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Abstract

We introduce the task of implicit offensive text
detection in dialogues, where a statement may
have either an offensive or non-offensive inter-
pretation, depending on the listener and context.
We argue that reasoning is crucial for under-
standing this broader class of offensive utter-
ances and release SLIGHT, a dataset to support
research on this task. Experiments using the
data show that state-of-the-art methods of of-
fense detection perform poorly when asked to
detect implicitly offensive statements, achiev-
ing only ∼11% accuracy.

In contrast to existing offensive text detection
datasets, SLIGHT features human-annotated
chains of reasoning which describe the mental
process by which an offensive interpretation
can be reached from each ambiguous statement.
We explore the potential for a multi-hop reason-
ing approach by utilizing existing entailment
models to score the probability of these chains
and show that even naive reasoning models can
yield improved performance in most situations.
Furthermore, analysis of the chains provides
insight into the human interpretation process
and emphasizes the importance of incorporat-
ing additional commonsense knowledge.

1 Introduction

With the development and popularity of online fo-
rums and social media platforms, the world is be-
coming an increasingly connected place to share
information and opinions. However, the benefit that
these platforms provide to society is often marred
by the creation of an unprecedented amount of
bullying, hate, and other abusive speech1. Such
toxic speech has detrimental effects on online com-
munities and can cause significant personal harm.
Efforts by the NLP community to address this prob-
lem has led to the development of models capable

1Disclaimer: due to the nature of this work, data and ex-
amples may contain content which is offensive to the reader.

of identifying toxic speech in specific domains (sex-
ism (Golbeck et al., 2017), racism (Waseem, 2016),
or otherwise hateful text (Ross et al., 2016; Gao and
Huang, 2017; Davidson et al., 2017)), but the prob-
lem of identifying harmful text can also involve
more complex pragmatic reasoning.

Consider a scenario where a young girl runs into
her elderly neighbor who remarks, “Your piano
playing has really improved lately!” Most people
(and classifiers) would likely take this comment as
a compliment. However, in some circumstances,
the intent may be the opposite. The neighbor can
only have knowledge of the girl’s piano progress if
she is able to hear it, and being able to hear it may
indicate that it is too loud, implying that the girl
is inconsiderate of her neighbors.2 Through this
reasoning process, we may reach the less compli-
mentary interpretation, namely that the neighbor
is annoyed by the playing and the comment is a
subtle attempt to convey it.

This work considers how current models of
offensive text detection (OTD) perform when faced
with such ambiguous examples of offensive text.
Following the classification proposed in Waseem
et al. (2017), we consider two categories of OTD:
(1) explicit offensive text, which is unambiguous
in its potential to be offensive and often includes
overtly offensive terms, such as slurs, and (2)
implicit offensive text, which is more ambiguous
and may use sarcasm, innuendo, or other rhetorical
devices to hide the intended nature of the state-
ment. We hypothesize that there exists a direct
relationship between these tasks and that each
implicitly offensive statement corresponds to an
explicitly offensive statement which is realized
through the interpretation process. This explicitly
offensive statement is closer to the sentiment the
listener feels when interpreting the statement as

2An example of Kyoto dialect adapted from
http://blog.livedoor.jp/kinisoku/
archives/4119737.html
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offensive. Consider the example in Figure 1, a
dialogue between two speakers, S1 and S2:

S1: “I love bookclubs, I go every week”
S2: “Some places with free food, right?”

By itself, the statement by S2 is innocuous and
could be interpreted as a simple prompt for more
information about the bookclub. However, other
interpretations of this statement could lead S1 to ar-
rive at a number of explicitly offensive statements,
such as (1) “You are poor.” (2) “You are fat.” (3)
“You are not smart/sophisticated.” Thus we con-
sider the chain of reasoning which constitutes the
interpretation a crucial part of recognizing implic-
itly offensive statements.

To study this phenomenon, we use human an-
notators to construct a dataset consisting of (1) an
implicitly offensive statement, (2) a corresponding
explicitly offensive statement, and (3) a chain of
reasoning mapping (1) to (2). When evaluated on
the explicitly offensive examples, state-of-the-art
models perform well, achieving > 90% accuracy.
However, when applied to the implicit OTD ex-
amples, the accuracy of the models drops to an
average of about < 11%. We then explore using
a multi-hop reasoning-based approach by utilizing
a pre-trained entailment model to score the tran-
sitions along each “hop” of the reasoning chain.
When incorporating additional knowledge (from
human annotations) into the premises of each entail-
ment, we achieve higher accuracy than comparable
methods which do not utilize the reasoning chain.
We present this as the evidence that a multi-hop
reasoning-based approach is a promising solution
to this problem and release our data to support fur-
ther research on the topic.

Our contributions in this work are threefold:

• We propose the task of implicit offensive
text detection (Implicit OTD) and construct
a dataset containing ambiguously offensive
statements annotated with reasoning chains to
support research into how listeners arrive at
offensive interpretations.

• We conduct experiments using existing state-
of-the-art OTD models and show they perform
poorly on the Implicit OTD task.

• We examine entailment models as part of
a multi-hop reasoning approach for Implicit
OTD, showing improved accuracy in most

I love bookclubs, I go there every week.

Some places with free food, right?

You go to bookclubs
because of free food.

You love free food and
eating.

You love eating a lot
which makes you fat.

You are fat.

Is that how you became fat?

OTD model

Offensive !

Non-Offensive !

Multi-hop  
reasoning model

Offensive !

Chain of
reasoning

Context

Explicit

Implicit

Explicit OTD Task

Implicit OTD Task

OTD model

Figure 1: An instance illustrating Explicit OTD, Implicit
OTD and our multi-hop reasoning approach.

cases. In addition, we provide an analysis of
which types of reasoning are most challeng-
ing and which types of external knowledge
are required.

2 Related Works

Context Matters The notion that reasoning be-
yond the literal meaning is vital for OTD is not new.
The Hateful Memes dataset (Kiela et al., 2021)
pairs images with unrelated text captions. Both
of these components are benign when considered
independently but, when combined, can occasion-
ally produce a context where the message can be
interpreted as offensive. Consequently, approaches
that jointly reason over a combined modality repre-
sentation outperform those that treat each modality
independently

However, the importance of solving such prob-
lems in the purely textual domain, where the con-
text may be more situational or personal, is a press-
ing concern. Netizens have shown surprising cre-
ativity when adapting language to elude internet
censorship (Hiruncharoenvate et al., 2015; Ji and
Knight, 2018), and, in the same way spam filters
have resulted in more sophisticated spam messages,
widespread use of simple OTD classifiers may moti-
vate cyberbullies to find more inventive and indirect
ways of delivering offensive content.
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OTD in Text Classification Early approaches to
OTD relied primarily upon dictionaries like hate-
base 3 to lookup offensive words and phrases. The
creation of OTD datasets enabled the development
of ML-based approaches utilizing simple features,
such as bag-of-word representations (Davidson
et al., 2017). With the advent of social media plat-
forms, many resources have been developed for
identifying toxic comments in web text (Waseem
and Hovy, 2016; Davidson et al., 2017), includ-
ing many deep learning-based methods (Pitsilis
et al., 2018; Zhang et al., 2018b; Casula et al.,
2020; Yasaswini et al., 2021; Djandji et al., 2020).
Notably, all of these methods can be described as
building a contextual representation of a sentence
(whether trained end-to-end or on top of existing
pre-trained language models) and making a classi-
fication based on this representation.

OTD in Dialogue Systems As user-facing tech-
nologies, preventing dialogue systems from pro-
ducing offensive statements is crucial for their role
in society. As noted in Dinan et al. (2020), toxicity
in generated dialogue may begin with biases and
offensive content in the training data, and debias-
ing techniques focused on gender can reduce the
number of sexist comments generated by the re-
sulting system. Similar outcomes can be obtained
through adjustments to the model or training pro-
cedure. For instance, during training, toxic words
can be masked to reduce their role in model pre-
dictions (Dale et al., 2021). GeDi (Krause et al.,
2021) proposed using class-conditional LMs as
discriminators to reduce the toxicity produced by
large pre-trained LMs (GPT-2). Additionally, it
may also be important to identify offensive state-
ments made to a dialogue system, as it has been
shown that dialogue systems can react with counter-
aggression (Cercas Curry and Rieser, 2018), and
systems that continuously learn during deployment
may incorporate toxic user responses into future
generations.

Subjectivity in Interpretation Previous work
has hit upon the role that an individual’s per-
spective may play when determining offensive-
ness. For instance, annotations exist on a hierarchy
in the Offensive Language Identification Dataset
(OLID) (Zampieri et al., 2019a,b, 2020), a widely
used OTD dataset. Each level dictates the targets
of the offensive text, in terms of their identity as

3www.hatebase.org

a group, individual, or entity. However, to our
knowledge, a person’s identity or attributes have
not played a critical role in existing OTD research.
OLID was also augmented with labels for capturing
the degree of explicitness (Caselli et al., 2020) and
may also support research into resolving implicitly
offensive statements. Implicitness in OLID is pri-
marily defined as the lack of an overtly offensive
word or slur. However, the aforementioned per-
sonal attributes or subjectivity of interpretation are
not considered. Our dataset differs in this respect,
as we consider not just if a statement is offensive
but how it can be considered offensive by defining
the interpretation process as a chain of reasoning to-
wards a subjective experience. In this sense, a more
similar approach comes from normative reasoning
in moral stories (Emelin et al., 2021), where a short
chain of reasoning is used to assess the morality of
actions and consequences.

3 Data

We propose SLIGHT 4, a dataset for the study of
Implicit OTD as a multi-hop reasoning problem or
as a diagnostic to test models’ ability to identify
implicitly offensive statements.

Each example in the dataset consists of three
parts:

1. A personal attribute of the reader/listener.

2. A triplet of an implicitly offensive statement,
its corresponding explicitly offensive state-
ment, and a non-offensive statement (for the
given attribute).

3. A chain of reasoning, describing the iterative
process of how the ambiguity of the implic-
itly offensive statement can be resolved into
the corresponding explicitly offensive state-
ment. Example reasoning chains are provided
in Appendix A.

Annotations are crowdsourced using Amazon
Mechanical Turk (AMT). We performed four
rounds of pilot experiments in which high-quality
annotators were identified, and the annotation in-
structions were refined to address any observed
confusion in the annotation process. The final in-
structions can be found in Appendix C. Due to the
nature of the data, all participants were briefed that
the task would involve offensive content and were

4Dataset is available at https://github.com/
QZx7/SLIGHT
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Knowledge

Only the best can win contests.
Classic things are usually old.
Grown-ups don’t play with dolls.
Parents want children to be independent.
Overworking makes people exhausted.

Table 1: Samples of the knowledge used to construct
chains of reasoning.

provided an option to stop the task at any point.
Annotators could report personally offensive ex-
amples, though no examples were flagged in this
manner, and no personal attributes based on race,
ethnicity, or gender were included in the dataset.

All workers were paid an average hourly wage
of $6.2, with additional bonuses depending on an-
notation quality and working hours. Compared to
the average AMT wage of $2 (Hara et al., 2018),
we pay relatively more to encourage high-quality
annotations of a challenging task. We did not limit
the location of annotators, requiring only English
proficiency. This allows for a diverse range of
viewpoints to help understand how statements may
be interpreted in different ways by different cul-
tures (Poggi and D’Errico, 2018).

3.1 Annotation Scheme
Personal Attribute As we have defined in Sec-
tion 1, we argue that the context in which a state-
ment occurs is crucial to understanding its potential
in creating an offensive interpretation. Therefore,
the context should play an important role in the
annotation task. However, providing an overly spe-
cific context can increase the difficulty of providing
a relevant implicitly offensive statement. To make
the annotation task more feasible, we reduce the
context to a single feature: a personal attribute of a
hypothetical reader/listener.

The set of attributes is obtained from the per-
sonas in the PERSON-CHAT corpus (Zhang et al.,
2018a), of the form “I like sweets.” or “I work as a
stand up comedian.” Attributes related to ethnicity,
gender, and other protected classes are manually re-
moved (based on keyword matching with Hatebase
entries), leaving 5334 distinct attributes. We divide
the attributes into several categories (detailed cate-
gory information can be found in Appendix B) be-
fore randomly sampling a subset of 920 attributes,
uniformly across categories, in order to increase
the number of workers assigned to each attribute.

Implicit, Explicit and Non-offensive Text For
each example, workers were provided 3 diverse
attributes and asked to choose one as a writing
prompt. The workers are then instructed to pro-
vide annotation in the form of example sentences,
including:
Implicitly offensive statement Utterances that do
not express an overt intention to cause offense and
often require complicated reasoning or external
knowledge to be fully recognized as offensive con-
tents.
Explicitly offensive statement Utterances contain
an obvious and direct intention or explicit expres-
sions to cause offense without external knowledge
or reasoning processes.
Non-offensive statement Utterances do not cause
offense under the context initiated with the at-
tribute.

Both explicit and implicit offensive statements
should share the same meaning in terms of how
they are offensive. Non-offensive statements are
collected to construct a balanced dataset and evalu-
ate the accuracy of existing OTD models.

Chain of Reasoning A distinguishing charac-
teristic of our work is the collection of chains of
reasoning to explain the interpretation process for
implicitly offensive text. We represent the chain
of reasoning as a series of sentence-to-sentence
rewrites, similar to natural logic (MacCartney and
Manning, 2014). One practical advantage of using
a sentence-based representation for reasoning steps
(in comparison to a structured representation like
predicate-argument tuples) is that it allows the use
of powerful text-to-text (T5) (Raffel et al., 2020)
and entailment models (Zhuang et al., 2021; He
et al., 2021), which are trained on sentence-level
input.

Formally each chain begins with an implicitly
offensive statement (0-th step, denoted as s0) and
ends with an explicitly offensive statement (sL).
The number of steps between s0 and sL defines the
length of the chain.

3.2 Post-processing

We collected 2657 examples from the AMT and
performed post-processing to ensure the quality of
the data. We define three processes to edit the col-
lected annotations to standardize the format of the
reasoning steps listed below. Examples with steps
that can not be handled by any of the processes
are removed from the dataset. To reduce biases in
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Accuracy

SLIGHT Twitter OffensEval Toxicity

Models Implicit Explicit Non All All All All

RoBERTa-Twitter 1.7 79.0 99.7 59.5 85.9 85.8 89.1
BERT-OffensEval 15.9 93.2 99.2 62.8 82.2 82.4 84.2

ALBERT-OffensEval 9.7 88.6 94.5 65.2 82.4 82.7 85.2
BERT-Toxicity 14.8 96.6 98.5 61.9 81.2 81.9 83.6

ALBERT-Toxicity 11.4 91.5 94.9 62.8 79.4 80.3 82.6
Avg. 10.7 89.8 97.4 62.5 82.2 82.6 84.9

Table 2: Performance of SOTA OTD models on the classification task. Non: Non-offensive.

post-processing, we assign three workers to each
task.

Attribute Insertion Rule (AIR) We insert the
attribute statement into the first reasoning step (s1)
to make this information accessible to any model
taking the sentence as input. For instance, for an
example with the attribute, “I am colorblind.” and
the implicit offensive statement, “Oh, that would
explain your wardrobe!”, the reasoning step “Oh,
your color blindness would explain your wardrobe!”
generated by the worker is tagged as AIR.

Knowledge Insertion Rule (KIR) Steps that are
used to introduce external commonsense knowl-
edge are tagged as KIR. For instance, to support
the reasoning process from step “You are a grown-
up who can’t afford to rent a house.” to “You are
poor.”, the knowledge of “Poor people can’t afford
to rent a house.” is introduced. The following step,
“You are poor.” is then tagged as KIR. To better
understand the effectiveness of external knowledge,
we also extract the commonsense knowledge dur-
ing the post-processing (Table 1).

Rephrasing Rule (RR) Steps that have equiva-
lent meaning to previous steps but can be simplified
by rephrasing are tagged as RR. For instance, to ex-
press more explicit offensive meaning, a reasoning
step written as a question “Do you like meat too
much, or just food in general?” is rephrased as a
declarative sentence step “You must love food too
much in general.” and tagged as RR.

3.3 Post-processing Results

Of the initially collected 2657 examples, 1050 re-
mained after the post-processing. The high task
rejection rate (60.5%) also conveys the difficulty of
this content generation task. The average length of

a reasoning chain is 4.84 steps in the dataset, with
a minimum length of 3 (60 examples) and a max-
imum of 6 (39 examples). Among all three tags,
RR is most frequently applied (59.6%), followed
by KIR (21.5%) and AIR (18.9%).

4 Experiments

We evaluate the difficulty of the Implicit OTD task
using existing state-of-the-art models before explor-
ing a multi-hop approach to Implicit OTD using
existing entailment models to score transitions in
the reasoning chains.

4.1 Sentence Classification

We begin by evaluating existing state-of-the-art
OTD models on both the Implicit-OTD and the
Explicit-OTD task. These include BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), and AL-
BERT (Lan et al., 2020), three pre-trained large
scale language models fine-tuned on existing OTD
datasets, which produce the highest accuracy re-
ported on the explicit OTD task.

These models are fine-tuned on three OTD
datasets, including (1) the OLID/OffensEval2019
dataset (Zampieri et al., 2019a), discussed in Sec-
tion 2, which contains 14,200 labeled tweets and
includes implicit offensive statements, (2) the
TWEETEVAL (Barbieri et al., 2020) multi-task of-
fensive Twitter set for detecting irony, hate speech
and offensive language, and (3) the Google Jigsaw
Toxic Comments dataset 5 which contains 159,571
samples in the training set. In the subsequent sec-
tions, we refer to these datasets as OffensEval, Twit-
ter, and Toxicity, respectively.

Table 2 shows the results of the baseline models
on correctly classifying the implicitly and explicitly

5Google Jigsaw Toxic Comments
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I love bookclubs, I go
there every week.

Some places with
free food, right? Attribute Insertion

Rephrasing Knowledge Insertion Rephrasing

You love bookclubs
with free food.

You love free
food and eating.

You love eating a lot
which makes you fat.

 You are fat. 

Eating a lot makes
people fat.

Speaker Listener

You go to bookclubs
for free food.

Rephrasing

Attribute

Step 1

Step 2

Step 3

Step 4

Step 5

Knowledge

Implicit

Figure 2: An example demonstrating the entailment experiment. Entailment scores between adjacent steps are given
by the text entailment models. Arrows represent the entailment processes. Esi→sj represents the entailment score
from step i to step j, where s0 represents the implicit offense and sL represents the last step (step 5 in this example)
of the chain.

offensive text as offensive/non-offensive (systems
are denoted as a hyphenated combination of pre-
trained model and dataset). In every situation, the
performance on the implicit task is significantly
lower. The overall trend is perhaps unsurprising, as
implicit examples lack clear indicators of offensive-
ness, such as highly offensive words. However, the
degree to which these models underperform in the
Implicit-OTD task illustrates the extent to which
these tasks differ and highlights the risk of deploy-
ing such models to perform this task in real-world
situations.

An underlying assumption of this work and the
motivation for reasoning chains is the expectation
that the interpretation of the implicitly offensive ut-
terance becomes increasingly (explicitly) offensive
as the reasoning process is applied. We evaluate
the extent to which this holds in the dataset, using
the baseline systems to predict the offensiveness
of each rewrite across the reasoning chain. Ap-
pendix D shows that moving down the reasoning
chain indeed correlates with higher accuracy, im-
plying that each step gradually reveals more offen-
sive connotations in the implicit offense. It also
verifies that the collected and annotated chains have
the property of being orderly.

4.2 Reasoning by Entailment

The results of Section 4.1 indicate two things: cur-
rent OTD systems perform poorly on the implicit
OTD task, and the difficulty of using existing mod-
els decreases as each successive step of the reason-
ing chain is applied. This insight hints at a poten-
tial approach to implicit OTD: apply a reasoning
model to map initial statements to their simplest

and most explicit corresponding offensive state-
ment (and score the likelihood of it being entailed
by the original statement), and then classify the re-
sulting statement with a dedicated OTD model. In
essence, this decomposes a difficult inference into
a series of smaller inferences which may be tack-
led with higher accuracy by current models. We
explore the possibility of using this approach with
existing models, assuming the human-annotated
chains as gold-proof paths.

We treat the problem of scoring reasoning chains
as a multi-hop textual entailment problem as in
Figure 2. Using an existing state-of-the-art tex-
tual entailment model, we score the transition from
each step si to the next, si+1. Such models take
as input a pair of texts, <premise, hypothesis> (<p,
h>), and output scores for a set of labels indicating
“entailment” (Ep→h), “netural” and “contradiction”
(Cp→h). For instance, the premise reasoning step
“You look like someone who could use more exer-
cise.” entails the hypothesis “You are fat.”.

A naive approach to multi-hop reasoning is to
treat each transition as an independent event and
model the probability of a reasoning chain as a
product of transition scores. In the context of rea-
soning chains, we define the probability of a chain
c as:

E(c) =
L−1∏
i=0

Esi→si+1 (1)

where L is the length of the chain.
We refer to this as MUL, the product model

approach to multi-hop reasoning. For the entail-
ment model scoring each transition in the chain, we
consider two systems, one derived from DeBERTa-
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Entailment Scores

RoBERTa DeBERTa

Chain Length Chain Length

Step 3 4 5 6 ALL 3 4 5 6 ALL

s0 → s1 64.7 84.4 89.9 90.0 - 68.4 78.2 86.5 90.7 -
s1 → s2 37.1 58.0 46.9 57.4 - 29.7 46.1 41.2 45.0 -
s2 → s3 73.6 55.1 42.5 50.2 - 64.4 50.5 35.5 44.3 -
s3 → s4 58.2 61.6 40.6 - 51.0 55.6 37.5 -
s4 → s5 60.9 65.9 - 50.0 63.3 -
s5 → s6 67.5 - 57.8 -

MULs0,...,sL 14.3 13.1 4.6 5.4 11.5 12.1 7.7 1.8 3.3 6.8
Es0→sL 17.2 9.1 4.4 5.6 7.6 8.3 5.9 2.4 3.6 4.5

MULs0,...,sL (k+) 38.1 32.0 17.9 16.5 23.5 30.2 20.3 7.6 4.0 14.1
Es0→sL (k+) 35.9 15.9 10.8 8.6 15.0 25.3 11.9 7.5 6.6 10.9

Table 3: Entailment scores between various steps of the reasoning chain, and the scores of a product model
processing each step sequentially (MUL). Column headers indicate subsets of the data, where all chains are of 3, 4,
5, or 6 steps respectively. k+: scores indicate those where external knowledge is concatenated to all statements prior
to a KIR step.

base (He et al., 2021) and one from RoBERTa-
large (Liu et al., 2019). Both systems were fine-
tuned on the MNLI corpus (Nangia et al., 2017), a
standard corpus for textual entailment.

In our experiments, we are most interested in
comparing the scores of MUL to those of methods
which ignore the reasoning chain, either by scoring
the entailment of the explicitly offensive statement
given the implicit one (s0 → sL), or by using one
of the current state-of-the-art approaches to clas-
sify the implicit statement directly (Table 2). While
MUL is a naive model, any advantage of a model
with such strong independence assumptions sug-
gests areas where future multi-hop reasoning mod-
els could significantly improve over non-reasoning
“single hop” counterparts.

The results of the multi-hop experiments are pre-
sented in Table 3. We observe that under most
conditions, MUL outperforms Es0→sL by a mod-
est margin. The performance of MUL does suffer
on the longest reasoning chains as a result of an in-
creasing number of multiplications (a consequence
of the independence assumptions), negating the
margins between the two systems. The detailed
results can be found in Appendix F.

In terms of the types of reasoning which are most
beneficial, we observe significant changes in the
transition scores before and after knowledge is inte-
grated into the reasoning process, i.e., around KIR

steps. We examine this behavior further, analyzing
the performance of OTD models on predicting the
final layer at points sk−1 and sk, before and after
knowledge integration (Table 4). We observe sig-
nificant (2-3 fold) improvements when predicting
after knowledge is integrated. Similar results can
also be observed on textual inference models, as
shown in Appendix E.

To explore the effectiveness of the external
knowledge, we utilize the extracted knowledge
mentioned in Section 3.2 and perform an additional
set of experiments (denoted k+) where the external
knowledge acquired in data annotation is added
to each statement as conjunction until after a KIR
step occurs. For instance, if the knowledge in sk
is “Eating too much can make people fat.”, this
knowledge will then be connected to all steps in
{si|i = 0, 1, ..., k − 1} to form “<si> and eat-
ing too much can make people fat.” As shown
in Table 3, adding knowledge increases scores for
both models, but notably resulting in a significant
advantage to the RoBERTa product model, which
now outperforms direct prediction, and all previous
baseline models, in all scenarios. The resulting sys-
tem is also more robust to long reasoning chains.
We even observe that the performance margins over
direct prediction in the 6-step chains exceed that of
the 3-step setting.
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5 Discussion

We introduced this work based on a hypothesis that
a reasoning-based approach has a conceptual ad-
vantage over existing approaches to offensive text
detection, in that humans must each be perform-
ing some reasoning process in order to find state-
ments either offensive or non-offensive in different
situations. We then showed that this conceptual
advantage could translate to an empirical one and
showed performance gains over current approaches.
However, we do so under strong assumptions and
access to additional information. How realistic is
our experimental setup?

5.1 Textual Inference Models for Reasoning

As shown in Table 3, the overall entailment scores
of direct prediction, Es0→sL , are significantly
lower than the scores of adjacent steps predic-
tion, Esi→si+1 , revealing that existing entailment
models can have difficulty integrating multiple in-
ferences and strands of knowledge into a single
prediction. Such models are able to perform bet-
ter when the task is broken down into many sim-
ple inferences. However, why does MUL fail to
show a consistent performance improvement over
Es0→sL in all settings? We consider improving
the model by relaxing its strict independence as-
sumptions to the probability of successive multi-
plication of independent events tending to zero.
Proof systems (Angeli and Manning, 2014), which
utilize entailment and provide transparency in the
decision-making process, may offer a better so-
lution. Natural logic (MacCartney and Manning,
2007; Angeli and Manning, 2014) appeals for its
formulation of reasoning as a sequence of sentence
rewrites. Recent seq2seq neural-based natural logic
model, ProoFVer (Krishna et al., 2021), is able to
achieve state-of-the-art performance in the expla-
nation generation task for fact verification systems.

5.2 What Knowledge is Necessary?

Another important topic is the type and extent to
which knowledge is necessary for the reasoning
task on the SLIGHT dataset. We evaluate the effec-
tiveness of knowledge by comparing the classifica-
tion performance of the model on the steps before
and after applying KIR. The accuracy of the model
improves significantly after integrating knowledge
(Table 4), highlighting the importance of this pro-
cess. But what type of knowledge is required? We
examined examples of knowledge collected in the

Accuracy
Models sk−1 sk

RoBERTa-Twitter 7.9 29.6
BERT-OffensEval 13.6 42.5

ALBERT-OffensEval 24.1 51.1
BERT-Toxicity 9.3 35.8

ALBERT-Toxicity 15.5 39.1

Table 4: Performance of SOTA OTD models on steps
before KIR (sk−1) and steps after KIR (sk).

annotation process and categorized them as: (1)
lexical/ontological knowledge, (2) commonsense,
and (3) folk knowledge.

Lexical knowledge involves the substitution of
related concepts, synonyms, or subclasses. For
instance, “classic things are old.” describes the
fundamental property of what it means to be a clas-
sic thing. Such knowledge may be obtained from
dictionaries or inferred from large pre-trained lan-
guage models.

The second form of knowledge, commonsense
knowledge, is exemplified in statements like,
“salad is healthy.”. Existing knowledge bases, such
as ConceptNet (Speer et al., 2017), may be suf-
ficient for these basic object properties. Existing
work on defeasible reasoning (Sap et al., 2019;
Zhang et al., 2020) has shown how incorporating
external knowledge to support entailment-based
reasoning can improve performance, using models
similar to those used in this work. Further efforts
to develop knowledge bases of commonsense are
ongoing, and it is possible that improvements in
this area could similarly yield improvements when
integrated with the approach proposed in this work,
and could be used for the automatic integration of
knowledge without requiring human annotation.

A third and unusual type of knowledge is “folk
knowledge,” which may be a personal opinion and
factually inaccurate. Examples of this in the dataset
can be “smart people don’t make mistakes.” While
a current trend in NLP research is improving ways
of removing biases (Bender et al., 2021; Fisher
et al., 2020), folk knowledge is interesting in that
we may want to be aware of these biases and mis-
conceptions in order to better model the interpre-
tation process for a particular person. We find the
collection and use of folk knowledge as an impor-
tant avenue of future research.
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6 Conclusion

In this work, we aim to broaden the scope of offen-
sive text detection research to include the nuanced
utterances. Improvements in these models have
applications ranging from distant futures where hu-
mans frequently interact with dialogue systems in
situated ways which require such pragmatic reason-
ing to avoid unintended offense to today’s online
forums, where often a cat-and-mouse game of in-
creasingly more creative offensive text creation and
moderation occurs.

In addition to providing a dataset of implicitly
offensive text, which can itself be used purely as
a diagnostic of systems’ ability to identify more
subtle instances of offensive text, we also provide
chains of reasoning annotations which we hope
can provide insight to how statements lead to of-
fensive interpretations in certain situations. Our
experiments provide a proof of concept of how
multi-hop reasoning models have the potential to
outperform directly classifying offensive text us-
ing current state-of-the-art approaches and iden-
tify areas for improvement via future research in
commonsense knowledge base construction and
inference.

7 Ethical Considerations

In this work, we aim to develop models which can
more accurately predict the emotions elicited from
text statements. Although our goal is to identify
potentially harmful statements in order to avoid
them, it is important to consider potential negative
use-cases for such work. A system which can iden-
tify offensive statements can also select for them,
and it may be possible to use such a system to tar-
get users, attacking them on topics or attributes
which they are most sensitive about. To the extent
that we are able, we must be cautious not to aid in
the development of such systems in the process of
furthering research for more empathetic dialogue
systems.

We tailor our study in three ways in an effort to
reduce the risk of harm. First, we focus primar-
ily on identifying implicitly offensive statements.
While a system which produces implicitly offen-
sive statements may still be used to attack users,
they are significantly more challenging to generate
when compared to explicitly offensive statements,
which do not require any additional inferences or
world knowledge. We hypothesize that this makes
implicitly offensive statements unlikely to be uti-

lized in offensive systems. Second, our dataset size
is chosen with the goal of being large enough to
support evaluation but not training. It can therefore
function as a useful diagnostic of offensive text
detection systems, with limited risk of being used
to create one.

Third, in our dataset, we have removed protected
attributes such as ethnicity, gender, and race.
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Attribute I eat lots of pancakes and syrup.
Implicit Statement That can indeed give you extra energy.
Explicit Statement You are fat.

Non-offensive I love pancakes, too.
Chain of Reasoning Pancakes and syrup can indeed give you extra energy. (AIR)

You got extra energy from eating. (RR)
You eat too much. (RR)
You eat too much which makes you fat. (KIR)
You are fat. (RR)

Attribute I am a guitar player.
Implicit Statement Oh did you learn that by yourself?
Explicit Statement Your guitar skills are awful.

Non-offensive That’s why you are so good at music.
Chain of Reasoning Did you learn guitar by yourself? (AIR)

You must have learned guitar by yourself. (RR)
You must have learned guitar by yourself because you don’t look so professional. (KIR)
You are not professional at guitar. (RR)
Your guitar skills are awful. (RR)

Attribute I wear contacts.
Implicit Statement Another reason why I’m scared to get old.
Explicit Statement You are so old.

Non-offensive I usually wear glasses.
Chain of Reasoning Wearing contacts is another reason why I’m scared to get old. (AIR)

I’m scared to get old because I don’t want to wear contacts like you. (RR)
I’m scared to get old because old people wear contacts like you. (KIR)
Old people like you wear contacts like you. (RR)
You are so old. (RR)

Attribute I come from a small town.
Implicit Statement Are you coming here for higher education?
Explicit Statement You are uneducated, then.

Non-offensive I always want to move to a small town.
Chain of Reasoning Are you coming to this big city for higher education? (AIR)

You come to this big city for higher education. (RR)
You come to this big city because you couldn’t get enough education in the small town. (KIR)
You couldn’t get enough education in the small town. (RR)
You don’t get enough education. (RR)
You are uneducated. (RR)

Table 5: Some chain of reasoning samples.

A Samples

Table 5 shows some examples in SLIGHT. Each
sample contains an Attribute, an Implicit State-
ment, an Explicit Statement, a Non-offensive State-
ment and a Chain of Reasoning mapping from im-
plicit statement to explicit statement. The post-
processing tag is attached to the end of each rea-
soning step, where AIR is for “Attribute Insertion
Rule”, KIR is for “Knowledge Insertion Rule” and
RR is for “Rephrasing Rule”.

Table 6 shows some examples of extracted
knowledge from KIR steps of the chain of reason-
ing during post-processing. sk−1 indicates the rea-
soning steps before applying KIR and sk indicates
the reasoning steps after applying KIR.

B Attribute Categories

Table 7 shows how we categorized and selected
different attributes. The original attributes are di-
vided into four big categories: AM, HAVE, MY and

OTHER based on the syntax features (subject type,
POS, Norm) of the sentence. Each category of AM,
HAVE and MY are then divided into several sub-
categories based on the object type of the sentence.
230 attributes are taken from each big categories.

C Crowdsourcing Instruction

Figure 3 shows a template instruction that we used
in our AMT tasks. Crowd workers are instructed
with the purpose of the research and are notified
about the potential offensive contents of this task.
In order to protect the crowd workers due to the na-
ture of this research, we have explicitly mentioned
on the AMT task control panel that the current
task may contain offensive contents. Moreover, we
check the collected attributes and remove potential
dangerous ones before posting the tasks. This task
requires more effort due to a great amount of con-
tent generation. To compensate the crowd workers,
we guarantee every qualified worker to get a base
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sk−1 You eat too much.
sk You eat too much which makes you fat.

Knowledge Eating too much can make people fat.
sk−1 I’ve never seen you on TV as a comedian.
sk I’ve never seen you on TV as a comedian because you’re not famous.

Knowledge Famous comedians are always on TV.
sk−1 You should lose weight.
sk You should lose weight because you are fat.

Knowledge Fat people should lose weight.
sk−1 You quit school.
sk You quit school which makes you uneducated.

Knowledge People who quit school are uneducated.

Table 6: Some external knowledge samples.

Category Sub-Category Example Number

AM (Attributes that describe personal status with a be-verb as the root.) 1429 (230)
AM-noun I am a teacher. 754 (50)
AM-number I am 30 years old. 76 (15)
AM-status I’m getting married next week. 149 (25)

I am funny.
AM-other I’m from San Francisco. 450 (140)

HAVE (Attributes that describe certain personal actions with a verb as the root.) 3203 (230)
HAVE-preference I like to remodel homes. 901 (65)

I hate talking to people.
Have-status I have a dog named bob. 540 (40)
Have-other I own my home. 1762 (125)

I live in Colorado.

MY (Attributes that describe possession status related to the speaker.) 731 (230)
MY-preference My favorite sport is football. 256(80)

My favorite movie is pretty woman.
My favorite food is cheeseburgers.

My-other My mom is a checker at the local grocery store. 475(150)
My wife and i like to go scuba diving.

OTHER (Other remaining attributes that do not have specific syntax features.) 763(230)
Before i die , i want to skydive.

While both my parents have thick European accents, I do not.
It is my universe, and everyone else is just a character in it.

Total 5334 (920)

Table 7: Different categories of personal attributes and the number of selected attributes (numbers in parentheses).

salary of $6.2 per hour (average salary is $3 in the
authors’ region, average AMT worldwide salary is
$2) with additional bonuses.

D Sentence Classification Results

Figure 4 shows the results of existing SOTA OTD
models on each step of the chain of reasoning in
SLIGHT.
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Figure 3: Introduction in the crowdsourcing task.
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Figure 4: Performance of the models on each step of the chains of reasoning with different lengths.
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E Model Details

Table 8 shows the details of the models used in all
of our experiments. We implemented the frame-
work with the “TextClassification” pipeline from
HuggingFace6. All models can be directly down-
loaded from the links given in the table.

We selected models fine-tuned on MNLI for en-
tailment models because MNLI provides a large
size textual inference dataset that contains multi-
ple genres and thus can greatly reduce biases of
the models trained on. Both RoBERTa and De-
BERTa models fine-tuned on MNLI have achieved
state-of-the-art performance.

6https://huggingface.co/
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Experiment Model Sources

Classification

RoBERTa-Twitter
Base model: RoBERTa-base
#Parameters: 125M
Trained on: TWEETEVAL (2020)
Source: https://huggingface.co/cardiffnlp/twitter-roberta-base-offensive

BERT-OffensEval Base model: BERT-base-uncased
#Parameters: 110M
Trained on: OLID/OffensEval2019 (2019)
Source: https://huggingface.co/mohsenfayyaz/bert-base-uncased
-offenseval2019-downsample

ALBERT-OffensEval Base model: ALBERT-base-v2
#Parameters: 12M
Trained on: OLID/OffensEval2019 (2019)
Source: https://huggingface.co/mohsenfayyaz/albert-base-v2-
offenseval2019-downsample

BERT-toxicity Base model: BERT-base-uncased
#Parameters: 110M
Trained on: Toxic Comment (2018)
Source: https://huggingface.co/mohsenfayyaz/toxicity-classifier

ALBERT-toxicity Base model: ALBERT-base-v2
#Parameters: 12M
Trained on: Toxic Comment (2018)
Source: https://huggingface.co/mohsenfayyaz/albert-base-v2-toxicity

Entailment

RoBERTa

Base model: RoBERTa-large
#Parameters: 355M
Trained on: MNLI (2017)
Source: https://huggingface.co/roberta-large-mnli
Reported Acc. on MNLI: 90.2

DeBERTa

Base model: DeBERTa-large
#Parameters: 355M
Trained on: MNLI (2017)
Source: https://huggingface.co/microsoft/deberta-large-mnli
Reported Acc. on MNLI: 91.1

Table 8: Details of the models used in the experiments.
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Entailment Scores
Length Models sk−1 → sk sk → sk+1

4-steps RoBERTa 28.2 66.4
DeBERTa 19.8 58.3

5-steps RoBERTa 23.0 78.2
DeBERTa 15.7 66.5

6-steps RoBERTa 19.1 79.5
DeBERTa 17.5 71.5

Table 9: Entailment scores between the KIR step (sk) and step before KIR (sk−1) and step after KIR (sk+1). The
chains with length of three are not included in this evaluation as they do not frequently contain a KIR step.

Accuracy

Implicit
MUL*Explicit MUL(k+)*Explicit

OTD Models RoBERTa DeBERTa RoBERTa DeBERTa

RoBERTa-Twitter 1.7 9.1 5.4 18.6 11.1
BERT-OffensEval 15.9 10.7 6.3 21.9 13.1

ALBERT-OffensEval 9.7 10.2 6.0 20.8 12.5
BERT-Toxicity 14.8 11.1 6.6 22.7 13.6

ALBERT-Toxicity 11.4 10.5 6.2 21.5 12.9

Table 10: Full accuracy calculated from reasoning models and the accuracy of OTD models on Explicit.

F Knowledge Entailment Experiment

Table 9 shows the results of running text inference
models around KIR steps of the chain of reasoning.
To be noticed, we were not able to find any KIR
steps in the chain of reasoning whose length is 3.
This implies that knowledge insertion might not be
necessary to interpret implicit statements that are
not “implicit” enough.

Table 10 shows the final accuracy calculated
with the entailment scores and accuracy of OTD
models on Explicit inputs. Average accuracy of
models the sentence classification experiment is
used for the calculation.
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