either replace or complement (in case of a com-
bination of multiple losses) the CrossAligner steps,
shown in lines 21-32 in Algorithm 1.

3.4 Adaptive Weighting of Auxiliary Losses

In order to evaluate the benefits of combinations of
two or more alignments, we employ the Multi-Loss
Weighting with Coefficient of Variations (Groe-
nendijk et al., 2021) technique (CoV) to calculate a
weighted sum of auxiliary losses (Aux) that we add
to the main XNLU losses Lic and Lec as follows:

Ltotal = Lic + Lec +
∑
a∈Aux

waLa (2)

The sole difference to CoV is that we opt to omit
the loss weight normalisation step before applica-
tion. The weights for an auxiliary loss La,t for
a ∈ Aux at training step t are calculated as follows:

wa,t =
σℓa,t
µℓa,t

ℓa,t =
La,t

µLa,t−1

(3)

where ℓa,t is the loss ratio of loss a ∈ Aux at train-
ing step t, σ is the standard deviation over the his-
tory of loss ratios and µℓa,t−1 is the mean of the
loss ratio ℓa up to and including step t− 1. We
also compare CoV to a simple sum of all losses i.e.
equal weight for each loss, as shown in Algorithms
1, 2 and 3 (line beginning with Ltotal).

4 Experimental Setup

Datasets Three multilingual datasets are used to
compare our methods with their most relevant coun-
terparts. The datasets, which are used as standard
benchmarks for the XNLU tasks, comprise nine
unique languages (de, pt, zh, ja, hi, tr, fr, es, th)
from 15 test sets (20,000+ instances in total) featur-
ing diverse examples of users interacting with task-
oriented personal assistants designed to test the
XNLU capabilities of multilingual models. Two
related tasks are being evaluated, Intent Classifica-
tion and Entity/Slot Recognition.
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Models MTOP (5) MTOD (2) M-ATIS (8) MEAN (15) Overall

Zero-Shot 91.7/77.1 94.1/75.1 91.1/79.9 91.7/76.5 84.1
Target Language 95.7/88.7 98.4/91.8 92.5/88.9 94.3/89.2 91.8

Translate-Train SOTA 94.5/77.9 97.5/67.9 94.9/78.0 95.1/76.6 85.9
Translate-Intent (Ours) 95.2/77.1 98.1/76.5 95.9/80.0 95.9/78.5 87.2

Previous SOTA 95.6/80.3 98.8/72.9 96.0/81.2 96.1/79.8 88.0
XeroAlignIO (Ours) 95.3/81.3 98.5/75.1 96.4/82.3 96.3/81.1 88.7
CrossAligner (Ours) 94.4/81.6 95.3/78.8 94.8/84.1 94.7/82.5 88.6
Contrastive (Ours) 95.3/80.9 98.3/79.6 96.5/79.3 96.3/79.8 88.1
XeroAlignIO + CrossAligner (1+1) 95.3/81.5 98.6/78.2 96.2/81.6 96.2/81.1 88.7
XeroAlignIO + CrossAligner (CoV) 95.4/82.2 98.8/78.3 96.6/83.1 96.5/82.1 89.3

Table 1: Accuracy/F-Score for MTOP, MTOD, M-ATIS (number of non-English languages in brackets), MEAN
over all datasets. Translate-Train SOTA is (Li et al., 2021b) for MTOP/MTOD and (Xu et al., 2020) for M-ATIS.

Multilingual Task-Oriented Parsing (MTOP)
comprises 15K-22K utterances in each of 6 lan-
guages (en, de, fr, es, hi, th) spanning 11 do-
mains (Li et al., 2021b). The Multilingual Task-
Oriented Dialogue (MTOD) consists of 43K En-
glish, 8K Spanish and 5K Thai utterances covering
3 domains (Schuster et al., 2019). The Multilin-
gual ATIS++ (M-ATIS) contains up to 4.5K com-
mands in each of 8 languages (en, es, pt, de, fr, zh,
ja, hi, tr) featuring user interactions with a travel
information system (Xu et al., 2020).

XLM Our pretrained language model of choice is
XLM-RoBERTa (Conneau et al., 2020). We use the
large (550M parameters) model from HuggingFace
(Wolf et al., 2019) with a hidden_size = 1,024.

Training Setup We use a minimalist setup that
features default settings and components to focus
the results on the methods rather than hyperparame-
ter tuning or custom architecture design. We imple-
mented all models with PyTorch using fixed hyper-
parameters between experiments except for MTOD,
where due to its size, we trained with fewer epochs
and a lower learning rate (both 50% lower2).

5 Results

Terminology Henceforth, we refer to models
trained with labelled data in each language as
Target Language, the models trained only on
English data as Zero-Shot, our translate-intent
method as Translate-Intent (TI), the scores re-
ported by Gritta and Iacobacci (2021) as Previ-
ous SOTA, our IO-only implementation of that

2Download code and data at https://github.com/
huawei-noah/noah-research

model as XeroAlignIO (XAIO), our contrastive
alignment method as Contrastive (CTR) and our
main method as CrossAligner (CA). Lastly, the
simple sum of alignment losses is referred to as
1+1 and the weighted sum from 3.4 as CoV.

Metrics We use Accuracy for intent classification
and F-Score for entity/slot recognition. In addition,
we use an Overall score (the average of F-Score
and Accuracy) for model ranking, similar to Hu
et al. (2020); Wang et al. (2019, 2018). Results
are shown as averages (MEAN) over all test sets
and datasets, presented in Tables 1 and 2. Intent
classification is thus evaluated on ∼20,000 diverse
user commands and entity recognition on ∼60,000
individual slots from 100+ slot types. For a full
breakdown, see Tables 4, 5 and 6 in Appendix A.2.

Statistical Significance For a robust comparison
with the previous SOTA, we conduct a two-tailed z-
test for the difference of proportions (Schumacker,
2017). Our most effective method is statistically
significant for all datasets at p < 0.01. The margin
of improvement for slot tagging is +2.3 (F-Score)
over previous SOTA and significant at p < 0.01.

5.1 Individual Zero-Shot Transfer Methods

CrossAligner The focus of our primary method
was to improve slot filling as the model must clas-
sify dozens of entity types in each dataset and to
that end, it is an effective approach. CrossAligner
exceeds the F-Score of the Previous SOTA by
2.7 points (82.5 versus 79.8). This is 1.4 points
higher than XeroAlignIO and 6 points higher than
Zero-Shot. Despite the intent accuracy being 1.4
points lower than Previous SOTA and 1.6 lower
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Setup Auxiliary Losses CoV Weighting 1+1 Weighting
CA XAIO CTR TI MEAN (15) Overall MEAN (15) Overall

2-Loss

x x 96.5 82.1 89.3 96.2 81.1 88.7

x x 95.9 80.1 88.0 96.1 80.1 88.1

x x 96.2 81.3 88.8 96.1 78.2 87.2

x x 96.2 81.3 88.8 96.2 79.2 87.7

x x 96.2 80.3 88.3 96.3 80.2 88.3

x x 96.1 79.6 87.9 96.2 79.7 88.0

3-Loss

x x x 96.4 81.4 88.9 96.3 80.1 88.2

x x x 96.5 80.6 88.6 96.2 81.0 88.6

x x x 96.3 81.2 88.8 96.3 79.0 87.7

x x x 96.1 80.3 88.2 96.4 80.0 88.2

4-Loss x x x x 96.3 79.7 88.0 96.4 79.7 88.1

Table 2: The Accuracy and F-Score for combinations of auxiliary losses with different weighting schemes. The
number of non-English test languages is shown in brackets, MEAN is computed for all languages in the 3 XNLU
datasets. More detailed breakdowns of each dataset and language are shown in Tables 4, 5 and 6 in Appendix A.2.

than XeroAlignIO, 94.7 is still 0.4 higher than Tar-
get Language. CrossAligner’s overall score is 0.6
higher than previous SOTA, which outperformed
the common ’translate-train’ models, including en-
tity projection and word alignment. In order to
demonstrate the necessity and specificity of the
proposed architecture, we tested mean-pooled to-
ken embeddings as well as a CLS embedding as the
input to CrossAligner instead of the entity classifier
logits. The scores declined from 94.7/82.5 (88.6
Overall) to 92.3/80 (86.2 Overall) with a CLS sen-
tence representation and 82.1/78.7 (80.4 Overall)
for mean-pooled embeddings. Future applications
of our method to other NLP tasks must note that
CrossAligner is most effective for tasks with a com-
plex entity tag set where the presence of entities
in a sentence is informative, i.e. a higher com-
plexity and slot density should lead to a higher
performance. In addition, CrossAligner combines
well with other losses as we show in Section 5.2.

Translate-Intent Our alternative to the com-
mon ‘translate-train’ baseline is not only conceptu-
ally simpler (no explicit slot recognition training),
it also outperforms the previous Translate-Train
SOTA scores (78.5 vs 76.6 F-Score, 95.9 vs 95.1 ac-
curacy and 87.2 vs 85.9 Overall). Translate-Intent

does not require error-prone preprocessing such
as word/label alignment and can therefore be read-
ily used as a default ‘translate-train’ baseline in
future work. Note that using mean-pooled token
embeddings as sentence representations is not rec-
ommended for Translate-Intent as this causes the
F-Score to decline sharply (-25 points).

Contrastive Alignment Despite orders of magni-
tude less data than used in related work (Section 2),
our Contrastive Alignment showed a marginal im-
provement over the previous SOTA on intent clas-
sification (96.3 vs 96.1) thus by 0.1 Overall. That
said, even though the contrastive loss pushes nega-
tive sentence embeddings away from the positives,
this does not seem to confer a strong advantage over
the previous SOTA, which only used positive ex-
amples. We have also evaluated an implementation
of Contrastive Alignment using mean-pooled token
embeddings as sentence representations, however,
the Overall score declined to 86.8 (versus 88.1 with
a standard CLS embedding).

XeroAlignIO Our implementation of the previ-
ous SOTA with an additional post-processing step
(described in 3.1) increased the F-Score by 1.3
points and accuracy by 0.2 (+0.7 Overall). For a
comparison, training XeroAlignIO with the conven-
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tional BIO tags results in a drop of 1.8 points (81.1
to 79.3 F-Score) on entity recognition and 0.4 on
intent classification (96.1 to 95.7). Mean-pooled
tokens are not recommended for XeroAlignIO as
this yields a 2-point decline (88.7 to 86.7 Overall).
Other models also benefit from IO-only training,
for example, the Zero-Shot model gains 2.6 points
(73.9 up to 76.5 F-Score). One theoretical limita-
tion of IO-only training is that given a sequence of
‘B-LOC I-LOC B-LOC’, the IO-only models would
incorrectly classify this as a single entity. However,
in practice, this is rare and not something we have
seen during preprocessing or error analysis.

5.2 Combinations of Losses

As our alignment methods have different strengths
and weaknesses, we have also evaluated their com-
binations (see Table 2) as either a simple sum of
losses (1+1) or a weighted sum of losses (CoV) us-
ing the Coefficient of Variation. The highest overall
score was achieved by a CoV-weighted combina-
tion of XeroAlignIO and CrossAligner, which con-
siderably improved on the previous SOTA (96.5
vs 96.1 Accuracy, 82.1 vs 79.8 F-Score, 89.3 vs
88.0 Overall). In total, three individual and almost
a dozen combinations of losses improve over the
best previously reported scores. In the following
paragraphs, we analyse and explain why the com-
binations that include CrossAligner consistently
produce higher scores and why adding more losses
can result in diminishing returns.

Compatibility of Losses We propose a hypothe-
sis that can further help us interpret the numbers in
Table 2. It states that combining losses which use
dissimilar sentence representations may be more
beneficial than combining losses using similar sen-
tence embeddings. In order to test that assump-
tion, we clustered our alignment methods into two
groups based on how their sentence representations
are obtained: 1) XeroAlignIO, Translate-Intent and
Contrastive Alignment, which all use the CLS em-
bedding and 2) CrossAligner, which aligns through
the token embeddings (used as the entity classifier
input). In Figure 2, we note that for combinations
of any two alignment losses using the CLS embed-
ding (shown as blue squares), there is no difference
in the overall scores when using CoV or 1+1. How-
ever, when combining losses with different sen-
tence representations (orange with any blue square)
using CoV weighting, we observe consistent in-
creases over the 1+1 setup (on average 1+ point

Figure 2: Overall scores for combinations of auxiliary
losses weighted using either CoV or 1+1 (simple sum).

overall) as well as an increase over their highest
individual score. Additionally, in a 3-loss combina-
tion, we note that adding CrossAligner to any two
losses from the CLS-embedding group using CoV
weighting yields an average improvement of 0.7
points compared to no improvement using 1+1.

Oversaturation of Losses Another important
observation harks back to our hypothesis stating
that alignment methods with similar input embed-
dings do not lend themselves to being readily com-
bined. We offer further evidence of this by test-
ing combinations of CrossAligner with each of
the CLS-embedding losses [XAIO, TI and CTR],
however, we use mean-pooled embeddings. The
Overall scores decline in line with our hypothe-
sis (XAIO by -1.2, TI by -4.9, CTR by -0.6) with
CoV-weighted losses and even more with the 1+1
weighted combinations (XAIO by -2.1, TI by -7.6,
CTR by -1.4). Similarly, combining multiple CLS-
embedding losses leads to a gradually diminishing
benefit relative to the individual scores. Once again,
the CoV-weighted losses show a significantly lower
decline than the 1+1 combinations (Table 2). Note
that in our multi-loss scenario, intent classification
remains unaffected by the choice of input embed-
dings as the accuracy remains stable at SOTA levels
across experiments. We think this is due to the un-
equal task difficulty. In other words, sentence-level
inference (intent recognition) is easier than token-
level inference (entity recognition).

6 Error Analysis

In order to contextualise the numbers reported in
Tables 1 and 2 in relevant linguistic insights, we
have conducted a qualitative error analysis and
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Categories TH HI FR DE ZH ES PT MEAN

Acceptable Transfer 28 51 53 40 37 38 23 38.6
Partial Transfer 34 15 13 30 34 47 58 33.0
Poor Transfer 38 34 34 30 29 15 19 28.4

Boundary Error 72 43 44 52 33 47 64 50.7
Semantics Error 38 40 37 38 59 30 32 39.1
Annotation Error 8 26 11 20 30 17 17 18.4

Table 3: The summary of our qualitative error analysis with native speakers (700 samples from 7 languages).

present the highlights in this section. Readers in-
terested in language-specific analysis (including
many more examples) are encouraged to read Ap-
pendix A.1. We focused on errors committed by
CrossAligner and XeroAlignIO, which achieved
the best individual and combined scores. We sam-
pled 100 random errors from each of the following
settings: Hindi, French and German from MTOP,
Portuguese, Chinese and Spanish from M-ATIS
and Thai from MTOD for a diverse pool of errors.
The authors adjudicated with native speakers to
categorise mistakes into the following types.

Error Types We discovered two main sources
of mistakes: A boundary error occurs when the
model predicts more or fewer entity words/tokens
than given in the gold annotation. A semantics
error occurs when the wrong entity class/type is
predicted. Models can therefore commit: 1) both
errors resulting in Poor Transfer, 2) a boundary er-
ror without a semantic error and vice versa giving
us a Partial Transfer or 3) neither error (a false neg-
ative), which we deemed an Acceptable Transfer.
We report individual and average error occurrences
as well as transfer type percentages in Table 3.

Poor Transfer indicates that the prediction error
is too serious and unusable (even misleading) in
a real-world personal assistant. This is typically
due to both a boundary and a semantics error, how-
ever, some mistakes can be serious enough alone
to result in poor transfer. For example, a bound-
ary error can cause the retrieved name of a dish,
person or a location to be incomplete and there-
fore invalid. A semantics error that classifies ‘10
secondes’ (French) as ‘date_time’ instead of ‘mu-
sic_rewind_time’ would elicit the wrong agent re-
sponse thus is unusable. On average, ∼28% of
mistakes fall into the ‘Poor Transfer’ category.

Partial Transfer is defined as either a boundary
or a semantics error where neither is considered a

serious problem. Such entities could be made us-
able in a personal assistant application with simple
post-processing rules. Around 33 percent of errors
were deemed to be partially correct. Often, this was
due to including some adjacent punctuation or an
article/preposition as part of the entity or a slightly
shorter/longer news headline even though a search
engine query with that string would have returned
the relevant article. Entities such as ‘24 minat ka’
(Hindi) versus ‘24 minat’ (24 minutes) exemplify
the fact that a disputed entity boundary is the most
frequent source of error in this category. On the
semantics side, we considered a location partially
correct if ‘state_name’ instead of ‘city_name’ (for
Washington D.C.) was predicted, a location was
expected and the boundary was accurate.

Acceptable Transfer These examples are ‘er-
rors’ we considered correct and usable ‘as is’ be-
cause neither the entity boundary nor its seman-
tics were thought to be wrong. On average, we
deemed almost 39% of entities acceptable for a real-
world personal assistant application with around
half of those being down to annotation problems
(labels missing or incorrect). In other cases, we
accepted predictions that offered a valid alternative
e.g. when both ‘me’ (French) and ‘je’ (I/me) are
present in the user utterance and both refer to the
same ‘person_reminded’. Valid alternatives were
predicted but annotated somewhat differently. For
example, when the entity boundary was slightly
wider ‘de ida e volta’ (Portuguese) instead of ‘ida
e volta’ (round trip) where both entities are correct.
Similarly, classifying ‘salmon’ as an ingredient
rather than a dish (when ‘salmon’ is an object of
‘prepare’) was considered an acceptable transfer.

6.1 Error Analysis Summary
While the intent classification task is transferred
well in a cross-lingual setting, performing better
than training on labelled data, our SOTA slot recog-
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nition F-Score is almost 7 points behind Target
Language. We think there are several factors in-
volved. Articles, some prepositions, conjunctions,
determiners and/or possessives do not transfer eas-
ily and may largely be ignored by the XLM as they
don’t carry important sentence level (e.g. intent)
semantics. English is not ideal as a cross-lingual
pivot for many of the dozens of languages covered
by the XLM as elements of culture and vernacu-
lar that may not have a direct English equivalent
don’t transfer easily in a zero-shot setting. Align-
ing on the most well-resourced language in the
same family should help (Xia et al., 2021). The
limits of machine translation, especially for low-
resource languages (Mager et al., 2021), can further
inhibit alignment methods that leverage parallel
data. Inconsistency of annotation (intra-language
and inter-language) is a source of errors when the
key concepts are learnt in one language and evalu-
ated (sometimes unreliably) in the target language.
Finally, there were no substantial qualitative dif-
ferences between XeroAlignIO and CrossAligner
in our error analysis suggesting that the aforemen-
tioned error patterns may be a feature of the XLM
model itself, the nature of the datasets or some as
yet unknown confounding variable rather than the
choice of the alignment method.

7 Conclusions

We have introduced a variety of cross-lingual
methods for task-oriented XNLU to enable effec-
tive zero-shot transfer by learning alignment with
unlabelled parallel data. The principal method,
CrossAligner, transforms English train data into a
new language-agnostic task used to align model
predictions across languages, achieving SOTA on
entity recognition. We then presented a Contrastive
Alignment that optimises for a small cosine distance
between translated sentences while increasing it
between unrelated sentences, using orders of mag-
nitude less data than previous works. We proposed
Translate-Intent, a fast and simple baseline that
beats previous Translate-Train SOTA approaches
without error-prone data transformations such as
slot label projection. The best overall performance
across nine languages, fifteen tests sets and three
task-oriented multilingual datasets was achieved
by a Coefficient of Variation weighted combination
of CrossAligner and XeroAlignIO. Our quantita-
tive analysis investigated which types of auxiliary
losses yield the most effective combinations. This

resulted in several proposed configurations also ex-
ceeding previous SOTA scores. Our detailed quali-
tative error analysis revealed that the best methods
have the potential to approach target language per-
formance as most errors were deemed to be of low
to medium severity. We hope our contributions and
resources will inspire exciting future work in this
fascinating NLP research area.
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A Appendix

A.1 Error Analysis per Language

German examples of partial transfer are bound-
ary errors such as tagging punctuation ‘-’ as part
of the entity (e.g. in a timer or alarm name) as
well as not tagging some punctuation e.g. in ‘14.
Mai’ where ‘.’ is equivalent to the English ‘th’ in
‘14th’ and is expected in German dates. Such enti-
ties can be used with a basic post-processing rule
as their classes and contents were sufficiently well
predicted. Similarly, including ‘die’, ‘den’, ‘das’,
‘mir’, ‘des’, ‘der’ in the retrieved entity, particularly
in free-format entities such as news headlines, text
message contents and memos need not invalidate
the prediction, e.g. ‘die hausschliessung’ (house
closure), ‘des Reiseverbots’ (of travel ban) and
‘den Termin’ (appointment). Just a few of such
linguistic ‘bad habits’ can quickly accumulate to
cause more than half of all errors.

Chinese cross-lingual transfer problems often in-
clude boundary issues featuring the ‘of’ preposi-
tion or the possessive ‘’s’ (de in Chinese) e.g. ‘Zuì
piányí de’ (cheapest), ‘Jiāzhōu de’ (California) or
‘āndàlüè de hángbān’ (flights to Ontario). Depend-
ing on context, we considered these at least par-
tially correct rather than a failed transfer. More
serious though less explicable errors were ‘Gěi wǒ
zhōu’èr’ (give me Tuesday’s), ‘Liè chū zhōu liù’
(list Saturday’s) or ‘Xiǎnshì zhōusān’ (show me
Wednesday’s) where ‘give me’, ‘list’ and ‘show
me’ were tagged as part of ‘date_time’ a total of
20 times. The most frequent semantic (partial) er-
ror was ‘Washington D.C.’, which was tagged as a
state rather than a city no fewer than 16 times.

French instances of acceptable transfer include
tagging ‘Ankara’ and ‘Turquie’ separately rather
than as a single chunk ‘Ankara, en Turquie’ (pos-
sible annotation problem). Reminiscent of the
patterns seen in other languages, articles tend to
feature prominently in boundary errors, e.g. ‘la
famille’ (family), ‘l’arrosage’ (watering), ‘les elec-
tions’ (elections), ‘le chat Zoom’ (Zoom chat) and
‘la mere de Kylie’ (Kylie’s mother), which we con-
sidered usable ‘as is’. For an example of annotation
inconsistency across languages, consider the en-
tity ‘gros titres’ or ‘top headlines’ in English. The
model correctly transferred the English tags for
‘top’ (news_reference) and ‘headline’ (news_type)
although the French annotation was given as ‘gros
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titres’ (news_type), which is plausible but less co-
herent than the model’s prediction.

Spanish Once again, articles, some prepositions
and occasionally conjunctions e.g. ‘de’, ‘las’, ‘y’,
‘la’, ‘por’ (of, the, and, a, in/for) have caused the
majority of boundary errors, most of which are par-
tially acceptable. Examples include time ‘las 10
a.m.’ (10 a.m.) and ‘no mas tarde que las’ (no
later than), journey specifications ‘de ida’ and ‘ida
y vuelta’ (round trip), periods of day ‘la mañana’
(morning) and ‘la noche’ (night), dates ‘seis de
junio’ (June 6th) as well as skipping ‘en punto’
(o’clock) in ‘antes de las 4 p.m. en punto’ (before
4 p.m.). These minor errors show that the current
SOTA in cross-lingual zero-shot transfer is close to
solving these cases. Other errors such as ‘conexión’
instead of ‘con conexión’ (with connection) and ‘la
mañana’ rather than ‘por la mañana’ (in the morn-
ing) are more examples of disputed annotations.

Portuguese predictions closely follow Spanish
error patterns and reflect the wider issues with ar-
ticles and prepositions, e.g. ‘terça-feira de manhã’
(Tuesday morning), ‘de ida e volta’ (round trip),
‘cinco de abril’ (April 5th) or ‘5 horas da tarde’
(5 p.m.) with ’de’ and ‘da’ (both of ) being the
unannotated parts that did not transfer optimally.
Other boundary mistakes were caused by ‘das’ (of)
and ‘as’ (the), for example, ‘antes das 6 horas
da tarde’ and ‘após as 6 horas da tarde’ (before
and after 6 p.m). Annotations that needlessly pun-
ished cross-lingual transfer included ‘somente de
ida’ (one way) where ‘somente’ (only) was not
annotated in the English dataset and ‘econômica’
(economy), which was annotated as ‘class_type’ in
English, correctly transferred but flagged as wrong.

Hindi errors have a relatively high number (26)
of problematic annotations although most mistakes
are caused by the now familiar improper handling
of prepositions, articles and/or possessives e.g. ‘ke’,
‘tak’, ‘ka’ (‘of’, ‘by’, ‘’s’) in phrases such as ’30 mi-
nat ka’ (30 minutes), ‘kitanee der tak’ (how long),
‘kal ke’ (yesterday’s), ‘aaj ke’ (today’s) or ‘1 baje
ka’ (1 p.m.). Transliterated entities i.e. English
pronunciation written in Devanagari, is the sec-
ond largest category of transfer problems in Hindi,
e.g. ‘pakrino romaano’ (Pecorino Romano), ‘goda
cheez’ (Goda cheese), ‘braun aaid garl’ (Brown
Eyed Girl), ‘paindora’ (Pandora), ‘pool leeg’ (Pool
League), ‘daayanaasor jooniyar’ (Dinosaur Junior)
or ‘da most byooteephul moment’ (The Most Beat-

iful Moment). These are problematic because such
entities are neither native to Hindi nor are they
written in Latin alphabet hence may not have been
observed in this form during XLM pretraining.

Thai errors were analysed with a translation ser-
vice as we were unable to secure a native speaker.
Even so, we observed boundary errors previously
seen in other languages. Words such as ‘nai’ (‘of’
or ‘in’, the most frequent cause) and ‘bpai’ (‘in’,
‘off’ or ‘to’, no direct English translation) were
the typical sources of boundary issues, e.g. ’nai
sùt sàp-daa née’ (this weekend), ‘nai wan pút’
(Wednesday), ‘bpai séu XYZ’ (go buy XYZ) and
‘nai wan née’ (today or on this day). Such pat-
terns accounted for more than half of all mistakes.
Machine translation can also be a source of errors.
For example, the word ‘reminder’ is an entity in
English (tag: reminder/noun). It was translated as
‘kam dteuuan’, however, ‘reminder’ appears in Thai
data as ‘dteuuan kwaam jam’, which the model
repeatedly missed, leading to 18 errors for what
should be an easy case of zero-shot transfer.

A.2 Full Tables
The full language breakdown for MultiATIS++ (Ta-
ble 4) and MTOP+MTOD (Table 5). Table 6 shows
the full details of the combinations of losses from
Table 2 in Results (5).
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Model DE ES FR TR HI ZH PT JA MEAN

Zero-Shot 95.1/84.8 97.3/84.9 97.9/79.5 75.4/41.8 91.3/78.4 88.6/82.1 96.9/80.9 86.6/79.9 91.1/79.9
Target Language 96.9/95.4 96.6/85.8 97.9/93.8 77.2/71.6 88.8/84.4 94.5/94.9 96.8/92.1 91.4/93.0 92.5/88.9

Trans-Train SOTA 96.7/89.0 97.2/76.4 97.5/79.6 93.7/61.7 92.8/78.6 96.0/83.3 96.8/76.3 88.3/79.1 94.9/78.0
Translate-Intent 97.3/84.7 97.6/84.1 97.5/84.7 91.6/65.6 94.4/80.9 96.4/83.0 97.0/82.7 95.2/74.1 95.9/80.0

Previous SOTA 97.6/84.9 97.8/85.9 95.4/81.4 93.4/70.6 94.0/79.7 96.4/83.3 97.6/79.9 96.1/83.5 96.0/81.2
XeroAlignIO 97.4/84.1 97.4/86.2 97.9/83.3 93.6/76.0 95.1/80.1 96.0/83.7 98.0/81.6 95.6/83.7 96.4/82.3
CrossAligner 96.9/90.4 97.4/73.1 98.0/88.7 88.7/75.4 94.5/86.6 94.2/88.2 97.4/81.7 91.6/88.7 94.8/84.1
Contrastive 97.5/79.6 97.3/77.1 97.6/76.1 93.3/76.3 94.6/79.8 96.9/87.5 97.4/77.0 97.3/80.9 96.5/79.3

XAIO, CA (1+1) 97.3/89.7 97.5/72.3 97.8/82.1 94.0/69.1 95.3/79.1 95.9/89.6 97.4/80.1 94.0/91.1 96.2/81.6
XAIO, CA (CoV) 97.6/88.7 97.6/72.5 98.0/88.8 93.3/73.9 95.1/79.7 96.5/89.9 97.5/80.9 97.0/90.5 96.6/83.1

Table 4: Accuracy/F-Score for M-ATIS. Xu et al. (2020) is the previous translate-train SOTA.

Model DE ES FR TH HI MEAN ES TH MEAN

Zero-Shot 90.5/80.1 93.8/81.7 92.5/83.2 89.7/64.9 91.8/75.5 91.7/77.1 97.5/87.3 90.6/62.8 94.1/75.1
Target Language 96.5/88.7 96.1/90.6 95.6/89.3 95.0/87.0 95.1/87.8 95.7/88.7 98.9/89.3 97.8/94.3 98.4/91.8

Trans-Train SOTA 94.8/80.0 96.3/84.8 95.1/82.5 92.1/65.6 94.2/76.5 94.5/77.9 98.0/83.0 96.9/52.8 97.5/67.9
Transl.Intent 96.4/83.4 96.2/73.5 95.5/84.5 92.9/68.4 94.9/75.6 95.2/77.1 99.2/87.5 96.9/65.4 98.1/76.5

Previous SOTA 96.6/84.4 96.5/83.3 95.7/84.5 94.1/69.1 95.2/80.1 95.6/80.3 99.2/88.4 98.4/57.3 98.8/72.9
XeroAlignIO 96.4/86.1 96.4/84.4 95.4/86.2 93.1/69.5 95.1/80.5 95.3/81.3 99.3/88.8 97.6/62.0 98.5/75.4
CrossAligner 95.4/86.0 95.1/81.9 94.5/84.9 92.6/73.9 94.3/81.1 94.4/81.6 98.2/87.1 92.4/70.4 95.3/78.8
Contrastive 96.3/84.3 96.2/83.3 95.5/85.2 93.0/70.6 95.5/80.9 95.3/80.9 99.2/89.0 97.3/70.1 98.3/79.6

XAIO, CA (1+1) 96.3/85.3 96.6/83.1 95.9/85.9 93.3/72.8 94.5/80.4 95.3/81.5 99.2/88.7 98.0/67.7 98.6/78.2
XAIO, CA (CoV) 96.4/86.6 96.1/83.8 95.8/85.7 93.3/74.3 95.2/80.4 95.4/82.2 99.3/89.3 98.2/67.2 98.8/78.3

Table 5: Accuracy/F-Score for MTOP (left) and MTOD (right). Li et al. (2021b) is previous translate-train SOTA.
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Setup Auxiliary Losses Weight. MTOP(5) MTOD(2) M-ATIS(8) MEAN(15) Overall
CA XAIO CTR TI

2-Loss

x x CoV 95.4 82.2 98.8 78.3 96.6 83.1 96.5 82.1 89.3

x x 1+1 95.3 81.5 98.6 78.2 96.2 81.6 96.2 81.1 88.7

x x CoV 95.1 80.9 97.3 73.5 96.0 81.3 95.9 80.1 88.0

x x 1+1 95.2 79.1 97.1 77.1 96.3 81.5 96.1 80.1 88.1

x x CoV 95.2 82.3 98.6 77.6 96.3 81.6 96.2 81.3 88.8

x x 1+1 95.2 82.2 98.6 78.3 96.1 75.7 96.1 78.2 87.2

x x CoV 95.3 81.5 98.8 78.0 96.1 82.0 96.2 81.3 88.8

x x 1+1 95.5 81.3 98.6 77.4 96.1 78.3 96.2 79.2 87.7

x x CoV 95.2 80.6 98.5 78.2 96.2 80.6 96.2 80.3 88.3

x x 1+1 95.3 79.3 98.8 78.1 96.4 81.3 96.3 80.2 88.3

x x CoV 95.2 79.8 97.8 76.8 96.2 80.3 96.1 79.6 87.9

x x 1+1 95.3 79.9 98.6 79.2 96.1 79.7 96.2 79.7 88.0

3-Loss

x x x CoV 95.3 82.1 98.6 78.7 96.6 81.7 96.4 81.4 88.9

x x x 1+1 95.3 81.8 98.8 79.4 96.4 79.3 96.3 80.1 88.2

x x x CoV 95.4 81.4 98.7 78.4 96.6 80.6 96.5 80.6 88.6

x x x 1+1 95.4 81.0 98.0 78.9 96.4 81.5 96.2 81.0 88.6

x x x CoV 95.1 81.5 98.8 79.2 96.5 81.4 96.3 81.2 88.8

x x x 1+1 95.5 80.1 98.7 78.5 96.1 78.5 96.3 79.0 87.7

x x x CoV 95.2 80.2 97.7 78.4 96.2 80.8 96.1 80.3 88.2

x x x 1+1 95.2 80.0 98.5 78.6 96.6 80.4 96.4 80.0 88.2

4-Loss
x x x x CoV 95.3 81.6 98.7 79.7 96.3 78.6 96.3 79.7 88.0

x x x x 1+1 95.4 81.1 98.4 79.1 96.6 78.9 96.4 79.7 88.1

Table 6: Accuracy and F-Score for combinations of auxiliary losses with different weighting schemes.
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