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Abstract

Attention mechanism has become the domi-
nant module in natural language processing
models. It is computationally intensive and
depends on massive power-hungry multipli-
cations. In this paper, we rethink variants
of attention mechanism from the energy con-
sumption aspects. After reaching the conclu-
sion that the energy costs of several energy-
friendly operations are far less than their multi-
plication counterparts, we build a novel atten-
tion model by replacing multiplications with
either selective operations or additions. Em-
pirical results on three machine translation
tasks demonstrate that the proposed model,
against the vanilla one, achieves competitable
accuracy while saving 99% and 66% energy
during alignment calculation and the whole
attention procedure. Code is available at:
https://github.com/NLP2CT/E-Att.

1 Introduction

Attention mechanism (ATT, Bahdanau et al., 2015;
Vaswani et al., 2017; Yang et al., 2018) has demon-
strated huge success in a variety of natural language
processing tasks (Su et al., 2018; Kitaev and Klein,
2018; Tan et al., 2018; Yang et al., 2019a; Devlin
et al., 2019; Zhang et al., 2020). The module learns
hidden representations of a sequence by serving
each word as a query to attend to all keys in the tar-
get sentence, then softly assembling their values. It
is a de-facto standard to achieve this via performing
linear projections and dot products on representa-
tions of queries and keys (Vaswani et al., 2017), re-
sulting in large amount of multiplications. In spite
of its promising quality, such kind of paradigm
may be not the preferred solution from the energy
consumption aspect (Horowitz, 2014; Raffel et al.,
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Operation (FP32) ASIC FPGA

Addition 0.9 0.4
Multiplication 3.7 18.8

Table 1: Energy cost (10−12Joule) of addition and
multiplication on ASIC/FPGA chips (You et al., 2020).
The representative of ASIC chip is Google’s TPU,
while Microsoft cloud employs FPGA chips.

2020). How to build a high energy-efficient ATT
still remains a great challenge.

Our work starts from in-depth investigations on
approaches in ATT context with respect to model
compression (Hinton et al., 2015; Jiao et al., 2020)
and complexity optimization (Yang et al., 2019b;
Raganato et al., 2020; Beltagy et al., 2020; Tay
et al., 2021). These approaches can potentially al-
leviate the problem of high energy consumption in
ATT. Nevertheless, intentions of all these methods
are not exactly from the energy-friendly perspec-
tive, thus overlooking the origin of energy con-
sumed, i.e., basic arithmetic operations in electric
equipments. Massive multiplications still remain,
consuming far more energy than its additive coun-
terpart on modern devices (Table 1, Li et al., 2020).

To this end, we propose to approach this prob-
lem from a new direction – replacing massive mul-
tiplications in ATT with cheaper operations. Con-
cretely, we propose a novel energy-efficient atten-
tion mechanism (E-ATT). It equips binarized selec-
tive operations instead of linear projections over
input hidden states, and measures attentive scores
using L1 distance rather than dot-product. Conse-
quently, E-ATT abandons most of multiplications
to reach the goal of energy cost reduction.

We examine our method with TRANSFORMER

model (Vaswani et al., 2017), and conduct exper-
iments on three machine translation tasks. Com-
pared with conventional ATT, our E-ATT can save
more than 99% energy of the vanilla alignment
calculation and around 66% energy of the whole

3969

https://github.com/NLP2CT/E-Att


attention model. In the meanwhile, our models
yield acceptable translation qualities across lan-
guage pairs. Extensive analyses also demonstrate
that E-ATT can functionally model semantic align-
ments without using multiplications.

2 Preliminary

Conventional Attention Mechanism Given in-
put representations X ∈ Rl1×d and Y ∈ Rl2×d
with l1, l2 being sequence length, and d is the in-
put dimensionality. Note l1 and l2 may be equal
for self-attention pattern, and represent lengths of
target and source sequence in cross-attention. ATT
first projects the inputs into three representations1:

Q = XWQ, [K;V] = Y[WK ;WV ], (1)

where {WQ,WK ,WV } ∈ Rd×d are trainable pa-
rameters. Q ∈ Rl1×d, {K,V} ∈ Rl2×d are query,
key and value representations, respectively. The
attention alignment is calculated with dot-product
multiplication and softmax activation:

Mij ∝ exp(
QiK

>
j√
d

) ∈ Rl1×l2 . (2)

Then, the output is derived by multiplying atten-
tion weights with value representation V̂:

O = MV ∈ Rl1×d. (3)

As seen, matrix multiplications are massively ex-
ploited into conventional ATT.

Related Work Several related approaches po-
tentially alleviate the power-hungry drawback of
ATT. One direction relies on model compression by
pruning redundant parameters (Denton et al., 2014;
Wang et al., 2016; Zhuang et al., 2018) or distill-
ing the learned knowledge from a large model to a
smaller one (Hinton et al., 2015; Yim et al., 2017),
which still maintains multiplicative operations. An-
other direction aims at reducing the computational
complexity of attention module, e.g. linearly pro-
jecting input (Dense, Tay et al., 2021), or randomly
initializing and training attention weights (Ran-
dInit, Tay et al., 2021). To give a full comparison
of energy consumption of these approaches, we
conduct the number of multiplicative operations
and energy costs across modules in Table 2. As
seen, vanilla ATT (Vaswani et al., 2017) involves

1For simplicity, we omit the bias in linear projections, as
well as splits and concatenations in multi-head mechanism.

Model Alignment Attention

# mul ∆A(%) # mul ∆A(%)

Vanilla 2ld2 + l2d 100.00 3ld2 + 2l2d 100.00
Dense ld2 + l2d 51.10 2ld2 + 2l2d 67.59
RandInit 0 0.00 ld2 + l2d 33.80
E-ATT 0 0.44 ld2 + l2d 34.10

Table 2: Calls of multiplication (mul) and energy con-
sumption ratio on ASIC chip (∆A) of vanilla ATT,
Dense, RandInit, and our model. “Alignment” and “At-
tention” indicate the statistics are conducted at the level
of alignment calculation and the whole attention model,
respectively. l and d are sequential length and model
size. Please refer to Appendix A for more details.

the most multiplicative operations, and requires the
most energy than other methods. Although Dense
and RandInit significantly reduce the energy con-
sumption, Tay et al. (2021) point out that these
approaches fail to be employed into cross-attention
networks, since neither linear transition nor ran-
domly initialized matrix is able to exactly model
alignment information across languages.

3 Energy-Efficient Attention Mechanism

In this section, we describe E-ATT by pertinently
reducing the multiplicative operations of ATT, in-
cluding selective operation and L1 distance.

3.1 Feature Selection with Discreteness

Since the linear transitions of queries and keys
(Equation 1) involve massive multiplications within
conventional ATT, we propose to modify them with
binarized quantization (Liu et al., 2018; Qin et al.,
2020). Concretely, the inputs X and Y are turned
into discrete value with a threshold function f(·):

f(x) =

{
1 x > τ,

0 otherwise,
(4)

where τ and d are threshold and hidden size, respec-
tively. The derived representations X̃ = f(X) and
Ỹ = f(Y) contain discrete features composing of
zeros and ones. Since this procedure is undifferen-
tiable, we need to predefine a pattern of gradient
calculation for X when receiving back-propagated
gradient Z. Wu et al. (2018) pointed out that, when
simulating the back-propagated progress across dis-
crete activations, those patterns which peak at the
medium of domain reveal better training stabiliza-
tion and model performance. We thus use a mod-
ified Gaussian function during back-propagation
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following Wu et al. (2018):

∇X =

√
2

π
e−2(Z−τ)

2
, (5)

and the same procedure is applied for Y. Then
given parameters WQ,WK ∈ Rd×d, we derive
query and key representations Q,K by applying
masked selection function:

Q̃ = g(X̃,W̃Q) ∈ Rl1×d×d, (6)

K̃ = g(Ỹ,W̃K) ∈ Rl2×d×d, (7)

Q =
d∑
i=1

Q̃·,i,·; K =
d∑
i=1

K̃·,i,·, (8)

where W̃Q ∈ Rl1×d×d and W̃K ∈ Rl2×d×d are
derived by tiling WQ,WK with l1 and l2 times,
respectively. g(·, ·) represents indexed feature se-
lection defined as follows:

g(U,P) =

{
Ui,j,· Pi,j = 1,

0 otherwise.
(9)

3.2 Pairwise L1 Distance

As the dot-product multiplication can be viewed
as similarity calculation between Q and K, we
argue that other similarity estimation methods can
play this role as well. Accordingly, we further
propose to use pairwise L1 distance instead, which
does not require any multiplication. Attention score
calculation in Equation 2 is then modified as:

Mij ∝ exp(−||Qi −Kj ||1√
d

), (10)

where || · ||1 denotes the L1 norm of inputted vector.
Here we use negative L1 value to ensure that larger
distance contributes lower attention score.

4 Experiments

4.1 Dataset Preprocessing

In this paper we evaluate our approach with
three widely used machine translation datasets:
IWSLT’15 English -Vietnamese (En-Vi), WMT’14
English - German (En-De) and WMT’17 Chinese -
English (Zh-En). All datasets are segmented into
subwords by byte-pair encoding (BPE, Sennrich
et al., 2016) with 32k merge operations. Specially,
for the former two tasks, we apply joint BPE for
both source and target languages.

Dataset Train Dev Test

En-Vi 13.3K 1,553 1,268
En-De 4.50M 3,000 3,003
Zh-En 20.6M 2,002 2,001

Table 3: Dataset statistics. Each cell represents the
number of examples. K: thousand, M: million.

4.2 Experimental Setting

We apply TRANSFORMER-Base (Vaswani et al.,
2017) setting for all experiments. The model di-
mensionality is 512, and 6 layers are engaged
in both encoder and decoder side. The inner-
connection dimensionality for feedforward block
is 2,048, and the number of heads in multi-head
attention networks is 8. We share the source embed-
ding, target embedding and target softmax projec-
tion weight for En-Vi task, and share the latter two
matrices for En-De. We modify the learning rate
schedule as: lr = 0.001·min

(
t

8000 , 1, (
20000
t )0.5

)
,

where t denotes the current step. Across all tasks,
we determine the threshold τ as 1.0.

For both baseline and our model, En-Vi, En-De
and Zh-En tasks take 50k, 150k and 200k updates,
and each batch contains 4,096, 32,768 and 32,768
source tokens. The dropout ratio is determined
as 0.3, 0.1 and 0.1, respectively. All experiments
are conducted over 4 NVIDIA V100 GPUs. For
each task, we choose the best model over dev set,
defining beam size as 4, 4, 10 and decoding alpha
as 1.5, 0.6 and 1.5, respectively.

4.3 Experimental Results

As shown in Table 4, vanilla model achieves best
performance over all translation tasks. However,
replacing conventional attention networks with E-
ATT does not lead to significant performance drop,
with small decrease of 0.15∼0.78 BLEU score.
Besides, after referring the statistics from Table 1
and 2, our E-ATT module takes 34.10%/33.83%
energy of conventional ATT. These results reveal
that, E-ATT can achieve competitive translation
quality, and more importantly, significantly reduce
the energy consumption of attention.

4.4 Ablation Study

We further conduct ablation experiments on En-
Vi task. As seen in Table 5, using discrete fea-
ture selection instead of linear transition slightly
harms performance, with 0.61 BLEU score de-
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Attention mechanism En-Vi En-De Zh-En ASIC (%) FPGA (%)

Vanilla 30.26 ± 0.07 27.60 ± 0.04 24.28 ± 0.08 100.00 100.00
E-ATT 29.48 ± 0.08 27.45 ± 0.04 24.23 ± 0.06 34.10 33.83

Table 4: Averaged BLEU scores (%) upon test set on IWSLT’15 En-Vi, WMT’14 En-De and WMT’17 Zh-En tasks
over 5 independent runs. E-ATT gives comparable results against conventional ATT, reducing the energy cost at
65.90%/66.17% on ASIC/FPGA chip in attention procedure. Since the energy cost is difficult to be empirically
evaluated, we report the theoretical values following the common practice (Chen et al., 2020; You et al., 2020).

Model BLEU (%)

Vanilla 28.12
Replace with discrete selection 27.51
Replace with L1 distance 28.05

E-ATT 27.45

Table 5: Model performance with component replace-
ments over En-Vi dev set. Using L1 distance as simi-
larity measurement dose not harm model performance.

- Vanilla Dense RandInit E-ATT

Vanilla 28.12 19.92 19.31 27.72
Dense 27.48 19.43 19.21 27.60

RandInit 27.36 18.98 18.83 27.48
E-ATT 28.08 19.85 19.67 27.45

Table 6: BLEU score (%) of different model hybrids
with modifying self-attention (horizontal) and cross-
attention (vertical) network upon En-Vi dev set. E-ATT
can achieve good performance when applied as cross-
attention modules, whereas Dense or RandInit can not.

crease. Besides, replacing dot-product attention
withL1 distance does not significantly affect model
performance. We can conclude that: 1) the per-
formance gap between E-ATT and vanilla model
mainly stems from the usage of discrete feature
selection; and 2) L1 distance can measure the simi-
larity of vectorized representations and give modest
performance compared to baseline.

5 Analyses

5.1 Hybrid Attention Networks

We conduct a series of experiments involving hy-
brids of attention networks among vanilla ATT,
Dense, RandInit, and E-ATT module in Table 6.
As shown, the conventional attention network per-
forms the best among all models. Our module
performs well when served as either self-attention
or cross-attention modules. Besides, for all cases
applying Dense/RandInit as cross-attention mod-
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Figure 1: Performance and energy consumption of dif-
ferent models with knowledge distillation on En-Vi dev
set. We regard the energy consumption of ATT base-
line as 1, and accumulatively halve the dimensionality
of model till untrainable (from 512 to 64). Energy con-
sumption is estimated over ASIC. E-ATT requires far
less energy to meet up the baseline performance.

ules, models perform significantly worse, identical
with the findings in Tay et al. (2021). On the con-
trary, E-ATT module can give better performance
with marginal performance drop comparing with
baseline, indicating that E-ATT module is capable
of providing adequate semantic alignments across
languages for translation. Besides, it is encourag-
ing to see that our method works compatibly with
other modules with marginal performance drop.

5.2 Knowledge Distillation

Knowledge distillation is a representative of model
compression approach (Hinton et al., 2015; Tang
et al., 2019). We further conduct experiments on
ATT models with various dimensionalities com-
pressed by knowledge distillation. Figure 1 shows
the energy consumption and performance of dif-
ferent models with modified dimensionality d. As
seen, by accumulatively halving d from 512, both
ATT and E-ATT progressively loses the quality.
However, E-ATT can give a better trade-off be-
tween model performance and energy consumption
than knowledge distillation methods.
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Figure 2: Case study from WMT’17 Zh-En dev set. E-
ATT performs well on cross-lingual alignments.
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Figure 3: Ratio of nonzero values in the representations
of E-ATT. Enc-Self: encoder self-attention ; Dec-Self:
decoder self-attention; Dec-Crs-Query/Key: query/key
representation for decoder cross-attention. Query rep-
resentations in cross-attention are the most active.

5.3 Case Study

We visualize the averaged attention values over one
case from WMT’17 Zh-En dev set. As seen, our
model can give good aligned information, where
preposition phrase "around 50 years ago" is ar-
ranged at the end of sentence in English, while
its aligned phrase is at the front in Chinese. This
reveals that, our E-ATT can perform well on mod-
eling the cross-lingual alignments.

5.4 Binarization Statistics

We further collect the ratio of nonzero values ρ
for each attention module in Figure 3, we can see
that it increases with the number of encoder lay-
ers, denoting that more information is arranged
into attentive calculation at higher layer of source
side. However, for decoder E-ATT, the ratio meets
its peak at middle layers, revealing that decoder
E-ATT are most active at the middle term of se-
mantic processing. Interestingly, ratio in the query
of cross-attention modules, which align source and

target semantics, is higher for the layer closer to
output. As the binarized key representation of each
cross-attention module is equivalent, higher ratio of
nonzero values in query representation means that,
E-ATT at higher decoder layer provides more in-
formation for cross-lingual alignments, thus enrich
the information for translation.

6 Discussion and Conclusion

In this paper, we empirically investigate the high
energy-consumption problem in ATT. We argue
that the alignment modeling procedure can be
achieved with additions other than multiplications,
thus reducing the energy costs. Extensive anal-
yses suggest that: 1) Binarized representations
marginally harm the feature extraction procedure;
and 2) L1 distance can be efficiently exploited to
measure alignment among queries and keys. Com-
pared to baseline, our approach can yield consider-
able quality of translations, and significantly save
energy in attention mechanism. Although we have
shown the superiority of E-ATT, considering the
whole TRANSFORMER block2, the use of E-ATT
brings 17% energy reduction. We hope this work
can attract more researches on energy-efficient
models. It is worth to further design techniques
that reduce the energy cost of other modules in
TRANSFORMER.
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A Energy Ratio Calculation

We calculate the energy cost following the common
practice (Chen et al., 2020; You et al., 2020). Note
that, we follow suggestions in Song et al. (2021) to
omit the energy calculation of activate functions,
such as relu and softmax, because they are spe-
cially designed over some modern AI chips, which
requires far less energy than additive operation.

For the common case where input X ∈ Rl1×d is
projected into Q ∈ Rl1×d with W ∈ Rd×d:

Q = XW> + b, (11)

the number of multiplicative operations is l1 × d×
d+ l1×d = l1d

2 + l1d. For the number of additive
operations, it is also l1d2+ l1d. Specially, if d� 1,
we can omit the term l1d for simplicity.

We calculate the energy cost from three levels:
the alignment calculation which is used to mea-
sure the attention score, the whole attention model
which is the core of our work, and the widely
used TRANSFORMER (Vaswani et al., 2017) block,
which contains a multi-head attention layer and
a feedforward layer. We simply set the sequence
length of inputs X and Y to l. Then:

Calculation Level ∆A ∆F

Alignment Calculation 0.45 0.05
Attention Model 34.09 33.83
TRANSFORMER Block 83.17 83.10

Table 7: Energy consumption ratio (%) at each calcu-
lation level on En-Vi translation task compared to con-
ventional TRANSFORMER design.

Alignment Calculation Two linear prjections
are arranged to obtain query and key representa-
tions, yielding 2ld2 additive/multiplicative oper-
ations. Both query and key representations are
used to derive attention logits. In dot-product,
the number of required multiplicative operations
is l × d × l = l2d. The total numbers of addi-
tive/multiplicative operations are both 2ld2 + l2d.

Attention Model In order to obtain value rep-
resentations, attention model requires ld2 addi-
tive/multiplicative operations. Besides, applying
weighted sum over value representations with at-
tention weights requires l2d multiplicative/additive
operations. Overall, the numbers of multiplica-
tive/additive operations in the whole attention
model are 3ld2 + 2l2d.

TRANSFORMER Block Although representa-
tions in multi-head attention are splitted into h
heads, in which dimension is dh (d = h× dh), the
number of multiplicative/additive operations is also
h× l×dh× l = l2hdh = l2d. There are one output
linear transition for the output of multiple heads
and two additional linear transitions in feedforward
layer, resulting in ld2 + 4ld2 + 4ld2 = 9ld2 addi-
tional additive/multiplicative operations. The over-
all multiplication operations in a TRANSFORMER

Block is 9ld2 + 3ld2 + 2l2d = 12ld2 + 2l2d.
Same as the steps above, we can calculate the

required energy consumption of other modules.
For example, considering our proposed E-ATT,
the numbers of additive and multiplicative oper-
ations are 2ld+ ld and 0 in alignment calculation,
ld2 + 2ld+ 2l2d and ld2 + l2d in attention model,
10ld2 + 2ld + 2l2d and 10ld2 + l2d in TRANS-
FORMER block.

In this way, we can calculate the ratio of energy
cost referring to the statistics in Table 1. For ex-
ample, the ratio between E-ATT and conventional
attention model on ASIC chip is:
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∆A =
0.9(ld2 + 2ld + 2l2d) + 3.7(ld2 + l2d)

0.9(3ld2 + 2l2d) + 3.7(3ld2 + 2l2d)
(12)

Similarly, that on FPGA chip is:

∆F =
0.4(ld2 + 2ld + 2l2d) + 18.8(ld2 + l2d)

0.4(3ld2 + 2l2d) + 18.8(3ld2 + 2l2d)
(13)

For the IWSLT’15 En-Vi task, with d being 512,
the averaged length of dataset is l̄ = 22. We can get
the result ∆A = 34.09%, ∆F = 33.83%, thus the
energy reduction ratio is 1−∆A = 65.91%, 1−∆F

= 66.17%. Similarly, energy consumption ratios
at the level of alignment calculation are 99.55%
and 99.95%. Those of TRANSFORMER block are
83.17% and 83.10%, respectively.
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