
Findings of the Association for Computational Linguistics: ACL 2022, pages 3877 - 3887
May 22-27, 2022 c©2022 Association for Computational Linguistics

Chinese Synesthesia Detection: New Dataset and Models

Xiaotong Jiang†, Qingqing Zhao‡, Yunfei Long♢, and Zhongqing Wang† ∗

† Natural Language Processing Lab, Soochow University, Suzhou, China
‡ Institute of Linguistics, Chinese Academy of Social Sciences, Beijing, China

♢ University of Essex, UK
devjiang@outlook.com, zhaoqq@cass.org.cn
yl20051@essex.ac.uk, wangzq@suda.edu.cn

Abstract

In this paper, we introduce a new task called
synesthesia detection, which aims to extract
the sensory word of a sentence, and to predict
the original and synesthetic sensory modalities
of the corresponding sensory word. Synesthe-
sia refers to the description of perceptions in
one sensory modality through concepts from
other modalities. It involves not only a lin-
guistic phenomenon, but also a cognitive phe-
nomenon structuring human thought and ac-
tion, which makes it become a bridge between
figurative linguistic phenomenon and abstract
cognition, and thus be helpful to understand
the deep semantics. To address this, we con-
struct a large-scale human-annotated Chinese
synesthesia dataset, which contains 7,217 an-
notated sentences accompanied by 187 sensory
words. Based on this dataset, we propose a
family of strong and representative baseline
models. Upon these baselines, we further pro-
pose a radical-based neural network model to
identify the boundary of the sensory word, and
to jointly detect the original and synesthetic
sensory modalities for the word. Through ex-
tensive experiments, we observe that the im-
portance of the proposed task and dataset can
be verified by the statistics and progressive per-
formances. In addition, our proposed model
achieves state-of-the-art results on the synes-
thesia dataset.

1 Introduction

Synesthesia refers to the association of perceptions
in both perceptual experiences and language us-
ages (Winter, 2019; Zhao, 2020). Synesthesia in
perceptions, namely neurological synesthesia, de-
scribes a special perceptual condition for specific
people who can perceive colors from black-printed
letters, touch sounds, taste shapes, and so forth (Cy-
towic, 2002; Banissy et al., 2015). Synesthesia in
language usages, named linguistic synesthesia al-
ternatively, involves lexical items in one sensory

∗ Corresponding author

她用甜蜜蜜的语调说：那是我教他的喔！
(She said in a sweet tone, “That’s what I taught him!”)

Taste Hearing

Figure 1: An example of synesthetic sentence.

modality to describe perceptions in another sen-
sory modality (Ullmann, 1957; Williams, 1976).
For instance, as shown in Figure 1, the gustatory
adjective “甜蜜蜜” (sweet) can be used to describe
an auditory perception, as in the phrase “甜蜜蜜的
语调” (a sweet tone).

Different from extensive studies on synesthesia
in neurological and linguistic areas, synesthesia
has received little attention in natural language
processing (NLP). One of the related topics in
NLP is metaphor detection, which aims at identify-
ing metaphorical expressions using computational
models (Turney et al., 2011; Chen et al., 2020; Su
et al., 2020). That is, synesthesia involves not only
a linguistic phenomenon, but also a cognitive phe-
nomenon structuring human thought. Naturally,
synesthesia can bridge the gap between figurative
linguistic phenomenon and abstract cognition on
deep semantics. Thus, it may help us understand
figurative methods, the cause of commonsense, and
the latent logic of natural language generation in
a more cognitive way. However, synesthesia in-
volves both the source and target domains in sen-
sory modalities, while metaphor usually involves
only the source domain in sensory modality (Zhao
et al., 2018). Therefore, detecting synesthesia has
its unique significance which is different from iden-
tifying metaphors.

In this study, we introduce a new task called
synesthesia detection for deep analysis of synes-
thesia using computational models. As shown
in Figure 1, synesthesia detection aims to extract
the sensory word, and to predict the original and
synesthetic sensory modalities of the correspond-
ing sensory word. There are five sensory modali-
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ties (Strik Lievers, 2015; Winter, 2019; Zhao, 2020)
including Touch, Taste, Smell, Vision, and Hear-
ing in this study, and sensory word is an adjective
word which expresses sensory perceptions in a sen-
tence. “甜蜜蜜” (sweet) is the sensory word in
the example. In addition, synesthesia is the map-
ping of sensory modalities for sensory words from
their original domains to their synesthetic domains.
The original sensory modality in the above exam-
ple is taste, and the synesthetic sensory modality is
hearing.

Meanwhile, we focus on Chinese synesthesia
detection in this study. Different from English,
Chinese is an ideographic language featured by no
word delimiter between words in written. Further-
more, not only words and characters can express
specific meanings in Chinese, but also radicals are
important carriers of semantics (DeFrancis, 2021).
As shown in Figure 1, a radical is often related to
a specific concept and a specific sensory modality,
i.e., the tongue (‘舌’ of ‘甜’) for taste, and spoken
language (‘讠’ of ‘语’ and‘调’) for hearing. In this
study, we make the following efforts to advance
Chinese synesthesia detection:

First, we construct a Mandarin Chinese synes-
thesia dataset. Specifically, we extract the sensory
words from each sentence. We then annotate the
original and synesthetic sensory modalities of the
corresponding sensory word. There are 187 sen-
sory words and 7,217 synesthetic sentences in the
dataset, where visual adjectives, tactile adjectives,
and gustatory adjectives are the top three lexical
types.

Second, we establish a family of solid and rep-
resentative baselines, including BiLSTM+CRF,
BERT+CRF, SR-BiLSTM, and PF-BERT, to ex-
tract the sensory word and to automatically detect
the original and synesthetic sensory modalities of
the sensory word. Upon these baselines, we further
propose a radical-based neural network model to
identify the sensory word’s boundary and jointly
classify the original and synesthetic sensory modal-
ities. The experimental results demonstrate the
effectiveness of the proposed model as the state-of-
the-art model for our constructed dataset.

In summary, the contributions of this paper in-
clude:

• To the best of our knowledge, this is the first
attempt to apply computational models for
linguistic synesthesia analysis.

• We introduce a new task called synesthesia

detection to extract the sensory word, and to
predict the original and synesthetic sensory
modalities.

• We annotate a large-scale dataset for analysis
of linguistic synesthesia in Chinese text.

• We establish a family of baselines for synes-
thesia detection. In addition, we propose a
novel radical-based neural network model to
extract sensory words, and to detect the orig-
inal and synesthetic sensory modalities auto-
matically. The experimental results demon-
strate the effectiveness of the proposed model.

2 Related Works

2.1 Research on Linguistic Synesthesia

Studies on linguistic synesthesia from a linguistic
perspective focus on the directionality pattern and
underlying mechanisms for synesthetic transfers be-
tween different modalities. Note that “synaesthesia”
and “synesthesia” are used interchangeably in the
literature. For consistency, we use “synesthesia” in
this paper. For instance, previous studies (Ullmann,
1957; Williams, 1976; Strik Lievers, 2015; Zhao
et al., 2019a) found that the transfers of linguistic
synesthesia conform to certain patterns, rather than
map randomly. In terms of the mechanisms under-
lying synesthetic transfers, Zhao et al. (2018) and
Winter (2019) have suggested that linguistic synes-
thesia is grounded in multiple mechanisms. In ad-
dition, Strik Lievers et al. (2013) and Strik Lievers
and Huang (2016) focus on identifying linguistic
synesthetic expressions in natural languages. How-
ever, their studies are conducted by semi-automatic
methods with lots of manual strategies. There are
no comprehensive computational models with auto-
matic synesthesia detection employed in previous
methods.

2.2 Metaphor Detection

Metaphor detection aims at identifying metaphor-
ical expressions using computational models. Ex-
isting studies on metaphor detection can be catego-
rized into feature-based models employing various
hand-crafted features and neural network models.

Within the feature-based models, various lin-
guistic features are used to understand metaphor-
ical expressions, including word abstractness and
concreteness (Turney et al., 2011), word image-
ability (Broadwell et al., 2013), semantic su-
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persenses (Tsvetkov et al., 2014), and property
norms (Bulat et al., 2017).

More recently, deep learning models have been
explored to understand the metaphor. For exam-
ple, Gao et al. (2018) apply BiLSTM as an en-
coder using GloVe and ELMo as text input repre-
sentation for metaphor detection. Su et al. (2020)
utilize RoBERTa with various linguistic features,
including global text context, local text context,
and Part-of-Speech (POS) features. Meanwhile,
Chen et al. (2020) formulate metaphor detection
and word sense disambiguation as a multitask learn-
ing problem.

Different from previous studies focusing on ei-
ther linguistic synesthesia or metaphor detection,
we are devoted to a computational analysis for
synesthesia. In particular, we annotate a large-scale
Chinese synesthesia dataset. Furthermore, we pro-
pose a radical-based neural network model to detect
linguistic synesthesia in Chinese text automatically.

3 Data Annotation and Analysis

In this section, we first give some preliminaries of
basic notions in our task, then we show the anno-
tation process of the dataset. After that, we give
fundamental statistics and analysis.

3.1 Preliminaries

Sensory Modalities refer to sub-types of per-
ceptual experiences associated with specific sen-
sory organs and their cognitive machinery in the
brain (Winter, 2019). The five ‘Aristotelian’ senses,
including Touch, Taste, Smell, Vision, and Hear-
ing, are commonly used in the research on linguis-
tic synesthesia (Strik Lievers, 2015; Winter, 2019;
Zhao, 2020). We follow this convention for our
data annotation and analysis.

Sensory Word is an adjective word that ex-
presses sensory modality in a sentence. As shown
in Figure 2, “甜蜜蜜” (sweet) is a sensory word in
the sentence.

Synesthesia is the mapping of sensory modali-
ties for sensory words from their original domains
to their synesthetic domains. As shown in Figure 2,
the original and synesthetic sensory modalities of
“甜蜜蜜” (sweet) are taste and hearing respectively.

In addition, the synesthetic transfers between
different sensory modalities are not random, but
tend to follow specific patterns (Ullmann, 1957;
Williams, 1976). The majority of transfers go from
the higher embodied (e.g., touch, taste) to the lower

sensory word

Original: Taste
Synesthetic: Hearing

sensory modality

她用甜蜜蜜的语调说：那是我教他的喔！
(She said in a sweet tone, “That’s what I taught him!”)

Figure 2: An example of synesthesia annotation.

Sensory Count Examples

Touch 69 温暖 锋利 炽烈
warm sharp blazing hot

Taste 20 酸 辛辣 淡
sour spicy mild

Vision 92 空白 苍老 透明
blank aged transparent

Hearing 4 和谐 喧哗 吵
harmony hubbub noisy

Smell 2 香 臭
fragrant smelly

Table 1: The distribution of sensory words.

embodied modalities (e.g., hearing, smell) (Zhao
et al., 2019b).

Synesthesia Detection aims to extract the sen-
sory word of a sentence, and to predict the original
and synesthetic sensory modalities of the corre-
sponding sensory word. Figure 2 gives an example
of synesthesia detection.

3.2 Synesthesia Annotation

We follow Zhao et al. (2019b) and Zhao (2020) to
manually do annotations on linguistic synesthetic
expressions. As shown in Figure 2, we firstly ex-
tract the perception-related sensory words, and
then we annotate the original and synesthetic sen-
sory modalities of the sensory words manually.
The detailed procedure of annotation are summa-
rized as follows:

• Extracting the perception-related sensory
word from a sentence;

• Determining the original sensory modality for
the extracted sensory word;

• Extracting usages of the sensory word;

• Manually checking whether the extracted us-
age of the word is not the original modality;

• If yes, marking the usage of the word as the
synesthetic sensory modality.
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Source Target CountTouch Taste Vision Hearing Smell
Touch - 4.1% 62.6% 32.1% 1.2% 2,361
Taste 4.9% - 84.0% 6.5% 4.6% 2,097
Vision 22.6% 2.3% - 73.0% 2.2% 2,697
Hearing 0.0% 0.0% 100.0% - 0.0% 33
Smell 0.0% 72.4% 27.6% 0.0% - 29

Table 2: The distribution of sensory modalities.

3.3 Dataset Acquisition

The main challenge in data acquisition is to find
a large-scale dataset, which includes rich synes-
thetic sensory modalities. In this study, we anno-
tate the synesthesia of sentences from the Sinica
corpus1, which totally contains 10 million word
tokens (Chen et al., 1996).

Specifically, we firstly ask a linguistic expert to
choose 187 Chinese sensory adjectives from the
Sinica corpus manually, whose distribution can be
found in Table 1. Secondly, we extract the sen-
tences containing only one sensory adjective as
the candidate sensory sentences. Thirdly, we ask
three undergraduate students to annotate synesthe-
sia (i.e., sensory word and modality) on each can-
didate sentence. For synesthesia annotation, we
add a guideline course, detailed instructions, and
many samples, and we also hold regular meetings
to discuss annotation problems and matters that
need attention. The kappa score was used to mea-
sure inter-annotator agreements (Fleiss, 1971). The
agreement on the identification of literal or synes-
thetic sentences was k = 0.757.

After we finish the annotation process, we
choose the synesthetic sentences for the below
statistics and analysis, and synesthetic sentence
means that the original and synesthetic sensory
modalities of the sensory word in the sentence are
different. There are 7,217 synesthetic sentences,
the distribution of which can be found in Table 2.

3.4 Data Distributions

Distribution of Sensory Words
Table 1 gives the statistics and examples of sensory
words. There are 187 Chinese sensory adjectives
with synesthetic usages in our dataset. Visual ad-
jectives, tactile adjectives, and gustatory adjectives
are the top three lexical types in the extracted synes-
thetic sentences, with 92, 69, and 20, respectively.

1The Sinica Corpus (Academia Sinica Balanced Corpus of
Modern Chinese, 4th edition), which can be accessed at http:
//lingcorpus.iis.sinica.edu.tw/modern/

Word Original Synesthetic Example
大 vision hearing 大叫
big shouting in a big voice
冷 touch vision 冷色调

cold cold color
苦 taste vision 苦脸

bitter a bitter facial expression
清楚 vision hearing 清楚的声音
clear clear sound
轻柔 touch vision 月光轻柔
soft the moonlight is soft
甜腻 taste smell 气味甜腻

cloying the odor is cloying

Table 3: The top-6 frequency sensory words with synes-
thetic usage.

Olfactory and auditory adjectives are much less fre-
quently found with linguistic synesthesia usages.

Distribution of Sensory Modalities

We then analyze the distribution of sensory modali-
ties, and the transfer probability from the original
to synesthetic sensory modalities in Table 2. There
are totally 7,217 synesthetic sentences. Among
them, synesthetic sentences with visual and tactile
sensory modalities have the largest number, with
2,697 and 2,361 respectively.

In addition, based on the synesthesia transfer
probability in Table 2, and the examples in Table 3,
we find that: tactile adjectives are the most likely
to be used for vision, with the transfer probabil-
ity of 62.6%. This tendency is consistent with the
observation of the significant correlation between
touch and vision by previous studies (Chen et al.,
2019; Lynott and Connell, 2013). Such an associa-
tion between touch and vision is not bidirectional,
as visual adjectives for touch are not as produc-
tive as tactile adjectives for vision. The associa-
tion between vision and hearing is similar to that
between touch and vision. Specifically speaking,
visual adjectives are most likely to be associated
with hearing.

The ratios of synesthetic sources to synesthetic
targets for each sensory modality can also be calcu-
lated with respect to lexical types, from the largest
to the smallest: Vision > Touch > Taste > Hearing >
Smell. The ratio rank can be regarded as an indica-
tion that touch, taste, and vision are more likely to
be sources in sensory associations, while smell and
hearing are more likely to be targets. These find-
ings are consistent with Zhao (2020)’s research on
linguistic synesthesia from a linguistic perspective.
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4 Baselines

In this study, we consider synesthesia detection as
a pipeline system: we first extract the sensory word
from a sentence, we then detect the original sensory
modality and specific usage of sensory modality
for the sensory word. If the usage of the sensory
word is still related to one sensory modality but
not the original sensory modality, we consider the
usage as the synesthetic sensory modality of the
sensory word.

Therefore, we establish a family of strong and
representative baselines, including sensory word
extraction models presented in Section 4.1, and
synesthesia detection models presented in Sec-
tion 4.2.

4.1 Sensory Word Extraction

Sensory word extraction aims to extract the
perception-related sensory word from a sentence.
Generally speaking, it can be considered as a se-
quence labeling task. We thus introduce several
basic sequence labeling models to handle this task.

BiLSTM+CRF

Since BiLSTM+CRF (Lample et al., 2016) is
widely used in many sequence labeling tasks, we
adopt it as an important baseline for sensory word
extraction. In particular, we apply a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) as
the textual encoder and conditional random fields
(CRF) (Lafferty et al., 2001) as the decoder.

BERT+CRF

Instead of training a model from scratch, we also
adopt the framework of fine-tuning a pre-trained
language model on a downstream task (Radford
and Narasimhan, 2018). In this framework, we
adopt BERT (Devlin et al., 2019) as the textual
encoder and use CRF as the decoder.

4.2 Synesthesia Detection

Synesthesia detection aims to detect the original
and synesthetic sensory modalities of the given
sensory word. Therefore, this task can be sepa-
rated into two sub-tasks: original sensory modality
detection and synesthetic sensory modality detec-
tion. Since the two sub-tasks can be considered
as two text classification tasks, we introduce some
basic classification models to detect the original
and synesthetic sensory modalities separately.

SR-BiLSTM
The standard LSTM struggles to detect the impor-
tant part for synesthesia detection. To address this
issue, we propose to employ an attention mecha-
nism (Wang et al., 2016) that can capture the criti-
cal part of a sentence in response to a sensory word.
In particular, we build a baseline model called SR-
BiLSTM (Sensory Related BiLSTM), which uses
a bidirectional LSTM (Schuster and Paliwal, 1997)
as the encoder of the sensory word and the con-
tent of the sentence. We then employ an attention
mechanism to explore the connection between the
sensory word and the content.

PF-BERT
Due to the importance of the context of the sensory
word in synesthesia detection, we model the preced-
ing and following contexts surrounding the sensory
word. Therefore, contexts in both directions could
be used as feature representations for synesthesia
detection. In particular, we build a baseline model
called PF-BERT (Preceding and Following BERT),
which uses two BERT neural networks (Tang et al.,
2016; Devlin et al., 2019) to model the preceding
and following contexts respectively.

5 Proposed Method

There are three challenges in synesthesia detection:
1) The sensory modality of the sensory word and its
context may be different, and thus it is necessary to
capture the sensory expression of the sensory word
and its context. 2) The sensory word may be not
a single character or word. We thus need to detect
the boundary of the sensory word. 3) There is an
association between original and synesthetic sen-
sory modalities, which makes modeling interaction
between them necessary.

In this study, we propose a radical based neural
model to address the above three challenges. As
shown in Figure 3, we employ the radical-based
text representation to capture the sensory expres-
sion of the sensory word and its context. We then
identify the boundary of the sensory word using
a machine reading comprehension model. After-
ward, we employ a joint learning model to detect
the original and synesthetic sensory modalities col-
lectively.

5.1 Radical based Text Representation

Apart from words and characters, radicals are also
important carriers of semantics in Chinese (Shi
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她用甜蜜蜜的语调说

女用舌虫虫白讠讠讠

word

radical

BERT

Sensory Word Extraction 
via Boundary Detection

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

她用甜蜜蜜的语调说

她用甜蜜蜜

女用舌虫虫

甜蜜蜜的语调说

舌虫虫白讠讠讠

preceding following

BERT

Joint Sensory Modality Detection

Taste
Hearing

start

end

original

synesthetic

Figure 3: Overview of proposed method.

et al., 2015; Sun et al., 2014; Shao et al., 2017).
A radical is often related to a certain concept and
sensory modality, e.g., we use "Eye" to look, and
"Hand" to hit or dig. From these examples, we
can preliminarily see that radicals might help us to
recognize sensory words and synesthesia.

Therefore, we integrate radicals into the text rep-
resentation. Formally, given a Chinese raw text T ,
it contains m characters, i.e., C = {c1, c2, ..., cm},
where each character ci is an independent item.
Then, the characters are mapped into radicals re-
spectively by looking up Xinhua dictionary, i.e.,
R = {r1, r2, ..., rm}.

We then utilize BERT (Devlin et al., 2019) to
learn the representation HE for sensory word ex-
traction and HD for synesthesia detection. We
learn HE from the sequence [CLS] C [SEP] R
[SEP], where “[CLS]” is BERT’s special classifi-
cation token, and “[SEP]” is the special token to
denote separation. Meanwhile, given the sensory
word, we learn the representation HD from the
sequence [CLS] CL [SEP] CR [SEP] RL [SEP]
CL [SEP], where (CL, RL) and (CR, RR) are the
preceding contexts and following contexts of the
sensory word respectively.

5.2 Sensory Word Extraction via Boundary
Detection

We then propose a boundary detection model to
detect the boundary of the sensory word. Therefore,
we reformulate sensory word extraction as the task
of identifying start and end indices of the sensory
word (Hu et al., 2019; Wang et al., 2019).

Given a sequence HE from text representation,
we apply two separate FFNN to create differ-
ent representations (hs/he) for the start/end of the
spans. We introduce a sigmoid to produce the prob-
ability of each token being selected as the start/end

of scope:

Ss(i) = sigmoid(hs(i)Ws) (1)

Se(i) = sigmoid(he(i)We) (2)

where Ws and We are model parameters; Ss(i) and
Se(i) are the outputs of the sensory word extraction
model, which are used to predict the start and end
offsets of the boundary of the sensory word.

5.3 Joint Sensory Modality Detection

Given the sensory word, we propose a joint model
to detect the original and synesthetic sensory
modalities of the sensory word jointly.

After obtaining the hidden representation HD,
we use a multi-layer perceptron to predict the origi-
nal and synesthetic sensory modalities as follow:

HP = σ(W h
p HD +Bh

p ), (3)

HP is used as inputs to a softmax output layer:

PO = softmax(WOHP +BO) (4)

PS = softmax(WSHP +BS) (5)

Here, W , B are model parameters, PO and PS are
used to detect the original and synesthetic sensory
modalities respectively.

5.4 Training

We train the sensory modality classification with
sensory word extraction in a unified architecture.

Loss of sensory word extraction. To train the
sensory word extraction model, we minimize the
negative log-likelihood loss, and parameters are
updated during the training process. In particular,
the loss is the sum of two parts: the start token loss
and end token loss,

LS = −
∑
i

ysi log(p
s
i )−

∑
i

yei log(p
e
i ) (6)

where ys and ye are the ground truth start
and end positions for the sensory word extraction
model.

Loss of sensory modality detection. Our train-
ing objective of sensory modality classification is to
minimize the cross-entropy loss over a set of train-
ing examples (di, yi)|Ni=1, with a ℓ2-regularization
term,
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Method Original Synesthetic
Touch Taste Vision Hearing Smell W. F1 Touch Taste Vision Hearing Smell W. F1

SR-BiLSTM 70.8 1.5 57.2 0.0 0.0 42.5 56.1 0.0 37.1 20.1 0.0 30.3
E2ELSTM 36.3 43.0 46.0 1.4 0.0 41.1 34.9 48.2 43.4 41.9 0.0 40.2
PF-BERT 68.2 91.9 76.7 16.7 0.0 77.7 63.5 88.5 78.7 87.8 59.7 77.2
MelBERT 67.5 87.4 70.7 66.7 0.0 74.3 57.4 74.7 73.5 85.1 35.7 73.5
MrBERT 66.4 83.9 75.6 0.0 0.0 74.1 64.5 87.2 76.0 90.2 0.0 74.4
Ours 68.8 89.1 79.4 88.9 68.9 79.5 68.2 88.5 80.7 90.4 75.3 80.1

Table 4: The results of synesthesia detection. W. F1 (Weighted F1) is calculated by taking the mean of all per-class
F1 scores while considering each class’s support.

Method F1-score
BiLSTM+CRF 68.9
E2ELSTM 70.4
BERT+CRF 75.8
BERT+MRC 76.5
MelBERT 77.2
Ours 79.0

Table 5: The results of sensory word extraction.

LP = −
N∑
i=1

K∑
j=1

yi log ŷi +
λ

2
||θy||2 (7)

where yi is the pre-defined label, ŷi is the pre-
dicted label, θy is the set of model parameters and
λ is a parameter for ℓ2-regularization.

Therefore, the final loss is,

L = λ1LS + λ2LP (8)

where λ1 and λ2 are the trainable weight parame-
ters, and λ1 + λ2 = 1.

6 Experiments

In this section, we carry out various experiments
to investigate the effectiveness of the proposed
method on the synesthesia detection task. In addi-
tion, we empirically compare the proposed model
and the selected baselines.

6.1 Setting
We evaluate our proposed model on the Chinese
synesthesia dataset. There are already 7,217 synes-
thetic sentences in the dataset. We add another
7,217 non-synesthetic sentences (i.e., original and
synesthetic sensory modalities are the same) from
the Sinica corpus into the dataset. The non-
synesthetic sentences are used as the negative sam-
ples in synesthesia detection. We then split the
dataset into training set (80%), test set (10%) and
validation set (10%). Note that, these sets are sep-
arated by sensory words, which means that the

sensory words among different sets are totally dif-
ferent.

For LSTM-based baselines, we use the
50-dimensional character embeddings, which
are pretrained on Chinese Giga-Word using
word2vec (Mikolov et al., 2013). The dimension-
ality of LSTM hidden states is set to 128, and the
initial learning rate is set to 1e-3. We train the
models using 100 epochs with a batch size of 32.

We use the BERT2 and fine-tune its parameters
during training in this work. The model’s parame-
ters are optimized by Adam (Kingma and Ba, 2015)
with a learning rate of 1e-5. The batch size is 32,
and a dropout probability of 0.2 is used.

All experiments are conducted on an NVIDIA
GeForce RTX 1080 Ti (11 GB of memory). We
use F1-score as the evaluation metric for sensory
word extraction, and weighted F1-score (Manning
and Schütze, 1999) as the evaluation metric for
synesthesia detection.

6.2 Main Results

Results of Sensory Word Extraction
We firstly analyze the effect of our proposed
model on sensory word extraction with various
sequence labeling baselines, where BiLSTM+CRF
and BERT+CRF have been mentioned in Sec-
tion 4.1, and BERT+MRC treats the sensory word
extraction as a BERT-based boundary detection
model (Hu et al., 2019; Wang et al., 2019). In
addition, MelBERT (Su et al., 2020) is state-of-the-
art model in metaphor detection model with target
word extraction, and E2ELSTM (Gao et al., 2018)
is a BiLSTM based end-to-end neural model for
detecting metaphoricity of each word used in con-
text. We adopt them for sensory word extraction
and synesthesia detection.

From the results in Table 5, we can see that: 1)
BERT+CRF outperforms the LSTM-based meth-

2BERT Base Chinese: https://huggingface.co/
bert-base-chinese
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Task Text Baseline Ours

Sensory Word Extraction
他虽然非常英俊，可是却扮成冷冰冰的。 英俊 冷冰冰

Although he is very handsome, handsome icy cold
he always looks icy cold. % "

Original Sensory Detection
采草莓要以个头大、外表鲜美为优先。 Vision TasteBig strawberry with a fresh and delicious appearance

should be a priority for strawberries picking. % "

Synesthetic Sensory Detection
这个著名演奏家的演奏特点是音色明亮。 Vision HearingOne characteristic of the famous music performer

is the bright timbre. % "

Table 6: The examples of case study. Sensory words are displayed in bold or underlined. False predictions are
marked with % while true predictions are marked with ".

ods, which shows the effectiveness of BERT for
learning the representation of the sentence. 2) Com-
pared with BERT+CRF, BERT+MRC gets a better
performance, which shows that the boundary detec-
tion based model is more effective than the tradi-
tional sequence labeling model. 3) Our proposed
model outperforms other baseline models signif-
icantly (p < 0.05). It indicates that both radical
and boundary detection are significant for sensory
word extraction.

Results of Synesthesia Detection
Additional, we compare the proposed synesthesia
detection model with several classification base-
lines models in Table 4, where SR-BiLSTM and
PF-BERT have been mentioned in Section 4.2, Mr-
BERT (Song et al., 2021) is a state-of-the-art model
in metaphor detection, we adopt it for synesthesia
detection. Note that we give results of all synes-
thesia detection models based on the gold sensory
words.

From the results in Table 4, we find that: 1) it
is hard for models to predict the hearing and smell
sensory modalities, since the training data is lim-
ited (< 50). 2) The performance of the synesthetic
sensory detection surpasses the original sensory
detection largely. It may be due to that the original
sensory modality relies more on the sensory word,
and the synesthetic sensory modality may be in-
ferred from both the sensory word and the context.
3) Our proposed model outperforms other baseline
models significantly (p < 0.05), and reaches ac-
ceptable results in all the sensory modalities. The
performance indicates that both radical and joint
learning are crucial in synesthesia detection.

6.3 Impact of Different Factors
We then analyze the influence of different factors
of the proposed model. As shown in Table 7, we
employ BERT+MRC and PF-BERT as baseline

Method Extraction Detection
Original Synesthetic

Baseline 76.5 77.7 77.2
+Radical 79.0 79.3 78.2
+Joint - 78.2 78.7

Ours 79.0 79.5 80.1

Table 7: Impact of different factors with weighted F1-
score.

models for two sub-tasks respectively. In addition,
“+Radical” employs radical for text representation,
and “+Joint” detects the original and synesthetic
sensory modalities jointly.

From the table, we can find that radical infor-
mation is very important for learning the repre-
sentation of Chinese text, since a radical is often
related to a certain concept and sensory modality.
In addition, the joint model is very effective for
both original and synesthetic sensory modalities
detection. It may be due to that there is a strong as-
sociation between original and synesthetic sensory
modalities. Furthermore, we find that our proposed
model, which employs radical information for text
representation and detects the original and synes-
thetic sensory modalities jointly, achieves the best
performance.

6.4 Case Study
We give case studies in Table 6, and we choose
three examples to illustrate the effect of the pro-
posed model compared with baselines. In particu-
lar, we choose BERT+MRC and PF-BERT as base-
line models for two sub-tasks respectively.

The first example is about boundary detection of
the sensory word. The radicals of the characters
in “冷冰冰” (icy cold) are the same ‘冫’, which
represents ‘ice’ and expresses the tactile sensory
modality in Chinese. With the help of radical fea-
tures, the proposed model can extract this tactile
word “冷冰冰” more accurately than the baseline
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model.
The second example is about the effect of the

radical features. The radical fish (‘鱼’ of ‘鲜’) and
the radical sheep (‘羊’ of ‘美’) are both classic
Chinese food. Therefore, these radical features
are very important for the proposed model to pre-
dict the original sensory modality of “鲜美” (fresh
and delicious). The last example is about the as-
sociation between the original and synesthetic sen-
sory modalities. The sensory word “明亮” (bright)
is clearly a visual adjective, and is often used to
express the auditory sensory modality. Based on
learning the association between the original and
synesthetic sensory modalities, the proposed model
produces a more precise prediction of the synes-
thetic sensory modality than the baseline model.

7 Conclusion

In this paper, we define a new task called Chinese
synesthesia detection. In particular, we construct a
large-scale manually annotated Chinese synesthe-
sia dataset. Based on this dataset, we establish a
family of baseline models. Furthermore, we pro-
pose a radical-based neural network model to iden-
tify the boundary of the sensory word, and to de-
tect the original and synesthetic sensory modalities
jointly. Through extensive experiments, we verify
the importance of the new task and the Chinese
synesthesia dataset. In addition, we observe that
our proposed model yields state-of-the-art results
on the synesthesia dataset.
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