
Findings of the Association for Computational Linguistics: ACL 2022, pages 4035 - 4047
May 22-27, 2022 c©2022 Association for Computational Linguistics

GCPG: A General Framework for Controllable Paraphrase Generation

Kexin Yang♠ ∗ Dayiheng Liu♠ † Wenqiang Lei♢ Baosong Yang♠ Haibo Zhang♠

Xue Zhao♠ Wenqing Yao♠ Boxing Chen♠

♠Alibaba Group
♢National University of Singapore

{kexinyang0528, losinuris}@gmail.com

Abstract

Controllable paraphrase generation (CPG) in-
corporates various external conditions to obtain
desirable paraphrases. However, existing works
only highlight a special condition under two in-
dispensable aspects of CPG (i.e., lexically and
syntactically CPG) individually, lacking a uni-
fied circumstance to explore and analyze their
effectiveness. In this paper, we propose a gen-
eral controllable paraphrase generation frame-
work (GCPG), which represents both lexical
and syntactical conditions as text sequences
and uniformly processes them in an encoder-
decoder paradigm. Under GCPG, we recon-
struct commonly adopted lexical condition (i.e.,
Keywords) and syntactical conditions (i.e., Part-
Of-Speech sequence, Constituent Tree, Masked
Template and Sentential Exemplar) and study
the combination of the two types. In partic-
ular, for Sentential Exemplar condition, we
propose a novel exemplar construction method
— Syntax-Similarity based Exemplar (SSE).
SSE retrieves a syntactically similar but lex-
ically different sentence as the exemplar for
each target sentence, avoiding exemplar-side
words copying problem. Extensive experiments
demonstrate that GCPG with SSE achieves
state-of-the-art performance on two popular
benchmarks. In addition, the combination of
lexical and syntactical conditions shows the sig-
nificant controllable ability of paraphrase gener-
ation, and these empirical results could provide
novel insight to user-oriented paraphrasing.

1 Introduction

Paraphrase generation (Madnani and Dorr, 2010)
refers to restating a given sentence into an alter-
native surface form while keeping the semantics
unchanged.1 It is of long-standing interest (McKe-
own, 1983), with various applications such as ques-

∗ Work is done during internship at DAMO Academy
† Corresponding author.

1In this paper, we make our first attempt with English
corpora.

There was a picture of the revolving earth that have emerged.

There was a picture of the
rotating earth that showed up.

showed up rotating

Lexically
Controlling

[Keywords]

A picture of the revolving
earth emerged.

Syntactically
Controlling

[Exemplar]
The job at school went well.

A picture of the rotating
earth showed up.

Combination

Figure 1: A toy example to explain what effect lexically
controlling and syntactically controlling have on para-
phrasing.

tion answering (Gan and Ng, 2019), machine trans-
lation (Mallinson et al., 2017), and sentence simpli-
fication (Martin et al., 2020). However, a sentence
can be re-expressed in various surface forms. Lack-
ing control might result in undesirable results (Gu
et al., 2019). For example, a sentence that contains
an intricate syntactic structure may cause difficul-
ties for aphasic patients (Shewan, 1985). In that
case, we could attempt to paraphrase it based on
syntactical control.

To obtain desirable surface forms, most recent
works focus on controllable paraphrase generation
(CPG) by incorporating external conditions. Ex-
isting efforts to CPG can be roughly divided into
two types: lexically and syntactically CPG. Lex-
ically CPG is concerned with what to say, which
generates paraphrases that contain pre-specified
keywords. As shown in Figure 1, a lexically CPG
model needs to generate a paraphrase that contains
the given keyword “showed up”. To achieve it,
a sequence-to-sequence model equipped with the
copy mechanism is commonly used (Zeng et al.,
2019). Different from lexically CPG, syntactically
CPG concentrates on how to say it, generating a
paraphrase that conforms to the syntax of a given
exemplar (i.e., a sentence illustrating certain syn-
tax patterns). Substantial efforts have been made
on constructing syntactical features of the given
exemplar. For example, Kumar et al. (2020) in-
corporate a full syntactic tree of the exemplar to

4035

guide paraphrasing; Bui et al. (2021) construct a
masked template to direct generation by masking
words with certain Part-of-Speech (POS) type of
exemplar; Chen et al. (2019) directly use the sen-
tential exemplar. Since sentential exemplars are
only available for testing, they have to manufacture
exemplars for training by replacing certain words
from the target sentence.2 Despite the progress
on the two types of conditions individually, what
to say and how to say it are both important for
CPG (Kumar et al., 2020). Furthermore, there is
no unified framework to study the effectiveness of
these conditions and their joint utilization.

To fill this gap, we propose a General
Controllable Paraphrase Generation framework
(GCPG) to jointly include both lexically and syn-
tactically CPG in a unified model. The key idea
is to reconstruct both lexical and syntactical con-
ditions as text sequences and process them in a
text-to-text encoder-decoder paradigm. This also
allows GCPG to easily utilize the strong language
modeling capacity of pre-trained language mod-
els (PLMs), which have demonstrated great poten-
tial (Bui et al., 2021) yet rarely been explored under
the topic of CPG. For the lexical condition, we con-
catenate the pre-specified keywords as a sequence
while exploring different methods to pre-specify
keywords from rule-based to model-based. As for
syntactical conditions, we reconstruct commonly
used syntactic features as sequences, such as Lin-
earised Constituent Tree (Iyyer et al., 2018) and
masked template based on word mask (Bui et al.,
2021). Besides the manufactured syntax features,
we hypothesize that directly using the exemplar
is more effective as it can benefit from the pow-
erful sentence modeling capability of PLMs. To
construct the exemplar for training, we propose
a novel exemplar construction method as Syntax-
Similarity based Exemplar (SSE). Specifically, we
use a sentence that is syntactically similar but lex-
ically different from the target sentence, which is
retrieved in a self-constructed exemplar dictionary
based on the training set. This is different from
existing methods that construct exemplar through
modifying target sentences (Chen et al., 2019), alle-
viating exemplar-side words copying problem (Bui
et al., 2021) brought by Chen et al. (2019).

We examine GCPG on two popular benchmark
datasets. Those discussions include not only per-
formances of different conditions and their com-

2Details can be found in Section 4.

binations, but also the effectiveness of GCPG in-
stantiated by different PLMs. Experiments demon-
strate that GCPG consistently shows strong perfor-
mances when tested by three different methods to
pre-specify keywords. For syntactical CPG, GCPG
with SSE obtains 13.95/24.31/18.64 ROUGE-1/2/L
and 16.38 BLEU-4 over the previous state-of-the-
art (SOTA) model (Bui et al., 2021). Also, the com-
bination of lexical and syntactical conditions show
encouraging controllability of paraphrase genera-
tion in both quantitative and qualitative analysis.
The main contributions are as follows:

• We propose GCPG, a general framework to
jointly include both lexically and syntactically
controllable paraphrasing. It is simple but
effective, enabling flexible combinations of
conditions by reconstructing them into text se-
quences and processing them in a text-to-text
encoder-decoder paradigm. Those properties
allow GCPG to easily adapt to mainstream
pre-trained language models and utilize pow-
erful language modeling capacity, which is
rarely explored in CPG.

• We report a novel exemplar construction
method SSE under the syntactical condition.
It allows GCPG to directly model syntax in-
formation from natural sentences without any
manufactured syntax features, while alleviat-
ing the exemplar-side words copying problem.

2 Related Work

In this section, we summarize existing works
on syntactically and lexically CPG. Syntactically
CPG generates a paraphrase constrained by a pre-
specified sentence of a certain syntax structure
namely exemplar. However, the exemplar is only
available during inference, resulting in a key chal-
lenge: obtaining manual exemplars for existing
paraphrasing training datasets is prohibitively ex-
pensive. To address this, some of the previous
works construct syntactical features from target
sentences during training, such as POS Tagging,
Constituent Tree, mask template as illustrated in
Table 1. For instance, SCPN (Iyyer et al., 2018)
makes the first attempt to introduce Linearised Con-
stituent Tree (LCT) of target sentence into para-
phrasing, where LCT is predicted based on pre-
defined parse templates. Similarly, GuiG (Li et al.,
2020) proposes two models to expand a partial
template LCT and generate paraphrasing, respec-
tively. SOW-REAP (Goyal and Durrett, 2020) uses

4036

Work

Syntactical Condition

POS Tagging Constituent Tree Masked Template Sentential Exemplar

SCPN (2018) ! (In Tree) ! (LCT Templates) % %

CGEN (2019) ! (In Exemplar) % % ! (Replace Words)
BCPG (2020c) % % ! (Randomly) %

GuiG (2020) % ! (Expanded LCT) % %

SGCP (2020) ! (In Tree) ! (Tree Structure) % %

SOW-REAP (2020) ! (In Tree) ! (Reordering) % %

AESOP (2021) ! (In Tree) ! (Sequence) % %

ParafraGPT (2021) ! (In Word MT) % ! (Certain POS) %

GCPG ! (POS Sequence) ! (LCT) ! (Certain POS) ! (SSE)

Table 1: A comparison of different conditions under syntactically CPG. LCT: Linearised Constituent Tree. The
proposed framework GCPG reconstructs them as text sequences and we have experimented with all four forms.

LCT to reorder the source sentence then paraphras-
ing. AESOP (Sun et al., 2021) selects target LCT
adaptively while paraphrasing. Different from us-
ing LCT, SGCP (Kumar et al., 2020) introduces a
graph encoder to encode the Constituent Tree of ex-
emplar as the condition. masked template replaces
several words of the exemplar with a special token
to form a template as the condition. BCPG (Liu
et al., 2020c) follows BERT (Devlin et al., 2019) to
randomly mask exemplar words, ParafraGPT (Bui
et al., 2021) further masks exemplar words with
certain POS types. However, Chen et al. (2019)
advocate to directly utilize the sentential exemplar
(the sentence) as the condition, because they be-
lieve “any syntactically valid sentence is a valid
exemplar". Since exemplar is only available in test-
ing, they construct exemplar by replacing words
of the target sentence with others that have the
same POS type. In addition, lexical constraints
decoding is widely explored in text generation (Liu
et al., 2020a, 2019; Hokamp and Liu, 2017a), such
as neural machine translation (Hokamp and Liu,
2017b; Post and Vilar, 2018) and text summariz-
ing. CTRLsum (He et al., 2020) uses target entity
words as keywords to hint model while summariz-
ing. However, lexically CPG constraints paraphras-
ing with pre-specified keywords, which is rarely
explored but undoubtedly indispensable in CPG.
Zeng et al. (2019) make the first attempt to inte-
grate keywords with copy mechanism. Despite
their progress, existing works only focus on a spe-
cial condition under either lexically or syntactically
CPG. In comparison, GCPG jointly includes lexi-
cally and syntactically CPG.

3 Methodology

3.1 GCPG Framework

Before introducing GCPG, we first give the defi-
nition of controllable paraphrase generation with
external conditions. Given a source sentence x
and a variety of conditions c, the model generates
paraphrase y = (y1, y2, ..., yT) by:

p(y|x, c) =
T∏
t=1

p(yt|y<t,x, c; θ), (1)

where θ are the model parameters trained by max-
imizing the conditional likelihood of outputs in a
parallel corpus. Given this definition, the forms of
conditions c might be varied, such as pre-defined
keywords and Constituent Parse Tree. To uni-
formly encode these conditions and investigate
their effectiveness, we propose a general frame-
work GCPG. GCPG contains a standard encoder-
decoder paradigm, which allows any mainstream
PLMs to adapt to this task rapidly. Meanwhile,
GCPG can flexibly use the combinations of in-
cluded conditions by concatenating them as one
sequence with “[SEP]”. As shown in Figure 2, the
source sentence “No one’s home ?” is concatenated
with optional sequential conditions by the separator
signal “[SEP]”, then fed into the model. Afterward,
the model auto-regressively generates “Is anyone
home?” as the final result.

3.2 Conditions under GCPG

3.2.1 Syntactical Condition
Syntactically CPG requests a syntax exemplar to
constrain the syntax structure of paraphrase. How-
ever, exemplars are only available in the testing set

4037

Is anyone home ?

…S NP

Source Sentence

Pre-trained Language Model

Transformer Decoder

[SEP]

Conditions

POS SequenceKeywords

No one 's home ?

anyone
Constituent Tree Sentential Exemplar

Is this …VBZ NN… …[Mask]

Masked Template

Is

Figure 2: An overview of GCPG, the source sentence
and separated condition (also being concatenated with
“[SEP]”) are concatenated as input.

Exemplar Dictionary

...
Argmin Syntax Edit Distance

They almost finished.

Source No one’s home?

Target Is anyone home?

Extracted

Raw Training Pair

Enhanced Training Items

SQ (NP) (ADVP) (?)

SQ (NP) (NP) (?)

Is this the code word?
...

Do you smell burning?

Source No one’s home?

Target Is anyone home?

Exemplar Is this the code word ? SQ (NP) (VP (NP)) (?)

S (NP) (ADVP) (VP) (.)

Figure 3: An overview of SSE. We take Truncated LCT
as the sequential syntax structure here.

of existing paraphrasing datasets. To train a syntac-
tically CPG model, we construct a syntactical con-
dition based on the target sentences in the training
set. During inference, we apply the same strategy
to obtain the corresponding syntactical conditions
from exemplars in the testing set. We explore four
syntactical conditions in this work, as follows:
POS Tagging is one of simplest solutions in mod-
eling the syntax structure (Cutting et al., 1992),
which could be effectively implemented and show
promising performance in various NLP tasks (Yang
et al., 2021). We investigate POS Tagging as an
independent condition, which is rarely explored in
CPG. In detail, we extract POS sequence of target
sentence by CoreNLP as the condition.3 To learn
these POS signals with PLMs, we regard these POS
tokens as special ones and add them into the word
vocabulary of PLMs.
Constituent Tree is a widely used condition for
syntax controlling while paraphrasing. Here, we
explore two kinds of LCT, i.e., full-fledged LCT

3https://stanfordnlp.github.io/
CoreNLP/index.html

and Truncated LCT. For the full-fledged LCT con-
dition, we extract the complete sequential Con-
stituent Tree from the target sentence for training
and exemplar for testing, based on the off-the-shelf
tools of CoreNLP. We further explore the Trun-
cated LCT condition, which is the sequence that
removing POS-level tokens in full-fledged LCT.
Compared with full-fledged LCT, Truncated LCT
drastically shortens the input length.

Masked Template is first introduced in Liu et al.
(2020c), which randomly masks words of the target
sentence to form a syntax template as the condition.
To verify the effectiveness of this method in GCPG
circumstance, we follow the current SOTA (Bui
et al., 2021) to construct a masked template by sub-
stituting all nouns, adjectives, adverbs, and verbs
with a special token in the exemplar. Similarly, this
strategy is applied to the target sentences during
training and the given exemplars during inference.

Sentential Exemplar is the most straightforward
way for syntactically CPG, which directly uses the
sentential exemplar as the condition. In contrast to
the above three syntactical conditions, Sentential
Exemplar uses natural sentences to represent desir-
able syntax structure, without introducing any spe-
cial token which does not appear during PLMs pre-
training. We argue that this way can make better
use of PLMs. However, the previous method (Chen
et al., 2019) suffers from the exemplar-side words
copying problem during testing, which might be
caused by the noticeable words overlap with the
target sentence in constructing sentential exemplar
during training. To alleviate this problem, we pro-
pose Syntax-Similarity based Exemplar (SSE) to
enhance sentential exemplar condition.

An overview of our SSE method is demonstrated
in Figure 3. To alleviate the exemplar-side words
copying issue, the proposed SSE constructs Senten-
tial Exemplar by retrieving a syntactically similar
but lexically different sentence for each target sen-
tence during training. To achieve that, we construct
an exemplar dictionary that contains the syntactical
key-value mapping from the syntax structure k to
its corresponding natural sentence v. Each syn-
tactical key k ∈ K is a Truncated LCT sequence,
and its value is a randomly selected natural sen-
tence that can be assigned to this Truncated LCT
sequence. During training, given a data pair ⟨x,y⟩
and the Truncated LCT s of y, we select a syntac-
tical key k∗ by calculating the syntax edit distance
Dsyn between s and each syntactical key in the

4038

https://stanfordnlp.github.io/CoreNLP/index.html
https://stanfordnlp.github.io/CoreNLP/index.html

exemplar dictionary, which can be formulated as:

k∗ = argmin(Dsyn(s,k))

= arg min
k∈K

(
LevEdit(s,k)
max(|s|, |k|)

),
(2)

where LevEdit(·) denotes the token-level Leven-
shtein edit distance between two sequences and
| · | denotes the token-level length of the sequence.
We assign the corresponding sentence v∗, which is
related to k∗, as the training exemplar.
Lexical Condition Lexically CPG uses pre-
specified keywords to constrain paraphrasing,
which requires a paraphrasing dataset containing
⟨sentence, keywords, paraphrase⟩ triples. Because
the original dataset is formatted as ⟨sentence, para-
phrase⟩, we need to pre-specify keywords for each
data item. Following Zeng et al. (2019), we au-
tomatically extract keywords from the target sen-
tence as the condition in the training stage. Be-
sides, as also lacking manual keywords for each
testing pair, we carry out two strategies for in-
ference. On the one hand, we directly extract
keywords from references as conditions follow-
ing Zeng et al. (2019). On another, a standard
sequence-to-sequence model is used to predict tar-
get keywords only from source sentences as condi-
tions while testing, as described in Liu et al.(2020b).
Specifically, we investigate three representative
keyword extraction methods to verify the effec-
tiveness of GCPG, including rule-based TF-IDF,
TextRank (Mihalcea and Tarau, 2004), and model-
based KeyBERT (Grootendorst, 2020). Each
method filters out the stop words and punctuation,
and guarantees the extracted keywords do not ap-
pear in the corresponding source sentence. The
maximum number of keywords is set to 3. Besides,
we use a special token “[NONE]” when there are
no keywords extracted.

4 Experiments

Datasets Following previous works (Kumar et al.,
2020; Bui et al., 2021), we evaluate GCPG on
two datasets: (1) ParaNMT-small (Chen et al.,
2019) is a subset of ParaNMT-50M dataset (Wiet-
ing and Gimpel, 2018), which is collected via back-
translation referring to English sentences. It con-
tains 500K training pairs formatted as ⟨sentence,
paraphrase⟩, and 1.3K manually labeled data triples
formatted as ⟨sentence, exemplar, paraphrase⟩
(0.8K for testing and 0.5K for validation). In each

triple, exemplar is a sentence that has the same syn-
tax as paraphrase but is semantically different from
sentence. (2) QQP-Pos (Kumar et al., 2020) is se-
lected from Quora Question Pairs (QQP) dataset. It
contains about 140K training pairs and 3K/3K data
triples for testing/validation. The format of dataset
is the same as ParaNMT-small.

4.1 Syntactically Controllable Paraphrasing

We explore four syntactical conditions recon-
structed by GCPG on the ParaNMT-small dataset,
then compare SSE with baselines on two datasets.
Baselines We first choose two direct return-input
baselines as dataset quality indicators: (1) Source-
as-Output copies inputs as outputs. (2) Exemplar-
as-Output regards exemplars as outputs. Next, we
compare GCPG with mainstream competitive mod-
els as follows. (3) SCPN (Iyyer et al., 2018) has
two encoders to encode source sentence and LCT
separately, then constrain generation with soft at-
tention mechanism.4 (4) CGEN (Chen et al., 2019)
encodes exemplars into latent vector to guide para-
phrasing.5 (5) SGCP (Kumar et al., 2020) uses a
graph encoder to process the exemplar Constituent
Trees as the condition.6 (6) ParafraGPT (Bui
et al., 2021) masks words with certain POS types
in the target sentence as condition, then builds
a paraphrasing generator based on a pre-trained
GPT2 (Radford et al., 2019).
Syntactical Conditions We first examine condi-
tions with manufactured syntax features, including
(7) POS Sequence, (8) LCT-Truncated is the LCT
sequence without POS-level information, (9) LCT
is the full-fledged Linearised Constituent Tree se-
quence, and (10) Masked Template. Then, two im-
plementations of SSE are evaluated: (11) SSE-POS
Sequence uses POS Sequence to measure syntax
similarity, and (12) SSE-LCT-Truncated uses LCT-
Truncated as measurement.
Implementation and Hyper-parameters All
GCPG models are instantiated by ProphetNet-
large (Qi et al., 2020)7. We employ the origi-
nal hyper-parameter setting of ProphetNet-large
to train GCPG. During inference, the beam size
and length penalty(Wu et al., 2016) are set to 4
and 1.2 following Bui et al. (2021). As for the

4https://github.com/miyyer/scpn
5https://github.com/mingdachen/

syntactic-template-generation
6https://github.com/malllabiisc/SGCP
7We compare performances of different generation models

for backbone selecting, details can be found in Appendix A.

4039

https://github.com/miyyer/scpn
https://github.com/mingdachen/syntactic-template-generation
https://github.com/mingdachen/syntactic-template-generation
https://github.com/malllabiisc/SGCP

Model iBLEU ↑ B-R ↑ R-1 / R-2 / R-L ↑ MTR ↑ BS ↑ TED ↓

ParaNMT-small

(1) Source-as-Output -17.05 18.50 23.10 / 47.70 / 12.00 28.80 86.20 12.00
(2) Exemplar-as-Output 2.31 3.30 24.40 / 7.50 / 29.10 12.10 74.20 5.90

(3) SCPN (2018) – 6.40 30.30 / 11.20 / 34.60 14.60 73.70 9.10
(4) CGEN (2019) 8.14 13.60 44.80 / 21.00 / 48.30 24.80 79.50 6.70
(5) SGCP (2020) 6.95 16.40 49.60 / 22.90 / 50.50 27.20 80.50 6.80
(6) ParafraGPT (2021) 8.61 14.54 49.67 / 22.42 / 51.29 27.83 90.78 8.22

(7) GCPG (POS Sequence) 11.96 19.97 56.20 / 32.36 / 58.99 32.68 92.57 8.45
(8) GCPG (LCT-Truncated) 12.74 22.54 59.98 / 36.81 / 62.61 37.04 93.39 8.34
(9) GCPG (LCT) 11.92 19.52 55.75 / 30.54 / 58.88 31.35 92.42 7.84
(10) GCPG (Masked Template) 9.52 16.85 53.60 / 27.96 / 56.31 31.84 92.21 8.84
(11) GCPG (SSE-POS Sequence) 10.07 23.82 60.93 / 37.36 / 61.98 36.15 91.55 8.94
(12) GCPG (SSE-LCT-Truncated) 12.32 26.24 63.62 / 40.76 / 64.98 39.79 93.86 8.27

QQP-Pos

(13) Source-as-Output -17.96 17.20 51.90 / 26.20 / 52.90 31.10 84.90 16.20
(14) Exemplar-as-Output 10.64 16.80 38.20 / 20.50 / 43.20 17.60 78.20 4.80

(15) SCPN (2018) – 15.60 40.60 / 20.50 / 44.60 19.60 77.60 9.10
(16) CGEN (2019) 17.60 29.94 58.53 / 37.42 / 61.74 32.90 92.82 6.43
(17) SGCP (2020) 19.97 38.00 68.10 / 45.70 / 70.20 41.30 94.53 6.80
(18) ParafraGPT (2021) 21.19 35.86 66.71 / 43.70 / 68.94 40.26 94.54 6.11

(19) GCPG (SSE-LCT-Truncated) 22.64 42.88 72.26 / 51.34 / 74.22 46.63 95.86 5.31

Table 2: Results of different syntactical conditions and comparisons with baselines on ParaNMT-small and QQP-Pos
datasets. B-R: BLEU-R. R-1: ROUGE-1. R-2: ROUGE-2. R-L: ROUGE-L. MTR: METEOR. BS: BERTScore. ↑
means higher score is better where ↓ is exactly the opposite. The highest numbers are in bold.

SSE dictionary size, the ParaNMT-small has 27530
truncated LCT (the average number of sentences
for each LCT: 2.83) and QQP-Pos has 8561 (the
average number of sentences for each LCT: 5.99).
Metrics Following previous works (Iyyer et al.,
2018; Bui et al., 2021), we evaluate generating
results on six metrics, including BLEU-4 (Pap-
ineni et al., 2002), ROUGE-1 (R-1), ROUGE-
2 (R-2), ROUGE-L (R-L) (Lin, 2004), Me-
teor (MTR) (Denkowski and Lavie, 2014), and
BERTScore (BS) (Zhang et al., 2020). Besides,
Source-as-Output will also get a high BLEU score
and BERTScore, we introduce iBLEU (Sun and
Zhou, 2012) for more precise evaluation. As a
variant of BLEU, iBLEU considers both fidelity to
reference and diversification from input:

iBLEU = αBLEU-R − (1− αBLEU-S) ,

BLEU-R = BLEU-4 (output, reference),

BLEU-S = BLEU-4 (output, input),

(3)

where the constant α is set to 0.7, as in the original
paper. Finally, for syntactical condition evaluation,
we follow Kumar et al. (2020) to calculate Tree-
Edit Distance (TED)8 between the Constituency
Parse Trees of both output and reference.

8We use the evaluation tool implemented by SGCP.

Results As shown in Table 2, the main conclu-
sions are: (1) SSE consistently and significantly
outperforms conditions that constructed with man-
ufactured syntax features (Rows 11-12 vs. Rows
7-10). (2) GCPG with SSE gets significant im-
provement over the previous SOTA (Row 12/19
vs. Row 6/18). (3) All syntactical conditions re-
constructed in GCPG outperform baselines (Rows
7-12 vs. Rows 3-6), demonstrating the superior-
ity of GCPG paradigm. However, the TED of
GCPG is lower than CGEN on ParaNMT-small
dataset. As the ParaNMT-small contains various
noise data points, it is optimistic to assume that
the corresponding constituency parse tree could
be well aligned (Kumar et al., 2020), which may
limit TED in evaluation. To address this issue, we
also conduct a human evaluation (details in § 4.3).
As shown in Table 4, GCPG with SSE (GCPG-S)
performs better than CGEN on Syntax score.

4.2 Lexically Controllable Paraphrasing
As mentioned in § 3.2, we use three different key-
word extraction methods to pre-specify keywords
and comprehensively evaluate the GCPG: (1) TF-
IDF (2) TextRank (Mihalcea and Tarau, 2004), and
(3) KeyBERT (Grootendorst, 2020). Also, we com-
pare GCPG with recent competitive method CTRL-

4040

Condition iBLEU ↑ B-R ↑ R-1 / R-2 / R-L ↑ MTR ↑ BS ↑ TED ↓

Keywords Extraction, GCPG instantiated by ProphetNet

(1) GCPG (None) 4.67 18.46 55.29 / 31.17 / 55.18 32.42 92.32 11.78
(2) CTRLsum (2020)* 10.06 21.38 58.04 / 35.63 / 58.62 35.41 92.62 11.13
(3) GCPG (TF-IDF*) 10.07 23.04 61.92 / 38.68 / 61.71 36.97 92.86 10.79
(4) GCPG (TextRank*) 8.16 19.63 56.04 / 32.08 / 56.54 33.60 92.45 12.47
(5) GCPG (KeyBERT*) 11.03 24.12 60.92 / 38.00 / 61.14 35.41 92.79 10.26
(6) GCPG (KeyBERT (Upper Bound)) 16.06 28.64 67.81 / 43.99 / 66.30 40.27 93.44 9.98

Keywords (KeyBERT*) + Syntactical Condition, GCPG instantiated by ProphetNet

(7) GCPG (KeyBERT* + POS Sequence) 15.10 25.22 62.96 / 39.04 / 65.32 36.42 90.96 8.01
(8) GCPG (KeyBERT* + LCT-Truncated) 15.38 26.80 66.07 / 43.52 / 68.07 39.53 90.56 8.08
(9) GCPG (KeyBERT* + LCT) 14.47 23.52 61.92 / 36.33 / 64.38 34.73 92.74 8.00
(10) GCPG (KeyBERT* + Mask Template) 12.13 20.98 58.83 / 33.58 / 61.01 35.02 92.67 8.44
(11) GCPG (KeyBERT* + SSE-POS) 15.67 31.02 66.85 / 45.30 / 68.48 40.12 90.39 7.95
(12) GCPG (KeyBERT* + SSE-LCT-Truncated) 15.73 30.92 68.40 / 46.73 / 69.93 41.98 94.34 7.95

Table 3: Performance of different conditions and combinations under GCPG on ParaNMT-small. For fair comparison,
we use CTRLsum instantiated by ProphetNet. Result with * means that we use a vanilla ProphetNet trained on the
same dataset to predict keywords for GCPG while testing.

sum (He et al., 2020), which extracts entity words
as keywords. We follow the settings in § 4.1.

Metrics For lexical condition, it should be noted
that there is a lack of the explicit request of de-
sirable keywords in the testing set. A generated
paraphrase hinted by model predicted keywords
might get a low score in BLEU, although humans
consider it reasonable. This is because paraphras-
ing models might focus on keywords that are not
consistent with the single reference. Therefore,
we evaluate GCPG in three settings. First, follow-
ing Liu et al.(2020b), we use a keywords prediction
model to generate top-k groups of keywords, which
are fed into GCPG to generate k paraphrases. Then
the sentence that has the highest BLEU with the
reference is selected as the final output (marked
with *). k is set to 4 as well as beam size. Note that
we use this setting to report the final results unless
otherwise specified. Second, we further conduct
human evaluations on the keyword condition based
on KeyBERT (The details are in § 4.3). We denote
it as “GCPG-L (k=1)”. Here “k=1” means GCPG
only produces one paraphrase for each input, con-
strained by the top-1 set of keywords produced by
KeyBERT. Third, following Zeng et al. (2019), we
directly extract keywords from references as the
condition, marked with “(Upper Bound)”.

Results As shown in the first five rows of Table 3,
KeyBERT outperforms other two keyword extrac-
tion methods and CTRLsum on the iBLEU score.
Also, GCPG with keyword condition significantly
performs better than GCPG without it, which veri-
fies the lexically controllable ability of GCPG.

4.3 Combinations

To facilitate the description, we define that “GCPG-
L” denotes GCPG with the keyword condition ex-
tracted by KeyBERT, “GCPG-S” is GCPG with the
SSE-LCT-Truncated condition, and “GCPG-LS” in-
dicates the combination of conditions in “GCPG-L”
and “GCPG-S”. Meanwhile, GCPG is also instanti-
ated by ProphetNet-large.
Metrics We follow the metrics in § 4.1, yet the
automatic evaluations can not fully capture the flu-
ency and the quality of the generation results on
CPG. Therefore, we conduct human evaluation fol-
lowing Kumar et al.(2020). Specifically, we evalu-
ate GCPG with different conditions on ParaNMT-
small, then choose the best settings to compare
GCPG with baselines on QQP-Pos. 100 test sam-
ples are randomly selected from each dataset. Then,
5 crowdsource evaluators are shown a source sen-
tence and the corresponding reference, then asked
to rate model results in three categories: whether
the paraphrase remains loyalty to the source sen-
tence, the fluency of paraphrase, and syntax simi-
larity with gold reference.9 Scores are ranged from
1 to 4, and the higher score is better.
Results As shown in Table 3, combinations of lexi-
cal and syntactical conditions get consistently fur-
ther improvements compared with employing lex-
ical condition individually (Rows 7-12 vs. Row
5). Then, we illustrate human evaluations in Ta-
ble 4. GCPG with lexical condition (GCPG-L
(k=1)) outperforms baselines in meaning and flu-
ency, yet poor in syntax similarity. More impor-

9Details can be found in Appendix C.

4041

Model Loyalty Fluency Syntax All

ParaNMT-small

CGEN (2019) 1.47 2.13 1.81 5.41
ParafraGPT (2021) 1.86 2.42 2.05 6.33
GCPG-L (k=1) 2.94 3.63 2.29 8.86
GCPG-S 2.87 3.36 2.57 8.80
GCPG-LS (k=1) 3.09 3.51 2.46 9.06

QQP-Pos

CGEN (2019) 1.72 2.52 2.22 6.46
ParafraGPT (2021) 2.43 2.91 2.61 7.95
GCPG-LS (k=1) 2.97 3.43 2.81 9.21

Table 4: Results of Human evaluation.

Model
BLEU-Exemplar ↓

ParaNMT-small QQP-Pos

ParafraGPT (2021) 7.32 24.31
GCPG-S 2.63 23.17

Reference 3.30 16.80

Table 5: GCPG can significantly reduce BLEU-
Exemplar score compared with previous SOTA.

tantly, the combination of lexical and syntactical
conditions (GCPG-LS (k=1)) shows significantly
improvements on all three scores.

4.4 Analyses and Discussions

We conduct discussions to shed light on other in-
teresting properties of GCPG. Due to space con-
straints, we take discussions with GCPG instanti-
ated by ProphetNet-large.
Exemplar-side Words Copying Problem We cal-
culate BLEU-4 between model outputs and exem-
plars. As shown in Table 5, GCPG with SSE
(i.e., GCPG-S) can significantly reduce BLEU-
Exemplar comparing with ParafraGPT, gets 4.69 /
1.14 improvements on two datasets, demonstrating
that SSE effectively alleviates this problem.
Lexical Condition Analyze further investigate
GCPG with lexical condition from two aspects: 1)
Generating novel expressions; 2) How frequently
and correctly do the model incorporate the lexical
condition in outputs? For the first one, following
Dou et al.(2021), the number of novel n-grams is
counted in the model output. Specifically, these
n-grams appear in gold references but not in source
sentences. After normalized by the total number of
n-grams, we calculate the recall of novel n-grams.
As shown in Figure 4, GCPG indeed generates
novel expressions. Then, we explore the lexical
condition accuracy of the settings in Table 3 (Row

2 vs Row 5), i.e., whether offered keywords appear
in final outputs. Specifically, we ignore the model
outputs that only use “[NONE]” as the keyword
while paraphrasing for a fair comparison. As shown
in Table 6, GCPG-L outperforms CTRLsum (He
et al., 2020) with 9.8% improvement.

0

5

10

15

20

25

1-grams 2-grams 3-grams 4-grams 1-grams 2-grams 3-grams 4-grams

ParaNMT QQP-Pos

R
ec

al
l o

f N
ov

el
 n

-g
ra

m
s

(%
)

ProphetNet GCPG-L GCPG-LS

Figure 4: Recall of novel n-grams results.

Method Accuracy (%) iBLEU ↑

CTRLsum (2020) 89.45 10.06
GCPG-L 99.25 11.03

Table 6: Lexical condition accuracy on ParaNMT-small.

GCPG Backbone Analyze Whether the perfor-
mance gain only from using strong PLMs is also
of concern. As shown in Table 7, the results show
that GCPG instantiated by vanilla Transformer gets
comparable performance with ParafraGPT10. Also,
we compare GCPG with ParafraGPT instantiated
by the same backbone. GCPG still outperforms
ParafraGPT with 2.8 iBLEU score.

Backbone Method iBLEU ↑

Transformer (2017) - 4.72
BART (2020) - 6.08
ProphetNet (2020) - 4.67
GPT2 (2019) ParafraGPT (2021) 8.61
ProphetNet (2020) ParafraGPT‡ 9.52

Transformer (2017) GCPG-S 8.53
BART (2020) GCPG-S 10.12
ProphetNet (2020) GCPG-S 12.32

Table 7: Performance of GCPG-S with different back-
bones on ParaNMT-small. ‡: for fair comparisons,
ParafraGPT is instantiated by ProphetNet.

5 Conclusions

In this paper, we propose a general framework
GCPG, enabling flexibly combine lexical and syn-

10Due to space constraints, the results of all evaluations can
be found in Appendix D.

4042

tactical conditions and exploring their mutual ef-
fectiveness. Under GCPG, we provide SSE that
allows GCPG to directly model syntax information
from natural sentences and better utilize PLMs. As
we tentatively give a successful implementation
of leveraging two types of conditions in a unified
circumstance, multilingual CPG and more types
of conditions are barely being discussed. In the
future, we will investigate to uniformly represent
these conditions in a more superior way.

References
Tien-Cuong Bui, Van-Duc Le, Hai-Thien To, and Sang-

Kyun Cha. 2021. Generative pre-training for para-
phrase generation by representing and predicting
spans in exemplars. In IEEE BigComp, pages 83–
90. IEEE.

Mingda Chen, Qingming Tang, Sam Wiseman, and
Kevin Gimpel. 2019. Controllable paraphrase gen-
eration with a syntactic exemplar. In ACL, pages
5972–5984. ACL.

Douglass Cutting, Julian Kupiec, Jan Pedersen, and
Penelope Sibun. 1992. A practical part-of-speech
tagger. In Third Conference on Applied Natural Lan-
guage Processing, pages 133–140.

Michael J. Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In WMT-ACL, pages 376–
380. ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL, pages 4171–4186. ACL.

Zi-Yi Dou, Pengfei Liu, Hiroaki Hayashi, Zhengbao
Jiang, and Graham Neubig. 2021. Gsum: A general
framework for guided neural abstractive summariza-
tion. In NAACL, pages 4830–4842. ACL.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Wee Chung Gan and Hwee Tou Ng. 2019. Improv-
ing the robustness of question answering systems to
question paraphrasing. In ACL, pages 6065–6075.
ACL.

Tanya Goyal and Greg Durrett. 2020. Neural syntactic
preordering for controlled paraphrase generation. In
ACL, pages 238–252. ACL.

Maarten Grootendorst. 2020. Keybert: Minimal key-
word extraction with bert.

Yunfan Gu, Yang Yuqiao, and Zhongyu Wei. 2019. Ex-
tract, transform and filling: A pipeline model for
question paraphrasing based on template. In W-NUT,
pages 109–114.

Junxian He, Wojciech Kryscinski, Bryan McCann,
Nazneen Fatema Rajani, and Caiming Xiong. 2020.
Ctrlsum: Towards generic controllable text summa-
rization. CoRR, abs/2012.04281.

Chris Hokamp and Qun Liu. 2017a. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1535–1546.

Chris Hokamp and Qun Liu. 2017b. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2017, Vancouver, Canada, July 30 -
August 4, Volume 1: Long Papers, pages 1535–1546.
Association for Computational Linguistics.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks. In
NAACL, pages 1875–1885. ACL.

Ashutosh Kumar, Kabir Ahuja, Raghuram Vadapalli,
and Partha P. Talukdar. 2020. Syntax-guided con-
trolled generation of paraphrases. Trans. Assoc. Com-
put. Linguistics, 8:330–345.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In ACL, pages 7871–7880. ACL.

Yinghao Li, Rui Feng, Isaac Rehg, and Chao Zhang.
2020. Transformer-based neural text generation with
syntactic guidance. CoRR, abs/2010.01737.

Chin-Yew Lin. 2004. ROUGE: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out, pages 74–81, Barcelona, Spain. ACL.

Dayiheng Liu, Jie Fu, Qian Qu, and Jiancheng Lv. 2019.
Bfgan: backward and forward generative adversarial
networks for lexically constrained sentence genera-
tion. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 27(12):2350–2361.

Dayiheng Liu, Jie Fu, Yidan Zhang, Chris Pal, and
Jiancheng Lv. 2020a. Revision in continuous space:
Unsupervised text style transfer without adversarial
learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8376–8383.

Dayiheng Liu, Yeyun Gong, Yu Yan, Jie Fu, Bo Shao,
Daxin Jiang, Jiancheng Lv, and Nan Duan. 2020b.
Diverse, controllable, and keyphrase-aware: A cor-
pus and method for news multi-headline generation.
In EMNLP, pages 6241–6250. ACL.

Dayiheng Liu, Yu Yan, Yeyun Gong, Weizhen Qi, Hang
Zhang, Jian Jiao, Weizhu Chen, Jie Fu, Linjun Shou,
Ming Gong, Pengcheng Wang, Jiusheng Chen, Daxin
Jiang, Jiancheng Lv, Ruofei Zhang, Winnie Wu,

4043

https://doi.org/10.1109/BigComp51126.2021.00025
https://doi.org/10.1109/BigComp51126.2021.00025
https://doi.org/10.1109/BigComp51126.2021.00025
https://doi.org/10.18653/v1/p19-1599
https://doi.org/10.18653/v1/p19-1599
https://doi.org/10.3115/v1/w14-3348
https://doi.org/10.3115/v1/w14-3348
https://doi.org/10.3115/v1/w14-3348
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/p19-1610
https://doi.org/10.18653/v1/p19-1610
https://doi.org/10.18653/v1/p19-1610
https://doi.org/10.18653/v1/2020.acl-main.22
https://doi.org/10.18653/v1/2020.acl-main.22
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
http://arxiv.org/abs/2012.04281
http://arxiv.org/abs/2012.04281
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/n18-1170
https://doi.org/10.18653/v1/n18-1170
https://transacl.org/ojs/index.php/tacl/article/view/1967
https://transacl.org/ojs/index.php/tacl/article/view/1967
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/2010.01737
http://arxiv.org/abs/2010.01737
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.18653/v1/2020.emnlp-main.505
https://doi.org/10.18653/v1/2020.emnlp-main.505

Ming Zhou, and Nan Duan. 2021. GLGE: A new
general language generation evaluation benchmark.
In Findings of ACL, pages 408–420. ACL.

Mingtong Liu, Erguang Yang, Deyi Xiong, Yujie Zhang,
Chen Sheng, Changjian Hu, Jinan Xu, and Yufeng
Chen. 2020c. Exploring bilingual parallel corpora
for syntactically controllable paraphrase generation.
In IJCAI, pages 3955–3961. ijcai.org.

Nitin Madnani and Bonnie J. Dorr. 2010. Generating
phrasal and sentential paraphrases: A survey of data-
driven methods. Comput. Linguistics, 36(3):341–
387.

Jonathan Mallinson, Rico Sennrich, and Mirella Lapata.
2017. Paraphrasing revisited with neural machine
translation. In EACL, pages 881–893. ACL.

Louis Martin, Angela Fan, Éric de la Clergerie, Antoine
Bordes, and Benoît Sagot. 2020. Muss: Multilin-
gual unsupervised sentence simplification by mining
paraphrases. arXiv preprint arXiv:2005.00352.

Kathleen R. McKeown. 1983. Paraphrasing questions
using given and new information. Am. J. Comput.
Linguistics, 9(1):1–10.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In EMNLP, pages 404–411.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In ACL, pages 311–318.
ACL.

Matt Post and David Vilar. 2018. Fast lexically con-
strained decoding with dynamic beam allocation for
neural machine translation. In Proceedings of the
2018 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2018,
New Orleans, Louisiana, USA, June 1-6, 2018, Vol-
ume 1 (Long Papers), pages 1314–1324. Association
for Computational Linguistics.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan
Duan, Jiusheng Chen, Ruofei Zhang, and Ming Zhou.
2020. Prophetnet: Predicting future n-gram for
sequence-to-sequence pre-training. In EMNLP, vol-
ume EMNLP 2020 of Findings of ACL, pages 2401–
2410. ACL.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Cynthia M Shewan. 1985. Auditory comprehension
problems in adult aphasic individuals. Human Com-
munication Canada, 9(5):151–155.

Hong Sun and Ming Zhou. 2012. Joint learning of a
dual SMT system for paraphrase generation. In ACL,
pages 38–42. ACL.

Jiao Sun, Xuezhe Ma, and Nanyun Peng. 2021. AESOP:
paraphrase generation with adaptive syntactic control.
In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2021, Virtual Event / Punta Cana, Dominican Repub-
lic, 7-11 November, 2021, pages 5176–5189. Associ-
ation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS, pages 5998–6008.

John Wieting and Kevin Gimpel. 2018. Paranmt-50m:
Pushing the limits of paraphrastic sentence embed-
dings with millions of machine translations. In ACL,
pages 451–462. Association for Computational Lin-
guistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. CoRR, abs/1609.08144.

Kexin Yang, Wenqiang Lei, Dayiheng Liu, Weizhen Qi,
and Jiancheng Lv. 2021. Pos-constrained parallel
decoding for non-autoregressive generation. In ACL,
pages 5990–6000. ACL.

Daojian Zeng, Haoran Zhang, Lingyun Xiang, Jin Wang,
and Guoliang Ji. 2019. User-oriented paraphrase
generation with keywords controlled network. IEEE
Access, 7:80542–80551.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In ICLR. OpenRe-
view.net.

A GCPG Backbone Selection

We evaluate the following text generation models to
select a backbone model for our GCPG. (1) Trans-
former (Vaswani et al., 2017), the conventional
version in the original paper. (2) BART (Lewis
et al., 2020)11 has a denoising autoencoder for
pre-training sequence-to-sequence models, and (3)
ProphetNet-large (Qi et al., 2020)12, which has
shown its effectiveness in text generation (Liu et al.,
2021). The results are shown in Table 8.

11https://github.com/pytorch/fairseq/
tree/master/examples/bart

12https://github.com/microsoft/
ProphetNet

4044

https://doi.org/10.18653/v1/2021.findings-acl.36
https://doi.org/10.18653/v1/2021.findings-acl.36
https://doi.org/10.24963/ijcai.2020/547
https://doi.org/10.24963/ijcai.2020/547
https://doi.org/10.1162/coli_a_00002
https://doi.org/10.1162/coli_a_00002
https://doi.org/10.1162/coli_a_00002
https://doi.org/10.18653/v1/e17-1083
https://doi.org/10.18653/v1/e17-1083
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/n18-1119
https://doi.org/10.18653/v1/n18-1119
https://doi.org/10.18653/v1/n18-1119
https://doi.org/10.18653/v1/2020.findings-emnlp.217
https://doi.org/10.18653/v1/2020.findings-emnlp.217
https://aclanthology.org/P12-2008/
https://aclanthology.org/P12-2008/
https://aclanthology.org/2021.emnlp-main.420
https://aclanthology.org/2021.emnlp-main.420
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.18653/v1/2021.acl-long.467
https://doi.org/10.18653/v1/2021.acl-long.467
https://doi.org/10.1109/ACCESS.2019.2923057
https://doi.org/10.1109/ACCESS.2019.2923057
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://github.com/pytorch/fairseq/tree/master/examples/bart
https://github.com/pytorch/fairseq/tree/master/examples/bart
https://github.com/microsoft/ProphetNet
https://github.com/microsoft/ProphetNet

Model iBLEU ↑ B-R ↑ R-1 / R-2 / R-L ↑ MTR ↑ BS ↑ TED ↓

ParaNMT-small

Transformer 4.72 14.66 51.05 / 26.88 / 51.32 30.67 91.30 12.71
BART 6.08 17.78 52.37 / 27.02 / 51.52 31.57 91.99 11.92
ProphetNet 4.67 18.46 55.29 / 31.17 / 55.18 32.42 92.32 11.78

QQP-Pos

Transformer 7.63 23.44 54.58 / 30.48 / 56.63 32.60 93.18 11.84
BART 3.14 23.07 56.43 / 32.12 / 57.64 34.26 93.58 13.05
ProphetNet 6.43 25.79 58.40 / 34.52 / 59.98 35.75 93.88 11.74

Table 8: Results of different generation models on ParaNMT-small and QQP-Pos datasets. B-R: BLEU-R. R-1:
ROUGE-1. R-2: ROUGE-2. R-L: ROUGE-L. MTR: METEOR. BS: BERTScore. ↑ means higher score is better
where ↓ is exactly the opposite. The highest numbers are in bold.

B GCPG with syntactical conditions on
QQP-Pos dataset

The experimental results can be found in Table 9.

C Human Evaluation Details

For human evaluation, we first set a guideline for
evaluating, which includes the task background,
key points, detailed descriptions and examples of
evaluation scores from 1 to 4. Then, we set an
entry barrier for annotators. In detail, we organize
a training program and a preliminary annotating
examination (50 examples for each data set) to
select appropriate annotators.
Score Definition We define three categories in hu-
man evaluation as follows:
Loyalty means whether the option is consistent
with the meaning of the original sentence (whether
the content is missing or omitted).
Fluency means whether the sentence correspond-
ing to the option is fluent.
Syntax is the similarity of grammatical structure
with reference answer, which means whether the
sentence structure of this option similar to the ref-
erence answer.
Inter-annotator agreement We use Fleiss’
kappa (Fleiss, 1971) to measure 5 annotator’s relia-
bility13. The results are : 1) Paranmt-small dataset
(loyalty: 0.56, fluency: 0.42, syntax: 0.41); 2)
QQP-Pos (loyalty: 0.55, fluency: 0.40, syntax:
0.37).

D GCPG Backbone Analyze

All kinds of scores in GCPG Backbone Analyze
can be found in Table 10.

13https://www.nltk.org/_modules/nltk/
metrics/agreement.html

E Case Study

The qualitative effect of the lexical and syntactical
conditions on the model output is also of interest.
To intuitively display the effects of conditions, we
show some paraphrasing results in Figure 5. In
detail, GCPG-L can generate sentence “A powerful
healing energy comes out of love.” that contain pre-
specified keywords “[healing]". However, lexical
condition provides less information about syntacti-
cal controlling. In comparison, GCPG-LS shows
better performances on both controllability of lexi-
cal items and syntax.

4045

https://www.nltk.org/_modules/nltk/metrics/agreement.html
https://www.nltk.org/_modules/nltk/metrics/agreement.html

Model iBLEU ↑ B-R ↑ R-1 / R-2 / R-L ↑ MTR ↑ BS ↑ TED ↓

QQP-Pos

(1) GCPG (POS Sequence) 17.84 37.49 70.10 / 47.43 / 71.49 43.05 95.46 7.04
(2) GCPG (LCT-Truncated) 20.93 40.55 71.31 / 49.20 / 73.31 45.17 95.83 5.66
(3) GCPG (LCT) 20.17 38.88 70.61 / 48.00 / 72.49 42.95 95.58 6.11
(4) GCPG (Masked Template) 19.16 33.65 64.78 / 42.17 / 67.31 38.97 94.86 6.22
(5) GCPG (SSE-POS Sequence) 21.56 42.63 72.78 / 52.92 / 74.53 47.08 95.88 5.85
(6) GCPG (SSE-LCT-Truncated) 22.64 42.88 72.26 / 51.34 / 74.22 46.63 95.86 5.31

Table 9: Results of different syntactical conditions on QQP-Pos dataset. B-R: BLEU-R. R-1: ROUGE-1. R-2:
ROUGE-2. R-L: ROUGE-L. MTR: METEOR. BS:BERTScore. ↑ means higher score is better where ↓ is exactly
the opposite. The highest numbers are in bold.

Backbone Method iBLEU ↑ B-R ↑ R-1 / R-2 / R-L ↑ MTR ↑ BS ↑ TED ↓

Transformer (2017) - 4.72 14.66 51.05 / 26.88 / 51.32 30.67 91.30 12.71
BART (2020) - 6.08 17.78 52.37 / 27.02 / 51.52 31.57 91.99 11.92
ProphetNet (2020) - 4.67 18.46 55.29 / 31.17 / 55.18 32.42 92.32 11.78
GPT2 (2019) ParafraGPT (2021) 8.61 14.54 49.67 / 22.42 / 51.29 27.83 90.78 8.22
ProphetNet (2020) ParafraGPT‡ 9.52 16.85 53.60 / 27.96 / 56.31 31.84 92.21 8.84

Transformer (2017) GCPG-S 8.53 17.14 55.89 / 30.83 / 57.15 33.29 92.24 9.67
BART (2020) GCPG-S 10.12 19.08 57.87 / 34.65 / 59.83 34.48 92.50 11.02
ProphetNet (2020) GCPG-S 12.32 26.24 63.62 / 40.76 / 64.98 39.79 93.86 8.27

Table 10: Performance of different Backbones under GCPG-S on ParaNMT-small. ‡: for fair comparisons,
ParafraGPT (previous SOTA) is also instantiated by ProphetNet.

4046

Input

Exemplar

Reference

A powerful restorative energy emerges out of love.

There's one thing that makes me feel normal.

There is a powerful healing energy that emanates
from loving.

CGEN There 's great energy and let it be powerful.

GCPG-L A powerful healing energy comes out of love. [healing]
GCPG-S There’s a powerful restorative energy that makes you

feel good.
GCPG-LS There's a powerful healing energy that comes out of

love. [healing]

Input

Exemplar

Reference

ParafraGPT

GCPG-L

GCPG-S

GCPG-LS

In west hollywood you can get arrested for not curbing
your dog!
You'll never do it in this world if you don't know the
lie of the country!
They can arrest you in west hollywood if you don't
have a dog on a leash!

You won be arrested in this west if you don't get the
cur of dog!

They can arrest you in west hollywood if you don’t
stop the dog. [arrest]

They can arrest you in west hollywood if you don't
curb your dog! [arrest]

You can be arrested in west hollywood if you don't keep
an eye on your dog!

ParafraGPT There is strong evidence that loveates energy.
SGCP There 's one energy that helps you look out of love restor.

CGEN

SGCP

You won't get you in the car and you don't get back in
front of you!
You can't arrest you in the west because you don't arrest
your dog.

Sample

Baselines

Ours

Sample

Baselines

Ours

Figure 5: Samples of paraphrases. Words in “[]” are offered by our keywords prediction model based on KeyBERT.
We highlight different parts for better view.

4047

