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Abstract

Chinese Word Segmentation (CWS) intends to
divide a raw sentence into words through se-
quence labeling. Thinking in reverse, CWS
can also be viewed as a process of grouping
a sequence of characters into a sequence of
words. In such a way, CWS is reformed as
a separation inference task in every adjacent
character pair. Since every character is either
connected or not connected to the others, the
tagging schema is simplified as two tags "Con-
nection" (C) or "NoConnection" (NC). There-
fore, bigram is specially tailored for "C-NC"
to model the separation state of every two con-
secutive characters. Our Separation Inference
(SpIn) framework is evaluated on five public
datasets, is demonstrated to work for machine
learning and deep learning models, and outper-
forms state-of-the-art performance for CWS
in all experiments. Performance boosts on
Japanese Word Segmentation (JWS) and Ko-
rean Word Segmentation (KWS) further prove
the framework is universal and effective for
East Asian Languages. 1

1 Introduction

In Natural Language Processing (NLP), word seg-
mentation is the commencement of Part-of-Speech
(POS) tagging, semantic role labeling (SRL), and
other similar studies. Particularly for Chinese,
Japanese and Korean languages, the absence of
explicit boundaries between characters makes the
Word Segmentation (WS) task indispensable in
NLP tasks. Dominant word segmentation methods
considered WS as a sequence tagging task (Xue,
2003). Various tagging schemas such as "BMES"
(Begin, Middle, End, Single), "BIES" (Begin, In-
side, End, Single), "SEP-APP" (Separate, Append),
"BI" (Begin, Inside), and "START-NONSTART"
were employed to tackle the sequence labeling

*Corresponding authors.
1Our source code will be released as soon as possible at

https://github.com/UM-NLPer/SpIn-WS.

task. These tagging schemas are all character-
based and summarized as four-tags ("BMES",
"BIES") and two-tags ("SEP-APP", "BI" "START-
NONSTART"). Despite diverse tagging schemas,
they all carry implicit position information. For
four-tags tagging schemas, the implicit information
restricts the transition between tags. Take "BMES"
as an example; tag "B" can not be followed by "B"
or "S". These two tagging schemas heavily rely
on the precise prediction of the relative position
of each character in one segment. However, the
exact position information is not essential for the
WS task. Any unreasonable inner prediction repre-
senting the character’s relative position results in
incorrect segmentation, although the correct bound-
ary prediction. There is no limitation of tag-to-tag
transition for the two-tags schema, but according
to common sense, the first character of a sentence
must be predicted as "SEP", "B" or "START". The
implicit constraint of position for the first tag of
the sentence still exists. It is necessary to ensure
the prediction accuracy of the first tag during the
inference. Therefore, CRF is required to revise
unreasonable tag-to-tag transitions and learn the
implicit restriction including the first tag of a sen-
tence. The CRF has alleviated the unreasonable
tag prediction to some degree, but the simultaneous
learning of transition and emission matrix still re-
sults in the tag inference being intractable. Current
works attempt to complicate the network (Chen
et al., 2017; Tian et al., 2020) and introduce more
information (Cai et al., 2017) such as rich con-
text, linguistic and extra knowledge to tackle the
abovementioned problem. However, the intrinsic
problem, which is the implicit restriction of the po-
sition in the existing tagging schemas, is not well
solved. In this paper, we propose "Connection(C)-
No-Connection(NC)", which targets on character-
to-character connections, to deal with the WS task
directly. "C-NC" is independent of the previous
state, and there is no dependency between states.
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Moreover, there is no restriction for the first state
as it is located between the first and the secondary
characters. It can be either "C" or "NC". "C" or
"NC" is a binary classification task. Therefore,
CRF is not required and can then be substituted
with a classification network. The tag-transition
and implicit restriction burdens can be substantially
alleviated through such "C-NC" states. Because "C-
NC" describes the connection state between two
adjacent characters, we employ bigram features to
cooperate with the "C-NC". Compared with ex-
isting tagging schemas, which are character-based
and the bigram features are considered as extra in-
formation, the bigram features in SpIn are the basic
processing unit. Therefore, a brand-new Separa-
tion Inference (SpIn) framework is proposed and
constructed on the bigram features and the classi-
fication layer. Sliding one-after-one along all the
bigrams, words are yielded by allocating "C" and
"NC" tags in the interval of characters. SpIn signif-
icantly reduces the inference complexity (inference
layer CRF is degraded as the softmax network);
dispels extra context information (merely bigram
feature is in consideration); and gains competitive
performance of CWS on the machine learning in
contrast with the deep learning models. Besides its
effectiveness on Chinese Word Segmentation, our
extensive experiments also verify the universality
by attaining state-of-the-art (SOTA) performance
in Japanese and Korean Word Segmentation bench-
mark tests. Our contributions are summarized as
follows:

• SpIn provides a new tagging schema from
a novel perspective and solves the intrinsic
problems of the existing tagging schemas.

• SpIn is a universal framework that gains state-
of-the-art performance on the Word Segmen-
tation task in East Asian Languages.

• The SpIn framework is also suitable for ma-
chine learning models and has achieved com-
petitive results.

2 Related Work

Researchers have explored the CWS task from
various directions since the 1990s (Sproat et al.,
1996). Widely applied methodologies considered
it as the sequence tagging task based on various
label schemas. CWS was first treated as a sequence

tagging task in (Xue, 2003). The Maximum En-
tropy (Low et al., 2005) model and the CRF (Laf-
ferty et al., 2001) were the most adopted sequence
tagger. There are two main problems in the WS
task: the ambiguities and the Out-of-Vocabulary
(OOV) words. Researchers tried to leverage ex-
tra context features such as the bigram (Zhao
et al., 2006; Chen et al., 2015; Pei et al., 2014;
Yang et al., 2017; Zhang et al., 2013) and the word
features (Morita et al., 2015; Zhang et al., 2016;
Zhang and Clark, 2007) to tackle word ambigu-
ities and improve the model’s generalization ca-
pability. Moreover, language-specific knowledge
such as dictionaries was employed (Sun and Xu,
2011) for better CWS. Extra punctuation marks
from large manually segmented corpus were intro-
duced to the learning model and proved effective
for solving the unknown words (Li and Sun, 2009).
Meanwhile, the external knowledge was explored
through the semi-supervised models for better seg-
mentation (Sun and Xu, 2011; Wang et al., 2011;
Liu and Zhang, 2012; Zhang et al., 2013). Along
with the development of pre-trained models like
BERT (Devlin et al., 2018), ELMo (Peters et al.,
2018), and GPT (Radford et al., 2018), striking
improvements on CWS are observed by replacing
the feature extraction layer with these powerful pre-
trained models. Except for the investigation of the
effect of features, various tagging schemas were
also discussed. Widely applied tagging schema in
CWS contains "BMES" (Meng et al., 2019; Huang
et al., 2020; Yang et al., 2019, 2017), "BIES" (Ma
et al., 2018), "SEP-APP" (Zhang et al., 2016, 2018;
Yan et al., 2020), "BI" (Lee and Kim, 2013), and
"START-NONSTART" (Tseng et al., 2005; Peng
et al., 2004). There is either the limitation of tag-
to-tag transitions or the implicit constraint for the
first tag for these tagging schemas. These inherent
problems were not well solved. Hence, we propose
the SpIn framework constructed on the "C-NC"
tagging schema and its specially tailored bigram
features. SpIn eliminates the implicit restriction
of existing tagging schemas and boosts the perfor-
mance of the WS task in East Asian languages.

3 Proposed Method

We propose adopting the bigram feature to adapt
to the "C-NC" tagging schema to model the con-
nection of adjacent characters. Distinguished from
character-based models leveraging bigram feature
as extra information, merely bigram is employed
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Figure 1: The figure is the architecture of SpIn applied to the machine learning model. The features are constructed
based on the bigram and symbol features by applying the feature templates.

Figure 2: The figure is the comparison between the tra-
ditional two-tags tagging schema and "C-NC". The tra-
ditional two-tags tagging schema (upper) is tagged on
the character. However, "C-NC" (bottom) is located in
the interval between the characters.

and set up as input unit. Adaptation of SpIn in-
volves machine and deep learning models. Figure 1
and Figure 5 summarize the SpIn framework archi-
tecture adapted to the machine and deep learning
models separately.

Before exploring the structure of SpIn, we firstly
elaborate definition of the proposed "C-NC" and
distinction with the traditional two-tags tagging
schema that indicates whether the current charac-
ter is the boundary or not. In the later part of this
section, we present the detailed structure of SpIn,
including how to apply the SpIn framework to the
machine learning and deep learning models. For
machine learning, we explain how to build features
based on the bigram through applying feature tem-
plates. Meanwhile, we present how to build the
bigram features based on the feature extractor layer
for the deep learning model. In the last subsection,
we illustrate the inference layer.

3.1 Connection and No-Connection Tagging
Schema

Tags "Connection" and "No-Connection" are pro-
posed to model whether two adjacent characters
(bigram) are in the same segment or not. If two
characters in the bigram are not in the same seg-
ment, the corresponding label is "NC"; otherwise,
the tag is "C".

Borrow "C-NC" to model traditional two-tags
tagging schema indicating the current character as
the beginning of a word or the continuation. The
tagging procedure is illustrated in the upper section
in Figure 2. By contrast, "C-NC" represents the
connection state of two adjacent characters as illus-
trated in the lower section. Comparison between
traditional two-tags and "C-NC" is summarized
from three aspects:

• Traditional two-tags tagging schemas are la-
beled on each character. However, the tag "C"
or "NC" is located in the interval between two
characters.

• The total number of tags of "C-NC" is one less
than the traditional two-tags tagging schema.

• The implicit restriction of the first character
in a sentence exists for the traditional tagging
schema. In contrast, there is no limitation of
the first state for the "C-NC".

3.2 Feature Templates for Machine Learning
Feature engineering directly results in the model
performance for machine learning models. There-
fore, we leverage the bigrams and symbol infor-
mation to enrich features by applying feature tem-
plates. We define the feature templates below:
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Figure 3: The figure is the explanation of the element features.

Figure 4: The figure is the explanation of generated features through applying feature templates.

• Feature(0) = current_bigram + bigram_head
+ bigram_tail + bigram_head.is_symbol + bi-
gram_tail.is_symbol

• Feature(-1) = pre_bigram +
pre_bigram.is_symbol

• Feature(-2) = pre_pre_bigram +
pre_pre_bigram.is_symbol

• Feature(+1) = next_bigram +
next_bigram.is_symbol

• Feature(+2) = next_next_bigram +
next_next_bigram.is_symbol

Figure 3 explains the element feature. The sym-
bol feature is a one-dimensional array. It indicates
whether the character belongs to symbols or not.
The symbols include the date, digit, or letter. Fig-
ure 4 illustrates the generated features through ap-
plying feature templates for the current bigram.
The final features are the concatenation of Fea-
ture(0), Feature(-1), Feature(-2), Feature(+1) and
Feature(+2).

3.3 Feature Extraction Layer

As recent state-of-the-art results on CWS tasks are
achieved by applying BERT (Devlin et al., 2018)
as the feature extraction layer, we follow the same
step. Moreover, we customize the feature by adding
the additional symbol feature. Through symbol
projection, each character is project into a one-
dimensional array such as [0, 0, 1], each position
represents [date, digit, letter]. This case indicates
that the current character belongs to letter. Fol-
lowed by an activate function ReLU, symbol em-
bedding is generated with the vector size of 3 and
denoted as Sn. The character embedding generated
from BERT is a 768-dimensional vector (denoted
as cn) and is resized as (768 + 3) through concate-
nating with symbol embedding. The customized
character embedding is represented as en. Two
adjacent character embeddings with their symbol
embeddings are concatenated as bigram features.
Hence, the corresponding bigram features (denoted
as bn) are the size of (768 + 3) ∗ 2. Two Fully
Connected layers follow the constructed bigram
features. The CRF layer (or softmax layer) is em-
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Figure 5: The architecture of SpIn applied to the deep learning model. Orange circles below the BERT are the
unigram features for each character. Pink circles are the symbol features generated through symbols projection and
a ReLU activation function. "+" is the concatenation operation. The unigram features concatenate with symbol
features. Dark green circles are bigram features generated after concatenating every two light green circles.

ployed as the inference layer. The architecture of
SpIn that is applied to the deep learning model is
shown in Figure 5.

3.4 Inference Layer

Following previous work (Tseng et al., 2005; Peng
et al., 2004), the CRF (Lafferty et al., 2001) layer
is adopted as an inference layer for the machine
learning model for a fair comparison. The CRF
tries to find the optimal tag sequence Y

′
regarding

the input sequence X where:

Y
′
= argmax

Y ∈Ln
P (Y |X) (1)

P (Y |X) =
1

Z(x)
exp(

∑
i,k

λktk(yi−1, yi, x, i)

+
∑
i,l

µlsl(yi, x, i))
(2)

Ln are all the possible tag sequences, Z is the nor-
malization factor, tk, sl are status feature function
and λk, µl are trainable parameters.

4 Experiments

Evaluation is first conducted on the CWS to prove
the SOTA performance of SpIn. Contrast exper-
iments involve both machine learning and deep
learning models for further demonstrating the ro-
bustness of SpIn. An ablation study is conducted
to investigate the effect of each component.

4.1 Datasets

Five Chinese word segmentation datasets are eval-
uated in the experiments, including Chinese Penn
Treebank 6.0 (CTB6) (Xue et al., 2005) and
CITYU, AS, PKU, MSR from SIGHAN 2005 bake-
off task (Emerson, 2005). PKU, MSR, and CTB6
are simplified Chinese, and the other two AS and
CITYU are traditional Chinese.

4.2 Evaluation of Machine Learning Model

4.2.1 Parameters & Evaluation Metrics
We set L-BFGS as the optimization algorithm for
the CRF layer. The L1-norm is 0.598, and the L2-
norm is 0.0323. The maximum iterations are 150.
Following the widely accepted evaluation method-
ologies, the F1 score is adopted as the metric for
exhibiting reliability.

4.2.2 Experiment Results
The evaluation results of SpIn adapted to the ma-
chine learning model are listed in Table 1. For a
fair comparison, the baseline is selected from the
paper in which the machine learning model is ap-
plied. Compared with the baseline which is the
best result of Bakeoff2005 2, SpIn achieves a sig-
nificant improvement up to +1.3% F1 score on the
AS dataset. Likewise, SpIn performs better on all
similar longitudinal comparisons conducted on the
CITYU and MSR datasets.

2http://sighan.cs.uchicago.edu/bakeoff2005/
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CITYU AS PKU MSR CTB6
Baseline 94.3 95.2 95.0 96.4 -
SpIn_ML 95.5 96.5 94.6 96.5 96.0

+1.2 +1.3 -0.4 +0.1 -

Table 1: SpIn of Machine Learning version (SpIn_ML)
v.s. the best results of SIGHAN 2005 Bakeoff. The F1
score is employed as the metric.

CITYU AS PKU MSR CTB6
BMES 94.4 94.7 91.3 95.8 95.2

BIS 95.2 95.6 91.8 96.2 95.7
BI 93.5 93.3 93.5 95.1 93.6

C-NC 95.5 96.5 94.6 96.5 96.0

Table 2: "C-NC" v.s traditional tagging schemas. The
F1 score is employed as the metric.

4.2.3 Ablation Study
As detailed in Figure 1 and Figure 5, the structure
of the SpIn contains four main components: the
"C-NC" tagging schema, the bigram features, the
symbol features, and the inference layer. Since
the CRF layer is a common approach and widely
used in the era of machine learning as a decoder to
restrict unreasonable tag transition, we exclude it in
this ablation section and concentrate on the efficacy
of the other three components. Our investigation is
mainly carried out through:

• substituting "C-NC" with traditional tagging
schemas;

• substituting bigram with unigram features;

• removing symbol features;

Substitution of "C-NC" Contrast experiments
of tagging schemas are illustrated in Table 2. Keep
bigram features, substitute "C-NC" with traditional
"BMES", "BIS" and "BI" (equivalent to "START-
NONSTART" and "SEP-APP") tagging schemas.
Experiment conditions are set still. For adapting
these three character-based tagging schemas, the bi-
gram feature is considered rich context information
for the current character. Each character feature is
substituted with the bigram feature, representing
the concatenation of the current and the previous
character feature with their corresponding symbol
feature. For the first character in the sentence, we
put a "PAD" token to join the first character and
form its bigram. The corresponding tag of the orig-
inal character is labeled on the substituted bigram.
The experiment results in Table 2 illustrate that "C-
NC" does promote performance on all five datasets
compared with traditional tagging schemas.

Substitution of Bigram Features Keep the "C-
NC" tagging schema and conduct the contrast ex-

CITYU AS PKU MSR CTB6
Unigram 86.5 88.0 86.5 87.1 89.6
Bigram 95.5 96.5 94.6 96.5 96.0

Table 3: unigram v.s. bigram features. The F1 score is
employed as the metric.

CITYU AS PKU MSR CTB6
W/O Symbols 94.6 95.4 92.7 96.1 93.4

Symbols 95.5 96.5 94.6 96.5 96.0

Table 4: with symbols v.s. without symbols. The F1
score is employed as the metric.

periment to investigate the effect of features. Inte-
grating "C-NC" with unigram features downgrades
"C-NC" as "BI" or "START-NONSTART". The
comparison between bigram and traditional uni-
gram features is illustrated in Table 3. Although
"C-NC" is employed, the traditional unigram fea-
ture performs worse than SpIn. Therefore, bigram
is essential and specially tailored for our proposed
"C-NC".

Substitution of Symbol Features Table 4 illus-
trates the effect of the symbol features. After em-
ploying the symbol features, the result is further
pushed up to +2.6% F1 score on the CTB6 dataset.
Symbol features promote the performance of SpIn
on the CWS task. Hence, the symbol features are
leveraged in the following experiments by default.

For the "C-NC" tagging schema, if unigram is
adopted, it will be equivalent to "BI" or "START-
NONSTART", and significant performance loss
has been observed on all datasets. Similarly, the de-
cline in F score has been observed after removing
the symbol feature. In summary, the whole frame-
work contributes to the performance boosts in-
stead of any component.

4.3 Evaluation of Deep Learning Model

4.3.1 Parameters & Evaluation Metrics
The sequence length is 128; the learning rate is 2e−
5; batch size is 64, and the training epochs are 10.
The early stop mechanism is introduced to avoid
over-fitting. Adam is employed as the optimizer.
All the parameters mentioned above are still set in
the following experiments. Besides the F1 score,
the recall of Out-of-Vocabulary words (R_oov) is a
critical metric to evaluate the generalization of the
word segmentation model. Hence, R_oov is also
employed to prove SpIn is robust and effective for
East Asian Languages. Besides the F1 and R_oov,
we employ the Standard Deviation (SD) of five
experiments to indicate model reliability.
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CITYU AS PKU MSR CTB6
F1 R_oov F1 R_oov F1 R_oov F1 R_oov F1 R_oov

Chen et al., 2017 95.6 81.40 94.6 73.50 94.3 72.67 96.0 71.60 96.2 82.48
Gong et al., 2019 96.2 73.58 95.2 77.33 96.2 69.88 97.8 64.20 97.3 83.89
Huang et al., 2020 97.6 87.27 96.6 79.26 96.6 79.71 97.9 83.35 97.6 87.77
Meng et al., 2019 97.9 - 96.7 - 96.7 - 98.3 - - -
Tian et al., 2020 97.8 87.57 96.58 78.48 96.51 86.76 98.28 86.67 97.16 88.00
Qiu et al., 2020 96.91 86.91 96.44 76.39 96.41 78.91 98.05 78.92 96.99 87.0
Ke et al., 2021 98.20 90.66 97.01 80.89 96.92 80.90 98.50 83.03 97.89 89.21

SpIn_DL 98.6 (0.06) 90.68 (0.02) 97.5 (0.01) 81.36 (0.05) 98.0 (0.02) 93.53 (0.10) 98.7 (0.04 ) 93.13 (0.02) 98.6 (0.10) 93.90 (0.06)

Table 5: SpIn of Deep Learning version (SpIn_DL) v.s. dominant deep neural methods on the CWS task. Values
in the brackets are SD of five experiments.

CITYU AS PKU MSR CTB6
BMES 97.7 96.8 96.3 97.7 97.2

BIS 98.1 97.1 96.8 98.1 97.5
BI 98.3 97.2 97.4 98.3 98.0

C-NC 98.6 97.5 98.0 98.7 98.6

Table 6: "C-NC" v.s. traditional tagging schemas. Re-
fer to Table 5 for baseline. The F1 score is employed
as the metric.

CITYU AS PKU MSR CTB6
Unigram 98.3 97.3 97.7 98.4 98.3
Bigram 98.6 97.5 98.0 98.7 98.6

Table 7: bigram v.s unigram features. Refer to Table 5
for baseline. The F1 score is employed as the metric.

4.3.2 Experiment Results
The experiment results are reported in Table 5.
SpIn brought an improvement up to +1.08% F1
score on the PKU dataset and at least +0.2% F1
score on the MSR dataset. Moreover, the best OOV
performance observed on all five datasets shows the
effectiveness of SpIn on OOV words. +6.77% im-
provement is achieved on the PKU dataset. The pro-
motions on the OOV recall demonstrate the better
generalization capability and robustness of SpIn.

Similar to the above experiments of the ma-
chine learning model, we also conduct the abla-
tion study to evaluate the effects of different fac-
tors on the deep learning model as reported in Ta-
ble 6, 7, 8, 9. The F1 score is employed in these
four contrast experiments as the metric. The base-
line refers to previous work mentioned in Table 5
from line 2 to line 8.

Bigram features are also applied as context fea-
tures to adapt traditional tagging schemas. The
bigram feature is generated by concatenating the
current and the previous character feature with their
corresponding symbol feature. Similarly, we add
extra "PAD" for the first character to construct the
first bigram feature. The corresponding tag of the
original character is labeled on the bigram feature.
The experiment results in Table 6 show that "C-
NC" achieves the best performance. Therefore, in
the situation of rich features, the "C-NC" tagging
schema also works for deep learning models.

CITYU AS PKU MSR CTB6
W/O Symbols 98.4 97.3 98.0 98.6 98.5

Symbols 98.6 97.5 98.0 98.7 98.6

Table 8: with symbols v.s. without symbols. Refer to
Table 5 for baseline. The F1 score is the metric.

CITYU AS PKU MSR CTB6
CRF 98.5 97.5 98.0 98.6 98.6

softmax 98.6 97.4 98.0 98.7 98.5

Table 9: softmax v.s. CRF as inference layer. Refer to
Table 5 for baseline. The F1 score is the metric.

We also adapt the unigram feature to the "C-NC"
tagging schema to follow the variable-controlling
method. It makes "C-NC" the same as "BI". The
contrast experiment between the bigram and the un-
igram feature is conducted. The results are shown
in Table 7. In contrast with SpIn(ML), the bi-
gram feature achieves insignificant improvement in
SpIn(DL) because of rich pre-trained feature rep-
resentation. Nevertheless, there are still +0.3% F1
score boosts are observed on CITYU, PKU, MSR,
and CTB6 datasets.

Table 8 illustrates the effect of the symbol fea-
tures for the deep neural model. In contrast with the
results in Table 4, the symbol features are insignifi-
cant in result improvements. Nevertheless, +0.2%
F1 score improvements are gained on CITYU and
AS datasets. The reason for inconspicuous perfor-
mance is that BERT simplifies feature engineering
with its rich representation.

As SpIn eliminates the restriction of tag-to-tag
transition and the first tag in a sentence, the softmax
can further substitute the CRF. Table 9 illustrates
that replacing the CRF with the softmax does not
affect the performance. The competitive results are
achieved with less complexity of the network.

4.4 Comparison of SpIn_DL and SpIn_ML

Table 11 illustrates the comparison between the
SpIn_DL and SpIn_ML. The model size and re-
sponse time are approximated to the nearest integer.
The model size of SpIn_DL is four times as large
as SpIn_ML. For SpIn_DL, model size depends
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BCCWJ
F1 R_oov

Kitagawa and Komachi, 2018 98.42 -
Higashiyama et al., 2019 98.93 -

BMES+Unigram 97.71 90.08
BIS+Unigram 98.17 91.73
BI+Unigram 98.39 92.51

SpIn 98.94 (0.08) 93.01 (0.01)

Table 10: SpIn v.s. dominant methods on JWS. Values
in the brackets are SD of five experiments.

Size Time (CPU) F1 score
SpIn_DL 400M 15000us/char 97.5
SpIn_ML 100M 30us/char 96.5

Table 11: SpIn_DL v.s. SpIn_ML.

on the network structure. However, for SpIn_ML,
the model size depends on the scale of training
data. We choose the AS (the largest dataset) from
the five datasets to conduct the comparative ex-
periment. Therefore, the maximum model size of
SpIn_ML is near 100M. The inference process is
performed on the empty CPU machine. We ran-
domly select 2000 sentences from all datasets for
testing. The sentence length is limited to [10, 50].
We conducted 10 experiments and get the average
value. The speed of SpIn_ML is 500 times as fast
as SpIn_DL. In contrast, the performance differ-
ence (F1 score) between SpIn_ML and SpIn_DL
is only 1%.

4.5 Qualitative Analysis

Besides the academic studies, we also compare
SpIn with the well-established commercial model
LTP4.0 (Che et al., 2021). LTP4.0 leverages large
training datasets. However, in this qualitative anal-
ysis, SpIn is merely trained on the smaller CTB6
dataset. In Figure 6, the ground truth agrees with
SpIn for both sentences. The main issue focuses
on the words "precalcining kiln" in the top sen-
tence and "total failure" at the bottom. "Precal-
cining kiln" is a professional word leading to the
out-of-vocabulary problem. The word "the whole
chessboard" tends to be associated with "lose all"
because the word is an idiom indicating "lose the
whole chess game". These two featured cases re-
veal the generalization capacity of SpIn while han-
dling biased samples.

5 Adaptation to Asian Languages

Japanese Word Segmentation (JWS) and Ko-
rean Word Segmentation (KWS) are evaluated on
SpIn_DL to further prove SpIn is universal.

KAIST GSD
F1 R_oov F1 R_oov

BMES+Unigram 87.62 78.34 87.12 78.27
BIS+Unigram 92.19 83.72 89.94 81.97
BI+Unigram 92.26 83.78 90.03 82.08

SpIn 92.37 (0.04) 83.81 (0.08) 91.19 (0.09) 82.24 (0.12)

Table 12: SpIn v.s. dominant methods on KWS. Values
in the brackets are SD of five experiments.

Figure 6: SpIn v.s. LTP4.0
5.1 Datasets & Settings

The widely used dataset Balanced Corpus of Con-
temporary Written Japanese (BCCWJ) version
1.1 (Maekawa et al., 2014) is evaluated in JWS.
We follow the same dataset split with the Project
Next NLP for BCCWJ. UD_Korean-GSD cor-
pora 3 and KAIST 4 are used to evaluate KWS.
These two widely used datasets in syntactic pars-
ing tasks are automatically converted from struc-
tural trees in the Google UD Treebank (McDon-
ald et al., 2013) and the KAIST Treebank (Choi
et al., 1994). BERT-base-Chinese is substituted
with BERT_Multilingual that contains Japanese
and Korean as the feature extraction layer.

5.2 Results of JWS and KWS

As LSTM (Long Short Term Memory) neural
network is employed in (Kitagawa and Komachi,
2018), we exclude performance boosts gained from
BERT and conduct the contrast experiment be-
tween the traditional methods and the SpIn. We
employ unigram and traditional tagging schemas
in the comparative experiments. Table 10 demon-
strates that SpIn also achieves SOTA results on
JWS. In contrast with works leveraging word dic-
tionaries and character type information, SpIn is
closed without any extra knowledge. Besides, com-
pared with the traditional methods that also lever-
age BERT, significant improvement up to +0.55%
F1 score is obtained. Meanwhile, the best R_oov is
observed. As no WS work was conducted on these
two Korean datasets, we report results compared
with traditional methods in Table 12. Performance
boosts are observed on both datasets especially up
to +1.25% F1 improvement on the GSD dataset.

3https://github.com/emorynlp/
ud-korean/tree/master/google

4https://github.com/
UniversalDependencies/UD_Korean-Kaist
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R_oov boosts indicate SpIn is with good general-
ization ability and works effectively for Korean.

6 Conclusion

SpIn provides a novel viewpoint and implements
the WS task by modeling two consecutive charac-
ters’ separation states. Our simple but effective
framework is robust and universal. State-of-the-
art performances of word segmentation tasks are
achieved in East Asian languages. Moreover, the
significant boosts on OOV words demonstrate that
SpIn has the robustness and generalization ability.

References
Deng Cai, Hai Zhao, Zhisong Zhang, Yuan Xin,

Yongjian Wu, and Feiyue Huang. 2017. Fast and
accurate neural word segmentation for Chinese. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 608–615, Vancouver, Canada.
Association for Computational Linguistics.

Wanxiang Che, Yunlong Feng, Libo Qin, and Ting
Liu. 2021. N-LTP: An open-source neural language
technology platform for Chinese. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing: System Demonstra-
tions, pages 42–49, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Pengfei Liu,
and Xuanjing Huang. 2015. Long short-term mem-
ory neural networks for Chinese word segmentation.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1197–1206, Lisbon, Portugal. Association for Com-
putational Linguistics.

Xinchi Chen, Zhan Shi, Xipeng Qiu, and Xuanjing
Huang. 2017. Adversarial multi-criteria learning
for Chinese word segmentation. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1193–1203, Vancouver, Canada. Association
for Computational Linguistics.

Key-Sun Choi, Young S Han, Young G Han, and Oh W
Kwon. 1994. Kaist tree bank project for korean:
Present and future development. In Proceedings
of the International Workshop on Sharable Natural
Language Resources, pages 7–14. Citeseer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Thomas Emerson. 2005. The second international Chi-
nese word segmentation bakeoff. In Proceedings of
the Fourth SIGHAN Workshop on Chinese Language
Processing.

Jingjing Gong, Xinchi Chen, Tao Gui, and Xipeng
Qiu. 2019. Switch-lstms for multi-criteria chinese
word segmentation. In The Thirty-Third AAAI Con-
ference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial In-
telligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pages 6457–6464.
AAAI Press.

Shohei Higashiyama, Masao Utiyama, Eiichiro Sumita,
Masao Ideuchi, Yoshiaki Oida, Yohei Sakamoto,

3932

https://doi.org/10.18653/v1/P17-2096
https://doi.org/10.18653/v1/P17-2096
https://doi.org/10.18653/v1/2021.emnlp-demo.6
https://doi.org/10.18653/v1/2021.emnlp-demo.6
https://doi.org/10.18653/v1/D15-1141
https://doi.org/10.18653/v1/D15-1141
https://doi.org/10.18653/v1/P17-1110
https://doi.org/10.18653/v1/P17-1110
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://www.aclweb.org/anthology/I05-3017
https://www.aclweb.org/anthology/I05-3017
https://doi.org/10.1609/aaai.v33i01.33016457
https://doi.org/10.1609/aaai.v33i01.33016457


and Isaac Okada. 2019. Incorporating word atten-
tion into character-based word segmentation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 2699–2709,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Weipeng Huang, Xingyi Cheng, Kunlong Chen,
Taifeng Wang, and Wei Chu. 2020. Towards fast
and accurate neural Chinese word segmentation with
multi-criteria learning. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 2062–2072, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Zhen Ke, Liang Shi, Songtao Sun, Erli Meng, Bin
Wang, and Xipeng Qiu. 2021. Pre-training with
meta learning for chinese word segmentation. pages
5514–5523.

Yoshiaki Kitagawa and Mamoru Komachi. 2018. Long
short-term memory for Japanese word segmentation.
In Proceedings of the 32nd Pacific Asia Conference
on Language, Information and Computation, Hong
Kong. Association for Computational Linguistics.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, page 282–289, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Changki Lee and Hyunki Kim. 2013. Automatic ko-
rean word spacing using pegasos algorithm. Inf. Pro-
cess. Manage., 49(1):370–379.

Zhongguo Li and Maosong Sun. 2009. Punctuation as
implicit annotations for chinese word segmentation.
Comput. Linguist., 35(4):505–512.

Yang Liu and Yue Zhang. 2012. Unsupervised domain
adaptation for joint segmentation and POS-tagging.
In Proceedings of COLING 2012: Posters, pages
745–754, Mumbai, India. The COLING 2012 Orga-
nizing Committee.

Jin Kiat Low, Hwee Tou Ng, and Wenyuan Guo. 2005.
A maximum entropy approach to Chinese word seg-
mentation. In Proceedings of the Fourth SIGHAN
Workshop on Chinese Language Processing.

Ji Ma, Kuzman Ganchev, and David Weiss. 2018.
State-of-the-art Chinese word segmentation with bi-
LSTMs. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 4902–4908, Brussels, Belgium. Association
for Computational Linguistics.

Kikuo Maekawa, Makoto Yamazaki, Toshinobu
Ogiso, Takehiko Maruyama, Hideki Ogura, Wakako
Kashino, Hanae Koiso, Masaya Yamaguchi, Makiro

Tanaka, and Yasuharu Den. 2014. Balanced cor-
pus of contemporary written japanese. language re-
sources and evaluation. Language Resources and
Evaluation, 48.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuz-
man Ganchev, Keith Hall, Slav Petrov, Hao
Zhang, Oscar Täckström, Claudia Bedini, Núria
Bertomeu Castelló, and Jungmee Lee. 2013. Uni-
versal Dependency annotation for multilingual pars-
ing. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 92–97, Sofia, Bulgaria.
Association for Computational Linguistics.

Yuxian Meng, Wei Wu, Fei Wang, Xiaoya Li, Ping
Nie, Fan Yin, Muyu Li, Qinghong Han, Xiaofei
Sun, and Jiwei Li. 2019. Glyce: Glyph-vectors
for chinese character representations. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 32, pages 2746–
2757. Curran Associates, Inc.

Hajime Morita, Daisuke Kawahara, and Sadao Kuro-
hashi. 2015. Morphological analysis for unseg-
mented languages using recurrent neural network
language model. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2292–2297, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Wenzhe Pei, Tao Ge, and Baobao Chang. 2014. Max-
margin tensor neural network for Chinese word seg-
mentation. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 293–303, Balti-
more, Maryland. Association for Computational Lin-
guistics.

Fuchun Peng, Fangfang Feng, and Andrew McCallum.
2004. Chinese segmentation and new word detec-
tion using conditional random fields. In COLING
2004: Proceedings of the 20th International Confer-
ence on Computational Linguistics, pages 562–568,
Geneva, Switzerland. COLING.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Xipeng Qiu, Hengzhi Pei, Hang Yan, and Xuanjing
Huang. 2020. A concise model for multi-criteria
Chinese word segmentation with transformer en-
coder. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 2887–2897,
Online. Association for Computational Linguistics.

3933

https://doi.org/10.18653/v1/N19-1276
https://doi.org/10.18653/v1/N19-1276
https://doi.org/10.18653/v1/2020.coling-main.186
https://doi.org/10.18653/v1/2020.coling-main.186
https://doi.org/10.18653/v1/2020.coling-main.186
https://doi.org/10.18653/v1/2021.naacl-main.436
https://doi.org/10.18653/v1/2021.naacl-main.436
https://aclanthology.org/Y18-1033
https://aclanthology.org/Y18-1033
https://doi.org/10.1016/j.ipm.2012.05.004
https://doi.org/10.1016/j.ipm.2012.05.004
https://doi.org/10.1162/coli.2009.35.4.35403
https://doi.org/10.1162/coli.2009.35.4.35403
https://aclanthology.org/C12-2073
https://aclanthology.org/C12-2073
https://www.aclweb.org/anthology/I05-3025
https://www.aclweb.org/anthology/I05-3025
https://doi.org/10.18653/v1/D18-1529
https://doi.org/10.18653/v1/D18-1529
https://doi.org/10.1007/s10579-013-9261-0
https://doi.org/10.1007/s10579-013-9261-0
https://doi.org/10.1007/s10579-013-9261-0
https://aclanthology.org/P13-2017
https://aclanthology.org/P13-2017
https://aclanthology.org/P13-2017
http://papers.nips.cc/paper/8542-glyce-glyph-vectors-for-chinese-character-representations.pdf
http://papers.nips.cc/paper/8542-glyce-glyph-vectors-for-chinese-character-representations.pdf
https://doi.org/10.18653/v1/D15-1276
https://doi.org/10.18653/v1/D15-1276
https://doi.org/10.18653/v1/D15-1276
https://doi.org/10.3115/v1/P14-1028
https://doi.org/10.3115/v1/P14-1028
https://doi.org/10.3115/v1/P14-1028
https://www.aclweb.org/anthology/C04-1081
https://www.aclweb.org/anthology/C04-1081
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/2020.findings-emnlp.260
https://doi.org/10.18653/v1/2020.findings-emnlp.260
https://doi.org/10.18653/v1/2020.findings-emnlp.260


Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Richard W. Sproat, Chilin Shih, William Gale, and
Nancy Chang. 1996. A stochastic finite-state word-
segmentation algorithm for Chinese. Computational
Linguistics, 22(3):377–404.

Weiwei Sun and Jia Xu. 2011. Enhancing Chinese
word segmentation using unlabeled data. In Pro-
ceedings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing, pages 970–
979, Edinburgh, Scotland, UK. Association for Com-
putational Linguistics.

Yuanhe Tian, Yan Song, Fei Xia, Tong Zhang, and
Yonggang Wang. 2020. Improving Chinese word
segmentation with wordhood memory networks. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8274–
8285, Online. Association for Computational Lin-
guistics.

Huihsin Tseng, Pichuan Chang, Galen Andrew, Daniel
Jurafsky, and Christopher Manning. 2005. A condi-
tional random field word segmenter for sighan bake-
off 2005. In Proceedings of the Fourth SIGHAN
Workshop on Chinese Language Processing.

Yiou Wang, Jun’ichi Kazama, Yoshimasa Tsuruoka,
Wenliang Chen, Yujie Zhang, and Kentaro Torisawa.
2011. Improving Chinese word segmentation and
POS tagging with semi-supervised methods using
large auto-analyzed data. In Proceedings of 5th In-
ternational Joint Conference on Natural Language
Processing, pages 309–317, Chiang Mai, Thailand.
Asian Federation of Natural Language Processing.

Naiwen Xue, Fei Xia, Fu-dong Chiou, and Marta
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. Nat. Lang.
Eng., 11(2):207–238.

Nianwen Xue. 2003. Chinese word segmentation as
character tagging. In International Journal of Com-
putational Linguistics & Chinese Language Process-
ing, Volume 8, Number 1, February 2003: Special Is-
sue on Word Formation and Chinese Language Pro-
cessing, pages 29–48.

Hang Yan, Xipeng Qiu, and Xuanjing Huang. 2020. A
graph-based model for joint chinese word segmen-
tation and dependency parsing. Transactions of the
Association for Computational Linguistics, 8:78–92.

Jie Yang, Yue Zhang, and Fei Dong. 2017. Neural
word segmentation with rich pretraining. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 839–849, Vancouver, Canada. Asso-
ciation for Computational Linguistics.

Jie Yang, Yue Zhang, and Shuailong Liang. 2019. Sub-
word encoding in lattice LSTM for Chinese word

segmentation. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 2720–2725, Minneapolis, Minnesota.
Association for Computational Linguistics.

Longkai Zhang, Houfeng Wang, Xu Sun, and Mairgup
Mansur. 2013. Exploring representations from un-
labeled data with co-training for Chinese word seg-
mentation. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Process-
ing, pages 311–321, Seattle, Washington, USA. As-
sociation for Computational Linguistics.

Meishan Zhang, Yue Zhang, and Guohong Fu. 2016.
Transition-based neural word segmentation. pages
421–431.

Meishan Zhang, Yue Zhang, and Guohong Fu.
2018. Transition-based neural word segmenta-
tion using word-level features. J. Artif. Int. Res.,
63(1):923–953.

Yue Zhang and Stephen Clark. 2007. Chinese segmen-
tation with a word-based perceptron algorithm. In
Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics, pages 840–
847, Prague, Czech Republic. Association for Com-
putational Linguistics.

Hai Zhao, Chang-Ning Huang, and Mu Li. 2006. An
improved Chinese word segmentation system with
conditional random field. In Proceedings of the Fifth
SIGHAN Workshop on Chinese Language Process-
ing, pages 162–165, Sydney, Australia. Association
for Computational Linguistics.

3934

https://www.aclweb.org/anthology/J96-3004
https://www.aclweb.org/anthology/J96-3004
https://aclanthology.org/D11-1090
https://aclanthology.org/D11-1090
https://doi.org/10.18653/v1/2020.acl-main.734
https://doi.org/10.18653/v1/2020.acl-main.734
https://aclanthology.org/I05-3027
https://aclanthology.org/I05-3027
https://aclanthology.org/I05-3027
https://www.aclweb.org/anthology/I11-1035
https://www.aclweb.org/anthology/I11-1035
https://www.aclweb.org/anthology/I11-1035
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
https://www.aclweb.org/anthology/O03-4002
https://www.aclweb.org/anthology/O03-4002
https://doi.org/10.1162/tacl_a_00301
https://doi.org/10.1162/tacl_a_00301
https://doi.org/10.1162/tacl_a_00301
https://doi.org/10.18653/v1/P17-1078
https://doi.org/10.18653/v1/P17-1078
https://doi.org/10.18653/v1/N19-1278
https://doi.org/10.18653/v1/N19-1278
https://doi.org/10.18653/v1/N19-1278
https://aclanthology.org/D13-1031
https://aclanthology.org/D13-1031
https://aclanthology.org/D13-1031
https://doi.org/10.18653/v1/P16-1040
https://doi.org/10.1613/jair.1.11266
https://doi.org/10.1613/jair.1.11266
https://www.aclweb.org/anthology/P07-1106
https://www.aclweb.org/anthology/P07-1106
https://aclanthology.org/W06-0127
https://aclanthology.org/W06-0127
https://aclanthology.org/W06-0127

