
Findings of the Association for Computational Linguistics: ACL 2022, pages 3276 - 3290
May 22-27, 2022 c©2022 Association for Computational Linguistics

Bridging Pre-trained Language Models and Hand-crafted Features
for Unsupervised POS Tagging

Houquan Zhou, Yang Li∗, Zhenghua LiB, Min Zhang
Institute of Artificial Intelligence, School of Computer Science and Technology,

Soochow University, China
{hqzhou,ylinlp}@stu.suda.edu.cn; {zhli13,minzhang}@suda.edu.cn

Abstract

In recent years, large-scale pre-trained lan-
guage models (PLMs) have made extraordi-
nary progress in most NLP tasks. But, in the
unsupervised POS tagging task, works utiliz-
ing PLMs are few and fail to achieve state-
of-the-art (SOTA) performance. The recent
SOTA performance is yielded by a Guassian
HMM variant proposed by He et al. (2018).
However, as a generative model, HMM makes
very strong independence assumptions, mak-
ing it very challenging to incorporate contex-
ualized word representations from PLMs. In
this work, we for the first time propose a
neural conditional random field autoencoder
(CRF-AE) model for unsupervised POS tag-
ging. The discriminative encoder of CRF-AE
can straightforwardly incorporate PLM word
representations. Moreover, inspired by feature-
rich HMM, we reintroduce hand-crafted fea-
tures into the decoder of CRF-AE. Finally, ex-
periments clearly show that our model outper-
forms previous state-of-the-art models by a
large margin on Penn Treebank and multilin-
gual Universal Dependencies treebank v2.0.

1 Introduction

Unsupervised learning has been an important yet
challenging research direction in NLP (Klein and
Manning, 2004; Liang et al., 2006; Seginer, 2007).
Training models directly from unlabeled data can
relieve painful data annotation and is thus espe-
cially attractive for low-resource languages (He
et al., 2018). As three typical tasks related to syn-
tactic analysis, unsupervised part-of-speech (POS)
tagging (or induction), dependency parsing, and
constituency parsing have attracted intensive in-
terest during the past three decades (Pereira and
Schabes, 1992; Christodoulopoulos et al., 2010, in-
ter alia). Compared with tree-structure dependency
and constituency parsing, POS tagging corresponds

∗ Houquan and Yang make equal contributions to this
work. Zhenghua is the corresponding author.

I looked at my watch .

PRP VBD IN PRP$ NN .

Figure 1: Example of POS tagging.

to simpler sequential structure, and aims to assign a
POS tag to each word, as depicted in Figure 1. Be-
sides the alleviation of labeled data, unsupervised
POS tagging is particularly valuable for child lan-
guage acquisition study because every child man-
ages to induce syntactic categories without access
to labeled data (Yuret et al., 2014).

Nowadays, supervised POS tagging models
trained on large-scale labeled data can already
achieve extremely high accuracy, for example over
97.5% on English Penn Treebank (PTB) texts
(Huang et al., 2015; Bohnet et al., 2018; Zhou
et al., 2020). However, unsupervised POS tagging,
though having attracted a lot of research interest
(Lin et al., 2015; Tran et al., 2016; He et al., 2018;
Stratos, 2019; Gupta et al., 2020), can only achieve
at most 80.8% many-to-one (M-1) accuracy, where
M-1 means multiple induced tags can be mapped
to a single ground-truth tag when evaluating the
model on the test data.

The generative Hidden Markov Models (HMMs)
are the most representative and successful approach
for unsupervised POS tagging (Merialdo, 1994;
Graça et al., 2009). By treating POS tags as la-
tent variables, a first-order HMM factorizes the
joint probability of a sentence and a tag sequence
p(x,y) into independent emission probabilities
p(xi ∣ yi) and transition probabilities p(yi−1 ∣ yi).
The training objective is to maximize the marginal
probability p(x), which can be solved by the EM
algorithm or direct gradient descent (Salakhutdinov
et al., 2003). Berg-Kirkpatrick et al. (2010) pro-
pose a feature-rich HMM (FHMM), which further
parameterizes p(xi ∣ yi) with many hand-crafted

3276

morphological features, greatly boosting M-1 accu-
racy to 75.5 from 63.1 of the basic HMM.

In the DL era, researchers have paid a lot of atten-
tion to HMMs for unsupervised POS tagging. Lin
et al. (2015) propose a Gaussian HMM (GHMM),
where p(xi ∣ yi) corresponds to the probability of
the pre-trained word embedding (fixed during train-
ing) of xi against the Gaussian distribution of yi.
Tran et al. (2016) propose a neural HMM model
(NHMM), where p(xi ∣ yi) and p(yi−1 ∣ yi) are
all computed via neural networks with POS tag
and word embeddings as inputs. He et al. (2018)
extend the Gaussian HMM of Lin et al. (2015) by
introducing an invertible neural projection (INP)
component for the pre-trained word embeddings,
which has a similar effect of tuning word embed-
dings during training. Their INP Gaussian HMM
(INP-GHMM) approach achieves state-of-the-art
(SOTA) M-1 accuracy (80.8) on PTB so far.

The major weakness of HMMs is the strong
independence assumption in emission probabili-
ties p(xi ∣ yi), which directly hinders the use of
contextualized word representations from power-
ful pre-trained language models (PLMs) such as
ELMo/BERT (Peters et al., 2018; Devlin et al.,
2019). It is a pity since PLMs are able to greatly
boost performance of many NLP tasks.

In this work, we for the first time propose a
neural conditional random field autoencoder (CRF-
AE) model for unsupervised POS tagging, in-
spired by Ammar et al. (2014) who propose a
non-neural CRF-AE model. In the discrimina-
tive encoder of CRF-AE, we straightforwardly in-
corporate ELMo word representations. Moreover,
inspired by feature-rich HMM (Berg-Kirkpatrick
et al., 2010), we reintroduce hand-crafted features
into the decoder of CRF-AE. In summary, this work
makes the following contributions:
● We for the first time propose a neural CRF-AE

model for unsupervised POS tagging.
● We successfully bridge PLMs and hand-crafted

features in our CRF-AE model.
● Our model achieves new SOTA M-1 accuracy

of 83.21 on the 45-tag English PTB data and
outperforms the previous best result by 2.41.

● After a few straightforward adjustments, our
model achieves new SOTA M-1 accuracy on the
12-tag multilingual Universal Dependencies tree-
bank v2.0 (UD), surpassing the previous best
results by 4.97 on average.

We release our code at https://github.c

x

y1 y2 y3 . . . yn

x1 x2 x3 . . . xn

Figure 2: Illustration of CRF-AE.

om/Jacob-Zhou/FeatureCRFAE, including
our re-implemented HMM and FHMM models.

2 Vanilla CRF-AE

In this work, we adopt the CRF-AE approach as our
basic model for unsupervised POS tagging. The
non-neural CRF-AE model is first proposed by Am-
mar et al. (2014) for unsupervised sequence label-
ing tasks, inspired by neural network autoencoders.
Cai et al. (2017) also extend the idea to non-neural
unsupervised dependency parsing. The basic idea
is first producing latent structures, i.e., POS tag
sequences, with a discriminative CRF over the ob-
served sentence, and then reconstructing the origi-
nal sentence given each latent structure. The two
steps correspond to the encoder and the decoder
respectively.

Training loss. We denote a sentence as x =

x1, x2,⋯, xi,⋯, xn, and a POS tag sequence as
y = y1, y2,⋯, yi,⋯, yn. Given an unlabeled dataset
D which does not contain any POS tag sequences,
the training loss is:

L(D;φ,θ) = − ∑
x∈D

logEy∼p(y∣x;φ)p(x ∣ y;θ)

+ λ (∥φ∥
2
2 + ∥θ∥22) , (1)

where p(y ∣ x;φ) is the CRF encoder; p(x ∣ y;θ)
is the decoder; φ and θ are model parameters.

This training loss encourages the model to meet
the intuition that a high-probability POS sequence
should also permit reconstruction of the sentence
with a high probability.

Ammar et al. (2014) adopt the Expectation-
Maximization (EM) algorithm for training. In this
work, we directly compute the training loss via the
Forward algorithm. Then, we employ the power-
ful AutoGrad function of deep learning to compute
the gradient of each parameter. Our preliminary
experiments on HMM and feature-rich HMM show
that this gradient-based approach is consistently
superior to EM in both efficiency and performance.

3277

https://github.com/Jacob-Zhou/FeatureCRFAE
https://github.com/Jacob-Zhou/FeatureCRFAE

Inference. During evaluation, we follow Am-
mar et al. (2014) and use both the CRF and the
reconstruction probabilities to obtain the optimal
tag sequence:

y∗ = argmax
y

p(y ∣ x;φ)p(x ∣ y;θ), (2)

which can be solved by the Viterbi algorithm.
CRF Encoder: p(y ∣ x;φ). As a discrimina-

tive log-linear model, the CRF encoder defines a
conditional probability:

p(y ∣ x;φ) =
exp (S(x,y;φ))

Z(x;φ) ≡ ∑y exp(S(x,y;φ))
,

(3)

where Z(x) is the partition function, also known
as the normalization term.

The score of y given x is decomposed into bi-
gram scores:

S(x,y;φ) =
n

∑
i=1
s (x, yi−1, yi;φ). (4)

Ammar et al. (2014) use hand-crafted discrete
features to obtain bigram scores.

s (x, yi−1, yi;φ) = φ⊺g(x, yi−1, yi, i). (5)

Decoder: p(x ∣ y;θ). The decoder computes
the reconstruction probability of x given a POS tag
sequence y, which is factorized into position-wise
generation probabilities based on a strong indepen-
dence assumption.

p(x ∣ y;θ) =
n

∏
i=1
p(xi ∣ yi;θ). (6)

Ammar et al. (2014) use a categorical distribution
matrix θ, which is updated via EM training, to
maintain all generation probabilities p(xi ∣ yi), i.e.,
a word xi generated by a tag yi.

3 Proposed Approach

In this work, we for the first time propose a neu-
ral CRF-AE and leverage PLM representations
and hand-crafted features for unsupervised POS
tagging.

3.1 CRF Encoder w/ PLM Representations
As discussed in §2, the CRF-AE framework con-
sists of two major components, i.e., the CRF en-
coder and the decoder for sentence reconstruction.
We first introduce how to enhance the CRF encoder.

x1 x2 x3 . . . xn

Pre-trained Language Model

◂
◂

▸
▸

◂
◂

▸
▸

◂
◂

▸
▸

◂
◂

▸
▸

◂
◂

▸
▸

⊖ ⊖ ⊖ ⊖

⧖ ⧖ ⧖ ⧖ ⧖

y1 y2 y3 . . . yn

x1 x2 x3 . . . xn

p(x1∣y1;θ)

s (x, y1;φ)
t (y2, y3;φ)

Ð→r1

←Ðr1

Minus Op.

Bottleneck
MLP
m1

c1

Capitalized: 3
Capitalized: 3
Capitalized: 7

Capitalized: 7

. . .

. . .

. . .

. . .

y1 = NNP xi =Word: “October”
y1 = NNP xi =Word: “John”
y1 = NNP xi =Word: “75th”

y1 = NNP xi =Word: “two-tiered”
⋮

¬

Figure 3: Model architecture of proposed model. ¬ is
the “CRF encoder w/ ELMo representations” and is
the “reconstruction w/ hand-crafted features”.

The major challenge of the CRF encoder is how to
induce latent sequences more accurately via effec-
tive contextual representations. Like most works
before the DL era, Ammar et al. (2014) employ
manually designed features to represent contexts.

One of the major advances brought by DL is
the strong capability of contextual representation
via neural networks like LSTM and Transformer.
Furthermore, pre-trained language models, such as
ELMo and BERT, greatly amplify this advantage
and are shown to be able to substantially improve
performance for almost all NLP tasks.

However, few works have tried to utilize such
neural contextualized encoders for unsupervised
POS tagging, except Tran et al. (2016) and Gupta
et al. (2020). Most importantly, according to our
knowledge, there is no work so far that successfully
employ PLMs for unsupervised POS tagging.

In this work, we propose to employ the contex-
tual representations from PLM to enhance the CRF
encoder of the CRF-AE model. Here we use ELMo
(Peters et al., 2018) to illustrate our method, which
is the same for other PLMs like BERT.

ELMo outputs. The encoder of ELMo consists
of three layers (Peters et al., 2018). The bottom
layer computes context-free word representations
via word-wise character-level convolutional neural
networks. The top two layers, each with two unidi-

3278

rectional LSTMs (forward and backward), obtain
context-aware word representations by concatenat-
ing the forward and backward representations.

After feeding an input sentence into ELMo,
each word xi has three representation vectors, i.e.,
(h0

i ,h
1
i ,h

2
i), corresponding to three encoder layers

respectively. Following the standard practice, we
take the weighted arithmetic mean (ScalarMix)
of output vectors as the final contextualized word
representation ri for xi:

ri = γ
K−1
∑
k=0

ωkh
k
i , (7)

where ωk (0 ≤ k < K) are softmax-normalized
weights1 and K is the layer number; γ is the scale
factor of the entire contextualized word represen-
tation. In our final model, we only use h1

i and
h2
i , since including h0

i degrades performance (see
Table 2).

Minus operation. Apart from specific informa-
tion of the focused word xi, the contextualized
word representation ri from ELMo also contains
a lot of common contextual information shared by
neighbour words (Ethayarajh, 2019). Therefore,
inspired by previous works on constituent parsing
(Wang and Chang, 2016; Cross and Huang, 2016),
we adopt the minus operation for representations
as follows:

mi =

⎡
⎢
⎢
⎢
⎢
⎣

Ð→ri
←Ðri

⎤
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎣

Ð→ri−1
←Ðri+1

⎤
⎥
⎥
⎥
⎥
⎦

, (8)

where Ð→ri is the forward part of the final contextu-
alized word representation ri and ←Ðri is backward
one. mi is the word representation of xi after the
minus operation.

Bottleneck MLP. The ELMo adopts large di-
mensions d, i.e., 1024, to encode as much infor-
mation as possible. Representations from ELMo
contains syntax clues and even semantic ones be-
sides the information about the POS. Inspired by
supervised dependency parsing models (Dozat and
Manning, 2017; Li and Eisner, 2019), we adopt a
bottleneck MLP (MLP⧖), whose output vector has
a very low dimension. Because of the low dimen-
sion of the MLP output, redundant and irrelevant

1The weights are trained only in the second stage of our
training method.

Feature John 75th two-tiered

Word John 0th† UNK‡

Uni-gram Suffix n h d
Bi-gram Suffix hn th ed
Tri-gram Suffix ohn 0th red
Has Digit 7 3 7

Has Hyphen 7 7 3

Capitalized 3 7 7

Table 1: Feature templates for feature-rich reconstruc-
tion. †: before extracting features, we replace contin-
uous digits into a single “0” in each word. ‡: features
appeared less then 50 times in the training data are re-
placed with a special UNK feature.

information will be stripped away:

ci = MLP
⧖
(mi)

= LeakyReLU (W⧖
⋅ LayerNorm(mi) + b⧖) ,

(9)

where the bottleneck size d′ ≪ d is output dimen-
sions of the bottleneck projection weight W⧖ ∈

Rd×d′ and the bias b⧖ ∈ Rd′ .

Scorer. The definition of a POS tagging sequence
y given x is identical to equation 4. But the defini-
tion of bigram scores is different from the vanilla
CRF-AE. Here, a bigram score consists of two
parts: a unigram score s (x, yi;φ) estimated from
ELMo representations and a matrix-maintained
transition score t (yi−1, yi;φ).

s (x, yi−1, yi;φ) = s (x, yi;φ) + t (yi−1, yi;φ) .
(10)

Specifically, s (x, yi) is calculated as follows:

s (x, yi;φ) = LayerNorm(Ws
⋅ ci + bs

) [yi] ,
(11)

where Ws ∈ Rd′×∣Y ∣ is the projection weight of
scoring, bs ∈ R∣Y ∣ is the scoring bias, and Y is the
POS tag set. [yi] is the index selection operation.

3.2 Reconstruction w/ Hand-crafted Features
In Ammar et al. (2014), the reconstruction prob-
abilities are stored and updated as a matrix. The
conditional probability p(xi ∣ yi), i.e., generating
xi given yi, is modeled at the whole-word level.
This leads to the data sparseness problem. For rare
words, the probabilities are usually unreliable.

Therefore, we borrow the idea of feature-rich
HMM by Berg-Kirkpatrick et al. (2010). The idea

3279

is to utilize rich morphological information to learn
more reliable generation probability. For exam-
ple, suffixes usually provide strong clues to POS
categories. In this work, we adopt the feature tem-
plates proposed by Berg-Kirkpatrick et al. (2010),
as shown in Table 1.

With the hand-crafted features, we then parame-
terize tag-to-word emission probabilities as local
multinomials:

p(xi ∣ yi;θ) =
exp (θ ⋅ f (xi, yi))

∑x′∈V exp (θ ⋅ f (x′, yi))
(12)

where θ is the feature weight vector and V is the
vocabulary set.

4 Experiments on English PTB

4.1 Settings
Data. Following previous works on unsupervised
POS tagging, we conduct experiments on the Wall
Street Journal (WSJ) data from PTB, yet with two
distinct data settings.

(1) WSJ-All. Almost all previous works train
and evaluate their models on the entire WSJ data.
We report results on WSJ-All for comparison with
previous works. However, this data setting is very
unfriendly for selecting hyper-parameters, such
as stopping and best epoch numbers, M-1 map-
pings, learning rates, network dimensions, etc. It
is probable that some previous works make mod-
eling choices by directly looking at the evaluation
performance, since training loss (e.g., data likeli-
hood) is quite loosely correlated with performance.
Such details are usually omitted or only implicitly
discussed in previous works.

(2) WSJ-Split. We follow the practice in unsu-
pervised dependency parsing and divide the WSJ
dataset into train (sections 02-21), dev (section 22)
and test (section 23). We tune hyper-parameters
and study the contributions of individual model
components by referring to performance on WSJ-
Dev. Moreover, we determine the best many-to-one
mappings on WSJ-Dev, which are directly used
to compute many-to-one accuracy (M-1) on both
WSJ-Dev and WSJ-Test.

We strongly suggest that in future re-
searchers can adopt the WSJ-Split setting. First,
the WSJ-Split setting is more realistic because it
is able to evaluate a model’s generalization ability
with out-of-vocabulary words. Second, it is more
reasonable and fairer to use WSJ-dev to choose
hyper-parameters and it is usually feasible to man-
ually annotate a dev data, even if very small-scale.

Layer M-1 1-1 VM LL

0 79.98
±0.3

59.13
±3.4

73.06
±0.9

-73.06
±1.4

1 82.61
±0.8

63.03
±5.0

76.98
±1.2

-79.52
±0.8

2 82.45
±1.0

60.29
±3.2

76.27
±1.0

-83.35
±0.5

{0, 1, 2} 81.53
±0.3

64.03
±4.1

76.21
±0.7

-76.89
±0.4

{1, 2}⊕ 82.28
±1.3

63.54
±4.5

76.91
±1.3

-78.96
±0.4

{1, 2} 83.20
±0.7

65.17
±2.3

77.69
±0.7

-80.49
±0.5

Table 2: Results of utilizing different layers of the
ELMo on WSJ-Dev. ⊕ means directly concatenating
the representation vectors of different layers.

Evaluation metrics. Following previous works,
we mainly adopt many-to-one accuracy, and also
report one-to-one accuracy (1-1) and validity-
measure (VM) values for better comparison. To
reduce the effect of performance vibration, we fol-
low previous works, run each model for five times
with different seeds, and report the mean and stan-
dard deviation. Please see Appendix A for details.

Hyper-parameters. We set the number of pre-
dicted POS tags to 45 and the output dimensions
of MLP⧖ to 5. We train each model on the train-
ing data for at most 50 epochs, and select the best
epoch based on data log-likelihood (LL). Please see
Appendix B for full details of hyper-parameters.

Three-stage Training procedure. Unsuper-
vised models are very sensitive to parameter
initialization. Inspired by previous works (Han
et al., 2017; He et al., 2018), we adopt a three-step
progressive training procedure. 1) We train a
feature-rich HMM model from random initializa-
tion, and produce the 1-best prediction from it for
each training sentence. 2) The feature-rich HMM
model is used as a teacher to pre-train the CRF-AE
model. More concretely, we train the CRF encoder
on the pseudo-labeled training data in a supervised
fashion for 5 epochs; meanwhile we directly copy
the feature weights from the feature-rich HMM
model to the decoder of the CRF-AE model. 3) We
train our full CRF-AE model on unlabeled training
data with parameters obtained in the second step
as initialization.

4.2 Model Development on WSJ-Split

Using which ELMo layers. As mentioned
above, ELMo produces three representation vec-
tors for each word x, corresponding to its three

3280

encoder layers. Since the usefulness of information
contained in different ELMo layers is unknown for
our task at hand, we conduct experiments to study
which layers to use and how to use them. Table 2
shows the results. When using single-layer repre-
sentations, it is obvious that using one of the top
two layers (1/2) is superior to using the bottom 0-th
layer2. This is in line with our expectation con-
sidering that the 0-th layer corresponds to context-
independent word type embeddings. The first layer
is superior to the second one, which is consistent
with Peters et al. (2018), who also conclude that the
information contained by the first layer are more
suitable for POS tagging than the second layer.

Then we try to combine multiple layers by using
aforementioned ScalarMix in Equation 7. It is
clear that using the top two contextualized layers
({1, 2}) achieves best performance. We find that
the weight contribution of layer 1 and 2 is about
92% vs. 8%, confirming again that the first con-
textualized layer provides the majority of syntactic
information, while the second layer is more con-
cerned with high-level semantics. We can also see
that replacing ScalarMix with simple concate-
nation leads to large performance drop.

Comparing M-1, 1-1, VM, and LL, we can
see that M-1, 1-1 and VM are highly correlated,
whereas LL is quite loosely correlated with model
performance, suggesting that training loss can-
not be used for selecting models or tuning hyper-
parameters.

In the following, we try to understand the con-
tribution of different components by removing
one from the full CRF-AE model at a time. Table
3 shows the results.

Usefulness of hand-crafted features. In order
to measure the effectiveness of hand-crafted fea-
tures in the reconstruction part, we revert to the
vanilla matrix-maintained version. We can see that
rich hand-crafted features are critical and not using
them leads to the largest performance drop.

Usefulness of PLMs. We first replace pre-
trained ELMo with a conventional three-layer BiL-
STM encoder that is trained from scratch. We use
pre-trained word embeddings of He et al. (2018)
as encoder inputs. As expected, performance also
declines a lot. It shows that ELMo does provide

2Minus operations do not apply to vectors at the 0-th layer,
i.e., context-independent word type embeddings, which are
directly used as mi.

Model M-1 1-1 VM

Full CRF-AE 83.20
±0.7

65.17
±2.3

77.69
±0.7

w/o Features 76.74
±1.4

61.34
±3.5

73.55
±1.0

w/o PLM Repr. 78.40
±0.9

61.31
±4.9

72.55
±1.6

w/o Minus Op. 81.28
±1.5

63.07
±2.8

76.04
±1.1

w/o 3-stage Train 80.21
±3.4

59.50
±2.9

75.70
±1.2

ELMo → BERT 82.30
±1.0

62.78
±5.8

76.13
±1.6

Table 3: The contribution of different components on
WSJ-Dev by removing one component at a time.

very useful information. We have also tried to
replace ELMo with BERT without much hyper-
parameter tuning, as shown in the bottom row, but
found that the performance decreases. The results
are similar on the multilingual UD data in Table 6.
We suspect the reasons are two-fold. First, we did
not carefully tune the hyper-parameters for using
BERT due to time and resource limitation. Second,
we suspect the ELMo word representations suffice
and are even more suitable for unsupervised POS
tagging. The POS tag of a word usually heavily
depends on neighboring words within a small win-
dow, which makes the BiLSTM encoder superior to
Transformer. The latter is more powerful to capture
long-distance dependencies.

Usefulness of minus operation. Besides the mi-
nus operation in Equation 8, the default choice is
directly using the ELMo output, i.e., ri. As shown
in the fourth row, models without the minus opera-
tion are inferior to the models with the minus oper-
ation. We believe it is because the original ELMo
representations have a lot of common contextual
information shared by neighbour words, and the
minus operation can remove them.

Usefulness of the three-stage training proce-
dure. To find out the effect of our three-step pro-
gressive training procedure, we randomly initialize
model parameters. The result shows that the ran-
domly initialization decreases model performances
substantially. It proves that the three-stage training
procedure helps models find relatively good initial
parameters.

4.3 Results on WSJ-Test

We report results on WSJ-Test in Table 4 and
hope future researchers adopt the WSJ-Split setting.
Considering that INP-GHMM is the current SOTA

3281

Model M-1 1-1 VM

HMM (re-Impl.) 65.25
±2.0

47.62
±2.6

58.16
±1.0

FHMM (re-Impl.) 73.91
±1.0

59.13
±6.4

68.69
±2.5

INP-GHMM (re-Run) 76.10
±1.5

53.83
±3.2

72.19
±0.8

Ours 82.89
±0.7

65.32
±2.5

78.06
±0.8

Table 4: Results on WSJ-Test. We re-implement HMM
and Feature-rich HMM and re-run INP-GHMM.

model on English PTB, we re-run their open-source
code3 with default configuration on WSJ-Split. We
re-implement vanilla HMM and feature-rich HMM
of Berg-Kirkpatrick et al. (2010), and train them
with Adam algorithm via direct gradient descent.
Results show that our model is superior to the pre-
vious best one, and achieves current SOTA results.

4.4 Performance Comparison on WSJ-All
In order to compare with previous works, we report
results on WSJ-All in Table 5. We directly use all
hyper-parameters obtained from WSJ-Split.

We can see that our proposed model outper-
forms all previous works by large margin. The
INP-GHMM model (He et al., 2018) achieves the
previous best performance on WSJ-All. Our model
outperforms theirs by 2.41 and 3.54 on M-1 and
VM, respectively.

5 Experiments on Multilingual UD

5.1 Settings
Data. For more thorough comparison with previ-
ous works, we also report results4 on the Multilin-
gual Universal Dependencies treebank v2.0 (UD),
consisting of 10 languages (McDonald et al., 2013).
Similar to experiments on English PTB, we adopt
two settings for the UD data, i.e., UD-Split and UD-
All. For UD-Split, we adopt the default partition of
the UD data.

Hyper-parameters. We directly adopt most
hyper-parameters obtained for PTB with three im-
portant exceptions. First, The number of predicted
POS tags is changed to 12. Second, since the scale
of data for each language diverge a lot, we adjust
the feature cutoff threshold to be proportional to
the token number against English partition. For
example, the “de” data contains about 293k tokens,

3https://github.com/jxhe/struct-learning-with-flow
4We run each model for five times with different random

seeds.

Model M-1 1-1 VM

HMM (B’10) 63.1
±1.3 – –

FHMM (B’10) 75.5
±1.1 – –

FHMM (re-Impl.) 74.70
±2.2

60.88
±4.3

68.53
±2.1

Brown (C’10) 76.1 60.7 68.8

S-CODE (Y’12) 80.23
±0.7 – 72.07

±0.4

GHMM (L’15) 75.4
±1.0 – 68.5

±0.5

NHMM (T’16) 79.1 60.7 71.7

INP-GHMM (H’18) 80.8
±1.3 – 74.1

±0.7

MIM (S’19) 78.1
±0.8 – –

SyntDEC (G’20) 78.2
±0.9 – –

Ours 83.21
±1.2

65.78
±2.8

77.64
±0.5

Table 5: Results on WSJ-All. Here, B’10 is for Berg-
Kirkpatrick et al. (2010), C’10 for Christodoulopoulos
et al. (2010), Y’12 for Yatbaz et al. (2012), L’15 for
Lin et al. (2015), T’16 for Tran et al. (2016), H’18 for
He et al. (2018), S’19 for Stratos (2019), and, G’20 for
Gupta et al. (2020).

which is about 28% of that of “en” (1M), and there-
fore we set the threshold to 14 (28% × 50). Third,
we adjust the hand-crafted features to accommo-
date the 12-tag UD standard and characteristics of
different languages, detailed in the following.

Modifications on hand-crafted features. The
fine-grained 45-tag WSJ standard is greatly dif-
ferent from the coarse-grained 12-tag UD standard
adopted by the multilingual UD datasets (Petrov
et al., 2012). Therefore, we start from the features
of Berg-Kirkpatrick et al. (2010) in Table 1 as the
base, and make adjustments from two aspects.

(1) Adjustments for UD. We remove the “Cap-
italized” feature, which is originally purposed to
distinguish proper and common nouns which corre-
spond to a single UD tag. Moreover, we replace all
punctuation marks with a special “PUNCT” word
form, add a new feature template “is-Punctuation”,
as UD uses a single tag for punctuation marks.

(2) Adjustments for specific languages5. The
UD tag set doesn’t distinguish inflections such as
numbers, tenses, and genders. We find this can
be accommodated by customizing suffix uni/bi/tri-
gram features. We simply remove a certain number
of ending characters (related to inflectional affixes)

5We only adopt language-specific adjustments for “de”,
“en”, “es”, “fr”, “it” and “pt-br”.

3282

UD-Dev de∗ en∗ es∗ fr∗ id it∗ ja ko pt-br∗ sv Mean

Full CRF-AE 76.18
±4.0

80.30
±2.2

81.76
±1.0

82.56
±0.4

80.99
±0.5

80.32
±1.8

86.61
±1.1

73.00
±3.0

81.38
±2.2

74.93
±2.3 79.80

w/o Features 70.18
±1.2

73.64
±1.3

73.91
±6.0

72.51
±2.8

73.09
±2.3

68.18
±1.3

75.96
±3.8

63.36
±3.3

68.95
±6.0

65.81
±4.4 70.56

w/o UD Adjust. 73.94
±1.8

73.63
±4.0

77.95
±3.1

76.05
±3.1

76.57
±1.4

72.12
±4.7

82.19
±1.1

74.37
±3.2

74.47
±3.2

64.96
±3.3 74.62

w/o Language Adjust. 75.99
±1.2

78.97
±2.3

79.66
±2.1

79.60
±2.0 Ô 71.71

±6.5 Ô Ô 73.72
±1.9 Ô 77.52

w/o PLM Repr. 75.11
±2.7

76.50
±1.4

78.78
±0.9

82.16
±1.7

77.96
±1.5

70.54
±2.6

82.26
±1.0

65.47
±1.4

79.11
±2.6

68.94
±1.7 75.68

w/o 3-stage Training 77.52
±3.1

72.18
±3.6

74.70
±3.8

78.26
±3.2

78.62
±2.8

70.85
±2.2

83.93
±1.4

76.01
±2.7

77.26
±5.7

68.50
±5.5 75.78

ELMo → mBERT 75.96
±4.2

78.12
±1.3

79.67
±1.6

81.09
±0.7

80.13
±0.5

75.66
±3.0

86.92
±1.5

73.18
±3.1

80.69
±2.4

72.87
±2.8 78.43

UD-Test de en es fr id it ja ko pt-br sv Mean

HMM (re-Impl.) 60.13
±1.2

63.85
±2.4

64.68
±3.8

65.50
±4.5

66.23
±2.1

66.14
±1.8

60.02
±0.4

46.55
±0.6

57.65
±6.3

57.07
±5.1 60.78

FHMM (re-Impl.) 70.95
±2.7

75.58
±0.7

76.26
±1.2

77.33
±1.8

73.67
±1.0

74.73
±2.5

72.47
±0.5

63.77
±1.7

77.67
±2.1

67.99
±2.3 73.04

GHMM (re-Run) 81.95
±1.2

75.49
±1.5

78.92
±1.7

73.48
±7.4

76.09
±4.3

72.87
±4.5

75.41
±1.1

68.31
±1.7

74.84
±5.5

72.15
±3.6 74.95

INP-GHMM (re-Run) 82.79
±1.1

75.93
±1.5

79.61
±2.9

73.55
±7.2

76.92
±3.6

73.60
±4.8

76.32
±1.2

67.85
±2.3

75.43
±5.0

74.33
±3.5 75.63

Ours 77.46
±4.5

79.60
±2.2

80.46
±0.9

79.36
±0.6

80.77
±0.5

80.82
±2.2

79.93
±2.5

75.48
±3.1

81.23
±2.3

76.29
±2.0 79.14

Ours (GHMM Init.) 84.77
±2.2 – – – – – – – – – –

Table 6: M-1 accuracy on UD-Split. Upper Part: The contribution of different components on UD-Dev by
removing one component at a time. ∗ means adopting the language-specific suffix features for this language. “Ô”
means the result is identical to that of Full CRF-AE. Lower Part: Performance comparison on UD-Test.

for a word form before extracting suffix features.
We remove the last character for “it”, and the last
two characters for “de”. For “fr”, “es”, and “pt-br”,
we remove last two characters if the word ends with
“s”, and the last one otherwise. For “en”, we only
remove the last “s” letter if applicable.

5.2 Results on UD-Split

Table 6 shows the M-1 results. For 1-1 and VM-
results, please refer to Table 10 and Table 9 in the
Appendix.

We perform ablation study on UD-Dev. Most of
the results show the same trend as on WSJ-Dev. In
particular, we find that our two adjustment strate-
gies for the UD data are very helpful, and the UD
adjustment is more helpful. After observation, we
find that without UD-specific adjustments, punc-
tuation marks are more likely to be divided into
multiple tags. For example, models may assign
three different tags to periods, commas, and quo-
tation marks. Moreover, with the removal of the
“Capitalized” feature, which is one of the UD adjust-
ments, the models no longer distinguish common
and proper nouns and assign one tag to them.6

6However, we find that some models still divide nouns
into multiple tags by some unknown criteria.

Without language-specific adjustments, highly
inflected languages, e.g., Italian (it) and Brazilian
Portuguese (pt-br), are more likely to distinguish
words by their number or gender rather than part-of-
speech. For example, in English, models without
making language-specific adjustments will tend to
split nouns into two classes: single nouns and plural
nouns ending with “s”.

We report the M-1 results on UD-Test in Table 6.
We run our implemented vanilla HMM and feature-
rich HMM, and the latter adopt the same features
after UD and linguage adjustments. Unfortunately,
we are unable to re-run SyntDEC, the current SOTA
on UD-All, since its authors (Gupta et al., 2020)
have not yet released their code. We also re-run
INP-GHMM (He et al., 2018) with their released
code, which is the current SOTA on WSJ-All. We
take context-free word representations (0-th layer)
of ELMo as inputs of INP-GHMM, which should
be better than Skip-Gram embeddings. Please see
Appendix C for details of hyper-parameters.

Results show that our models achieve the high-
est M-1 accuracy on 9 out of 10 languages, except
“de”. After investigation on why our models fail
to outperform INP-GHMM on “de”, we find that
the direct reason is that INP-GHMM is initialized

3283

with GHMM, and the simple GHMM is already
more superior to our model. Therefore, we replace
FHMM with GHMM in the first stage of our train-
ing procedure. Results show that our models are
substantially improved in “de”. However, we still
do not understand the reason behind these results,
which we leave for future investigation due to time
limitation.

5.3 Performance Comparison on UD-All

To compare with previous works, we report results
on UD-All in Table 11 in the Appendix. For thor-
ough comparison, we also re-run GHMM and INP-
GHMM on UD-All. The results show identical
trends as those on UD-Split.

6 Related Works

Unsupervised POS tagging. In addition to
HMMs and the CRF-AE, other approaches for un-
supervised POS tagging are as follows.

(1) Clustering. The clustering approach, as a
mainstream unsupervised learning technique, is
also investigated for unsupervised POS tagging
Yatbaz et al. (2012); Yuret et al. (2014); Gupta et al.
(2020). All these works adopt the k-means algo-
rithm to divide word tokens into different groups.
The main difference among them is how to repre-
sent words. Yatbaz et al. (2012) propose to learn
context-free word embeddings by minimizing the
distance between each word and its substituted
words. Substituted words are selected according
to a n-gram language model. Yuret et al. (2014)
extend their previous work to produce context-
sensitive word embeddings. Gupta et al. (2020)
adopt a deep clustering approach that uses a feed-
forward neural network to transform word repre-
sentations from mBERT into a lower-dimension
clustering-friendly space. Transformation with re-
construction loss and clustering are jointly trained.
Unfortunately, all three works have not released
their source code.

(2) Mutual information maximization. The mu-
tual information maximization approach is pro-
posed by Stratos (2019). The idea is that we can
predict POS tags in two ways (using the words
themselves or their context), and predictions from
these two ways should agree as more as possible.

Utilizing PLMs for unsupervised tagging or
parsing. As discussed earlier, SyntDEC (Gupta
et al., 2020) is the only work that employs PLMs for

unsupervised POS tagging based on deep cluster-
ing. As for unsupervised parsing, Wu et al. (2020)
propose a perturbed masking technique to estimate
inter-word correlations and then induce syntax trees
from those correlations. Kim et al. (2020) extract
constituency trees from the PLMs through captur-
ing syntactical proximity between representations
of two adjacent words (or subwords). If the proxim-
ity is loose, then it is likely that the middle position
of the two words corresponds to some constituent
boundary. Cao et al. (2020) successfully exploit
PLMs for unsupervised constituency parsing based
on constituency test, achieving SOTA performance.

Utilizing CRF-AE. Cai et al. (2017) apply CRF-
AE to unsupervised dependency parsing. They use
the encoder to generate a most likely dependency
tree and then force the decoder to reconstruct the in-
put sentence from the tree. Zhang et al. (2017) pro-
pose a neural CRF-AE for semi-supervised learn-
ing on sequence labeling problems (including POS
tagging) and Jia et al. (2020) adopt a neural CRF-
AE for semi-supervised semantic parsing.

7 Conclusions

This work bridges PLMs and hand-crafted features
for unsupervised POS tagging. Based on the CRF-
AE framework, we employ powerful contextual-
ized representations from PLMs in the CRF en-
coder, and incorporate rich morphological features
for better reconstruction. Our proposed approach
achieves new SOTA on 45-tag English PTB and 12-
tag multilingual UD datasets, outperforming pre-
vious results by large margin. Experiments and
analysis show that rich features and PLM repre-
sentations are critical for the superior performance
of our model. Meanwhile, simple adjustments of
hand-crafted features are key for the success of our
model on languages other than English.

Acknowledgments

We thank the anonymous reviewers for the help-
ful comments. We are very grateful to Wei Jiang
for his early-stage exploration on unsupervised
POS tagging. We also thank Chen Gong, Yu
Zhang, Ying Li, Qingrong Xia, Yahui Liu, and
Tong Zhu for their help in paper writing and pol-
ishing. This work was supported by National
Natural Science Foundation of China (Grant No.
62176173, 61876116) and a Project Funded by the
Priority Academic Program Development (PAPD)
of Jiangsu Higher Education Institutions.

3284

References
Waleed Ammar, Chris Dyer, and Noah A. Smith. 2014.

Conditional random field autoencoders for unsuper-
vised structured prediction. In Proc. of NeurIPS,
pages 3311–3319.

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté,
John DeNero, and Dan Klein. 2010. Painless unsu-
pervised learning with features. In Proc. of NAACL-
HLT, pages 582–590, Los Angeles, California.

Bernd Bohnet, Ryan McDonald, Gonçalo Simões,
Daniel Andor, Emily Pitler, and Joshua Maynez.
2018. Morphosyntactic tagging with a meta-
BiLSTM model over context sensitive token encod-
ings. In Proc. of ACL, pages 2642–2652, Melbourne,
Australia.

Jiong Cai, Yong Jiang, and Kewei Tu. 2017. CRF au-
toencoder for unsupervised dependency parsing. In
Proc. of EMNLP, pages 1638–1643, Copenhagen,
Denmark.

Steven Cao, Nikita Kitaev, and Dan Klein. 2020. Unsu-
pervised parsing via constituency tests. In Proc. of
EMNLP, pages 4798–4808, Online.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proc. of CoNLL,
pages 55–64, Brussels, Belgium.

Christos Christodoulopoulos, Sharon Goldwater, and
Mark Steedman. 2010. Two decades of unsuper-
vised POS induction: How far have we come? In
Proc. of EMNLP, pages 575–584, Cambridge, MA.

James Cross and Liang Huang. 2016. Span-based
constituency parsing with a structure-label system
and provably optimal dynamic oracles. In Proc. of
EMNLP, pages 1–11, Austin, Texas.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proc. of NAACL-HLT, pages 4171–
4186, Minneapolis, Minnesota.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proc. of ICLR.

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proc. of EMNLP, pages 55–65, Hong Kong, China.

João Graça, Kuzman Ganchev, Ben Taskar, and Fer-
nando C. N. Pereira. 2009. Posterior vs parame-
ter sparsity in latent variable models. In Proc. of
NeurIPS, pages 664–672.

Vikram Gupta, Haoyue Shi, Kevin Gimpel, and Mrin-
maya Sachan. 2020. Clustering contextualized rep-
resentations of text for unsupervised syntax induc-
tion. ArXiv preprint, abs/2010.12784.

Wenjuan Han, Yong Jiang, and Kewei Tu. 2017. De-
pendency grammar induction with neural lexicaliza-
tion and big training data. In Proc. of EMNLP, pages
1683–1688, Copenhagen, Denmark.

Junxian He, Graham Neubig, and Taylor Berg-
Kirkpatrick. 2018. Unsupervised learning of syntac-
tic structure with invertible neural projections. In
Proc. of EMNLP, pages 1292–1302, Brussels, Bel-
gium.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
ArXiv preprint, abs/1508.01991.

Zixia Jia, Youmi Ma, Jiong Cai, and Kewei Tu. 2020.
Semi-supervised semantic dependency parsing us-
ing CRF autoencoders. In Proc. of ACL, pages
6795–6805, Online.

Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang-
goo Lee. 2020. Are pre-trained language models
aware of phrases? simple but strong baselines for
grammar induction. In Proc. of ICLR.

Dan Klein and Christopher Manning. 2004. Corpus-
based induction of syntactic structure: Models of de-
pendency and constituency. In Proc. of ACL, pages
478–485, Barcelona, Spain.

Xiang Lisa Li and Jason Eisner. 2019. Specializing
word embeddings (for parsing) by information bot-
tleneck. In Proc. of EMNLP, pages 2744–2754,
Hong Kong, China.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by agreement. In Proc. of NAACL-HLT, pages
104–111, New York City, USA.

Chu-Cheng Lin, Waleed Ammar, Chris Dyer, and Lori
Levin. 2015. Unsupervised POS induction with
word embeddings. In Proc. of NAACL-HLT, pages
1311–1316, Denver, Colorado.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuz-
man Ganchev, Keith Hall, Slav Petrov, Hao
Zhang, Oscar Täckström, Claudia Bedini, Núria
Bertomeu Castelló, and Jungmee Lee. 2013. Univer-
sal Dependency annotation for multilingual parsing.
In Proc. of ACL, pages 92–97, Sofia, Bulgaria.

Bernard Merialdo. 1994. Tagging English text with
a probabilistic model. Computational Linguistics,
20(2):155–171.

Fernando Pereira and Yves Schabes. 1992. Inside-
outside reestimation from partially bracketed cor-
pora. In Speech and Natural Language: Proceed-
ings of a Workshop Held at Harriman, New York,
February 23-26, 1992.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL-HLT, pages 2227–
2237, New Orleans, Louisiana.

3285

https://proceedings.neurips.cc/paper/2014/hash/b9f94c77652c9a76fc8a442748cd54bd-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/b9f94c77652c9a76fc8a442748cd54bd-Abstract.html
https://aclanthology.org/N10-1083
https://aclanthology.org/N10-1083
https://doi.org/10.18653/v1/P18-1246
https://doi.org/10.18653/v1/P18-1246
https://doi.org/10.18653/v1/P18-1246
https://doi.org/10.18653/v1/D17-1171
https://doi.org/10.18653/v1/D17-1171
https://doi.org/10.18653/v1/2020.emnlp-main.389
https://doi.org/10.18653/v1/2020.emnlp-main.389
https://doi.org/10.18653/v1/K18-2005
https://doi.org/10.18653/v1/K18-2005
https://doi.org/10.18653/v1/K18-2005
https://aclanthology.org/D10-1056
https://aclanthology.org/D10-1056
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://proceedings.neurips.cc/paper/2009/hash/8f1d43620bc6bb580df6e80b0dc05c48-Abstract.html
https://proceedings.neurips.cc/paper/2009/hash/8f1d43620bc6bb580df6e80b0dc05c48-Abstract.html
https://arxiv.org/abs/2010.12784
https://arxiv.org/abs/2010.12784
https://arxiv.org/abs/2010.12784
https://doi.org/10.18653/v1/D17-1176
https://doi.org/10.18653/v1/D17-1176
https://doi.org/10.18653/v1/D17-1176
https://doi.org/10.18653/v1/D18-1160
https://doi.org/10.18653/v1/D18-1160
https://arxiv.org/abs/1508.01991
https://arxiv.org/abs/1508.01991
https://doi.org/10.18653/v1/2020.acl-main.607
https://doi.org/10.18653/v1/2020.acl-main.607
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.18653/v1/D19-1276
https://doi.org/10.18653/v1/D19-1276
https://doi.org/10.18653/v1/D19-1276
https://aclanthology.org/N06-1014
https://aclanthology.org/N06-1014
https://doi.org/10.3115/v1/N15-1144
https://doi.org/10.3115/v1/N15-1144
https://aclanthology.org/P13-2017
https://aclanthology.org/P13-2017
https://aclanthology.org/J94-2001
https://aclanthology.org/J94-2001
https://aclanthology.org/H92-1024
https://aclanthology.org/H92-1024
https://aclanthology.org/H92-1024
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proc. of LREC,
pages 2089–2096, Istanbul, Turkey.

Andrew Rosenberg and Julia Hirschberg. 2007. V-
measure: A conditional entropy-based external clus-
ter evaluation measure. In Proc. of EMNLP, pages
410–420, Prague, Czech Republic.

Ruslan Salakhutdinov, Sam T. Roweis, and Zoubin
Ghahramani. 2003. Optimization with EM and
expectation-conjugate-gradient. In Proc. of ICML,
pages 672–679.

Yoav Seginer. 2007. Fast unsupervised incremental
parsing. In Proc. of ACL, pages 384–391, Prague,
Czech Republic.

Karl Stratos. 2019. Mutual information maximization
for simple and accurate part-of-speech induction. In
Proc. of NAACL-HLT, pages 1095–1104, Minneapo-
lis, Minnesota.

Karl Stratos, Michael Collins, and Daniel Hsu. 2016.
Unsupervised part-of-speech tagging with anchor
hidden Markov models. Transactions of the Asso-
ciation for Computational Linguistics, 4:245–257.

Ke M. Tran, Yonatan Bisk, Ashish Vaswani, Daniel
Marcu, and Kevin Knight. 2016. Unsupervised neu-
ral hidden Markov models. In Proc. of the Work-
shop on Structured Prediction for NLP, pages 63–71,
Austin, TX.

Wenhui Wang and Baobao Chang. 2016. Graph-based
dependency parsing with bidirectional LSTM. In
Proc. of ACL, pages 2306–2315, Berlin, Germany.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. 2020.
Perturbed masking: Parameter-free probing for an-
alyzing and interpreting BERT. In Proc. of ACL,
pages 4166–4176, Online.

Mehmet Ali Yatbaz, Enis Sert, and Deniz Yuret. 2012.
Learning syntactic categories using paradigmatic
representations of word context. In Proc. of EMNLP,
pages 940–951, Jeju Island, Korea.

Deniz Yuret, Mehmet Ali Yatbaz, and Enis Sert. 2014.
Unsupervised instance-based part of speech induc-
tion using probable substitutes. In Proc. of COLING,
pages 2303–2313, Dublin, Ireland.

Xiao Zhang, Yong Jiang, Hao Peng, Kewei Tu, and Dan
Goldwasser. 2017. Semi-supervised structured pre-
diction with neural CRF autoencoder. In Proc. of
EMNLP, pages 1701–1711, Copenhagen, Denmark.

Houquan Zhou, Yu Zhang, Zhenghua Li, and Min
Zhang. 2020. Is POS tagging necessary or even
helpful for neural dependency parsing? In Proc. of
NLPCC, pages 179–191.

A Details of Evaluation Metrics

The core issue of the unsupervised POS tagging
evaluation is that we can not directly compute the
tagging accuracy since the correspondence between
ground truth tags and predicted tag indexes (index-
to-tag mapping) is unknown and varies from model
to model. The different evaluation metrics handle
this issue in different way.

A.1 Many-to-One Accuracy (M-1)
M-1 is the most commonly used evaluation metric.
It addresses the problem of correspondence by as-
signing each predicted tag index j ∈ P to its most
frequent co-occurring ground truth tag gi ∈ G:

M-1(A) =∑
j

max
gi

Agi,j , (13)

where A ∈ Rn×n is contingency matrix and the ma-
trix item Agi,j is the number of words which are
annotated as a gi and predicted as a j by the model
to be evaluated. This metric, obviously, allows dif-
ferent predicted indexes to map to the same ground
truth tag7.

A.2 One-to-One Accuracy (1-1)
Different from M-1 that we allows a ground truth
tag gi corresponding to multiple predicted indexes,
1-1 only allows one predicted index can be assigned
to a ground truth tag, and vice versa. Calculating
1-1 is a typical assignment problem that finding a
optimal bijection function f ∶ P → G that maxi-
mums the correct matching count from all possible
bijection functions F :

1-1(A) =max
f∈F ∑j

Af(j),j . (14)

In this paper we solve this assignment problem
with the Hungarian algorithm8.

A.3 Validity-Measure (VM)
VM (Rosenberg and Hirschberg, 2007) is an
entropy-based measure, which do not require the
index-to-tag mapping and considers two criteria:
homogeneity h and completeness c. The homo-
geneity of a predicted index indicates the purity of
its co-occurring ground truth tags. The predicted
index j results the highest homogeneity when it

7In the WSJ-Split data setting, the index-to-tag mapping
of metrics for WSJ-Dev and WSJ-Test are both observed from
WSJ-Dev.

8https://en.wikipedia.org/wiki/Hungar
ian_algorithm

3286

http://www.lrec-conf.org/proceedings/lrec2012/pdf/274_Paper.pdf
https://aclanthology.org/D07-1043
https://aclanthology.org/D07-1043
https://aclanthology.org/D07-1043
http://www.aaai.org/Library/ICML/2003/icml03-088.php
http://www.aaai.org/Library/ICML/2003/icml03-088.php
https://aclanthology.org/P07-1049
https://aclanthology.org/P07-1049
https://doi.org/10.18653/v1/N19-1113
https://doi.org/10.18653/v1/N19-1113
https://doi.org/10.1162/tacl_a_00096
https://doi.org/10.1162/tacl_a_00096
https://doi.org/10.18653/v1/W16-5907
https://doi.org/10.18653/v1/W16-5907
https://doi.org/10.18653/v1/P16-1218
https://doi.org/10.18653/v1/P16-1218
https://doi.org/10.18653/v1/2020.acl-main.383
https://doi.org/10.18653/v1/2020.acl-main.383
https://aclanthology.org/D12-1086
https://aclanthology.org/D12-1086
https://aclanthology.org/C14-1217
https://aclanthology.org/C14-1217
https://doi.org/10.18653/v1/D17-1179
https://doi.org/10.18653/v1/D17-1179
https://doi.org/10.1007/978-3-030-60450-9_15
https://doi.org/10.1007/978-3-030-60450-9_15
https://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Hungarian_algorithm

only co-occur with gi, i.e., Agi,j = ∑gi′
Agi′ ,j , and

has a low homogeneity it appears with different
ground truth tags randomly. The homogeneity of
a model is the simply the sum of the homogeneity
of all index indicates. The completeness is sym-
metrical to homogeneity, merely exchanging the
position of predicted indexes and ground truth tags.
VM employs the conditional entropy to measure
the value of homogeneity and completeness:

H(G ∣ P,A) = −∑
j
∑
i

Agi,j

N
log

Agi,j

∑gi′
Agi′ ,j

,

(15)

H(P ∣ G,A) = −∑
i
∑
j

Agi,j

N
log

Agi,j

∑j′Agi,j′
,

(16)

where A ∈ Rn×n is contingency matrix and the
matrix item Agi,j is the number of words which
are annotated as a gi and predicted as a j.

To alleviate the impact of the size of the dataset
and the numbers of the POS class, the conditional
entropy is normalized by the entropy of ground
truth POS tag H(G,A) and H(P,A) for homo-
geneity and completeness, respectively:

h(A) = 1 −
H(G ∣ P,A)

H(G,A)
, (17)

c(A) = 1 −
H(P ∣ G,A)

H(P,A)
, (18)

where

H(G,A) = −∑
i

∑j Agi,j

N
log
∑j Agi,j

N
, (19)

H(P,A) = −∑
j

∑gi Agi,j

N
log
∑gi Agi,j

N
. (20)

Completeness is symmetrical to homogeneity,
merely exchanging G and P in the formulas.

In order to balance the significance between ho-
mogeneity and completeness, VM is defined as
the weighted harmonic mean of homogeneity and
completeness:

VM(A) =
(1 + β)h(A)c(A)

βh(A) + c(A)
, (21)

where β are set to 1 in experiments.

B Details of Hyper-parameters

B.1 Model
The number of predicted POS tags is 45 for
experiments on WSJ and 12 for Multilingual

experiments. The ELMo parameters we use for
experiments on WSJ are “Original (5.5B)”9

from AllenNLP. The parameters for Multilingual
are from “ELMoForManyLangs”10 (Che et al.,
2018). We use “bert-base-cased” (BERT)
and “bert-base-multilingual-cased”
(mBERT)11 for the ablation study of PLMs on
WSJ and UD respectively. We do not fine-tune
ELMo parameters. The dropout value is uniformly
set to 0.33, and the negative slope of the activation
function Leaky-ReLU is set to 1 × 10−2. The seeds
we selected for experiments are 0,1,2,3,4.

B.2 Feature

We set the feature cutoff threshold to 50, which
means that all features that appear in the training
data less than 50 times are replaced with a special
“UNK” feature.

B.3 Training

We use a mini-batch update strategy with a batch
size of 5000 words and optimize models with
Adam. The learning rate used in the training of the
FHMM in the first step is 0.5. The CRF encoder is
then trained on pseudo-labeled data for 5 epochs
with a learning rate of 2 × 10−3 in the subsequent
pre-training step. In the final step, the CRF encoder
has a learning rate of 1 × 10−2, and we set the re-
construction learning rate to 2× 10−1. Other hyper-
parameters are identical among all three steps in
training procedure, The β1 and β2 are both 0.9.
The learning rate decay is 0.75 per 45 epochs, the
gradient clipping value is 5, and the weight decay
value λ is 1 × 10−5.

C Details of Re-run INP-GHMM
Hyper-parameters

We use the word-wise character-level convolutional
layer (0-th layer) of ELMo to extract word embed-
dings. We use 8 coupling layers. To accelerate
the training of INP-GHMM, we increase the batch
sizes from 32 to 512 sentences. We also decrease
the learning rate from 1 × 10−3 to 5 × 10−4, as we
found that high learning rates lead to performance
decreases as training progresses.

9https://allennlp.org/elmo
10https://github.com/HIT-SCIR/ELMoForM

anyLangs
11https://github.com/google-research/b

ert

3287

https://allennlp.org/elmo
https://github.com/HIT-SCIR/ELMoForManyLangs
https://github.com/HIT-SCIR/ELMoForManyLangs
https://github.com/google-research/bert
https://github.com/google-research/bert

Gender Singular Plural Gloss

Adj.
M. rosso rossi

red
F. rossa rosse

Pron.
M. lo li him/
F. la le her/them

Noun
M. bambino bambini

boy/girl
F. bambina bambine

Table 7: Examples of inflections of Italian adjective,
pronoun, and noun. “M.” means the gender Masculine
and “F.” means Feminine.

Langs. Uni-gram Bi-gram Tri-gram

it
museo museo museo
musei musei musei

de
museum museum museum
museen museen museen

fr
musée musée musée
musées musées musées

es
museo museo museo
museos museos museos

pt-br
museu museu museu
museus museus museus

en
museum museum museum
museums museums museums

Table 8: Language-specific suffix features for the UD
datasets. The underlined characters represent ex-
tracted suffix features.

D Explanation of adjustments for
specific languages on UD

Most of European languages are inflected lan-
guages. Some words are inflected for number, gen-
der, tense, aspect and so on. For example in English
nouns are inflected for number (singular or plural);
verbs for tense. A major way to inflect words is
adding inflectional suffixes to the end of words,
e.g., English nouns inflected for number with suf-
fix “s” (“museum” → “museums”). Therefore, in
some languages suffixes is more closely related to
inflections than coarse-grained POS. For instance,
as shown in Table 7, the last letter of Italian words
is highly corresponding to gender and number, and
haves little connection to coarse-grained POS. In
this work, we simply remove a certain number of
ending characters for a word form before extracting
suffix features, as shown in Table 8.

3288

UD-Dev de∗ en∗ es∗ fr∗ id it∗ ja ko pt-br∗ sv Mean

Full CRF-AE 68.52
±2.1

68.64
±3.0

69.55
±1.9

70.30
±0.3

61.94
±0.8

69.77
±1.6

47.91
±1.4

36.61
±2.2

68.14
±2.5

66.99
±2.9 62.84

w/o Features 60.12
±1.3

61.11
±0.8

64.11
±4.0

64.28
±0.6

54.26
±2.5

60.40
±1.5

35.63
±3.1

24.29
±3.0

57.72
±3.5

59.98
±4.2 54.19

w/o UD Adjust. 64.30
±2.0

60.13
±2.7

66.68
±3.4

64.10
±4.0

56.45
±1.7

60.98
±3.2

42.05
±1.9

37.48
±2.4

60.64
±2.6

57.98
±1.9 57.08

w/o Language Adjust. 67.26
±1.5

67.85
±1.4

65.83
±2.5

66.63
±2.3 Ô 60.90

±6.9 Ô Ô 58.53
±1.8 Ô 60.05

w/o PLM Repr. 65.36
±1.9

64.28
±1.5

64.18
±1.6

67.76
±1.3

56.26
±1.3

61.64
±1.8

42.15
±1.4

26.29
±1.0

64.21
±2.6

58.27
±1.0 57.04

w/o 3-stage Training 69.37
±2.3

61.44
±3.8

65.31
±1.9

66.52
±2.8

61.02
±2.9

61.95
±1.4

44.78
±2.3

38.96
±1.9

66.11
±3.2

61.72
±4.2 59.72

ELMo → mBERT 67.54
±2.5

66.71
±1.6

66.74
±2.5

68.42
±0.7

60.55
±0.8

65.79
±2.0

48.39
±1.7

34.39
±2.1

66.45
±2.6

64.41
±1.3 60.94

UD-Dev de en es fr id it ja ko pt-br sv Mean

HMM (re-Impl.) 40.86
±1.1

45.01
±1.8

46.99
±2.2

50.24
±2.1

37.41
±1.8

47.68
±2.3

27.31
±1.0

8.32
±0.8

38.33
±4.2

41.77
±4.3 38.39

FHMM (re-Impl.) 58.25
±1.3

62.75
±1.7

60.37
±2.2

63.68
±1.2

49.32
±0.7

60.51
±1.1

34.09
±0.8

21.48
±1.7

60.47
±2.0

55.41
±1.0 52.63

GHMM (re-Run) 72.61
±1.5

61.34
±1.8

68.47
±3.2

62.46
±5.6

55.48
±4.5

62.90
±3.3

38.88
±0.9

30.00
±2.1

60.77
±4.1

62.42
±2.4 57.53

INP-GHMM (re-Run) 73.68
±0.8

61.72
±2.1

68.76
±3.5

62.69
±5.0

56.91
±3.1

64.27
±4.0

39.09
±1.0

30.91
±1.9

61.84
±4.0

65.16
±2.6 58.50

Ours 69.55
±2.2

67.97
±2.7

69.05
±1.9

69.05
±0.6

62.08
±0.5

70.42
±1.6

44.23
±1.7

39.50
±2.8

67.65
±2.3

68.36
±2.5 62.79

Ours (GHMM Init.) 76.17
±2.7 – – – – – – – – – –

Table 9: VM results on UD-Split. Upper Part: The contribution of different components on UD-Dev by removing
one component at a time. ∗ means adopting the language-specific suffix features for this language. “Ô” means the
result is identical to that of Full CRF-AE. Lower Part: Performance comparison on UD-Test.

UD-Dev de∗ en∗ es∗ fr∗ id it∗ ja ko pt-br∗ sv Mean

Full CRF-AE 66.86
±1.8

71.36
±5.4

58.69
±5.0

63.32
±3.0

60.03
±1.3

65.37
±0.6

43.01
±2.4

35.53
±2.0

64.13
±5.8

66.81
±6.2 59.51

w/o Features 57.43
±4.2

61.98
±3.5

59.52
±4.4

62.20
±0.7

52.29
±5.3

61.75
±5.9

36.50
±3.3

29.37
±3.9

52.35
±6.0

58.34
±6.2 53.17

w/o UD Adjust. 62.33
±3.3

58.76
±4.7

63.07
±5.9

58.29
±7.4

52.90
±3.8

59.74
±4.7

35.45
±2.7

38.84
±2.9

57.38
±2.8

57.80
±7.8 54.46

w/o Language Adjust. 63.24
±2.6

69.83
±4.5

55.61
±6.8

61.90
±3.6 Ô 54.91

±8.1 Ô Ô 50.37
±6.6 Ô 56.12

w/o PLM Repr. 64.68
±3.2

69.08
±3.0

55.64
±5.5

64.21
±1.5

53.96
±3.0

63.07
±3.7

40.92
±1.3

28.62
±1.5

61.52
±5.2

61.32
±4.1 56.30

w/o 3-stage Training 68.49
±3.4

62.57
±5.9

56.15
±5.8

61.02
±6.9

61.30
±6.4

56.33
±3.5

39.72
±2.5

38.30
±3.3

60.97
±5.5

59.09
±4.8 56.39

ELMo → mBERT 64.31
±3.9

70.74
±2.7

55.95
±4.9

62.59
±1.1

56.70
±2.4

60.43
±1.4

43.15
±2.0

33.71
±4.4

59.55
±5.0

66.29
±2.5 57.34

UD-Dev de en es fr id it ja ko pt-br sv Mean

HMM (re-Impl.) 42.06
±2.3

50.10
±1.9

50.48
±3.5

52.08
±2.4

36.70
±4.7

46.08
±2.1

28.98
±4.6

23.43
±1.3

38.35
±3.5

42.95
±4.5 41.12

FHMM (re-Impl.) 61.83
±3.3

68.62
±3.4

57.22
±6.4

62.36
±1.8

52.92
±1.8

62.24
±2.0

41.16
±1.9

28.49
±2.3

62.99
±4.2

61.17
±2.6 55.90

GHMM (re-Run) 67.81
±2.7

53.41
±4.0

61.81
±4.3

55.41
±6.2

45.46
±5.7

55.16
±4.8

37.95
±1.7

29.55
±4.8

53.52
±6.5

56.14
±6.0 51.62

INP-GHMM (re-Run) 68.33
±1.6

54.03
±4.4

61.63
±5.0

56.68
±5.0

46.39
±4.1

57.61
±5.3

38.38
±2.5

30.79
±3.8

53.42
±5.9

57.98
±6.5 52.52

Ours 67.55
±2.5

70.28
±5.2

59.82
±5.0

64.39
±2.3

60.01
±1.3

65.58
±0.7

41.07
±2.8

34.04
±3.1

63.39
±5.6

67.63
±6.2 59.38

Ours (GHMM Init.) 71.94
±4.0 – – – – – – – – – –

Table 10: 1-1 accuracy on UD-Split. Upper Part: The contribution of different components on UD-Dev by
removing one component at a time. ∗ means adopting the language-specific suffix features for this language. “Ô”
means the result is identical to that of Full CRF-AE. Lower Part: Performance comparison on UD-Test.

3289

Model de en es fr id it ja ko pt-br sv Mean

Brown (C’10) 60.0 62.9 67.4 66.4 59.3 66.1 60.3 47.5 67.4 61.9 61.9

FHMM (B’10) 67.5
±1.8

62.4
±3.5

67.1
±3.1

62.1
±4.5

61.3
±3.9

52.9
±2.9

78.2
±2.9

60.5
±3.6

63.2
±2.2

56.7
±2.5 63.2

AHMM (S’16) 63.4 71.4 74.3 71.9 67.3 60.2 69.4 61.8 65.8 61.0 66.7

MIM (S’19) 75.4
±1.5

73.1
±1.7

73.1
±1.0

70.4
±2.9

73.6
±1.5

67.4
±3.3

77.9
±0.4

65.6
±1.2

70.7
±2.3

67.1
±1.5 71.4

SyntDEC (G’20) 81.5
±1.8

76.5
±1.1

78.9
±1.9

70.7
±3.9

76.8
±1.1

71.7
±3.3

84.7
±1.2

69.7
±1.5

77.7
±2.1

68.8
±3.9 75.7

GHMM (re-Run) 82.16
±1.9

75.31
±2.1

80.27
±2.2

76.59
±3.7

76.52
±4.0

72.78
±5.8

79.81
±0.9

67.52
±2.0

74.99
±4.1

73.60
±2.9 75.96

INP-GHMM (re-Run) 83.48
±1.8

76.02
±1.4

81.68
±2.7

77.40
±3.4

77.72
±2.7

72.55
±5.5

79.41
±1.5

68.07
±1.8

75.27
±4.5

74.48
±3.1 76.61

Ours 82.41
±2.0

80.79
±1.1

82.65
±2.0

82.67
±0.6

81.09
±1.3

78.13
±1.6

85.52
±1.1

74.87
±2.7

79.67
±2.4

78.44
±3.5 80.67

Ours (GHMM Init.) 86.93
±1.2 – – – – – – – – – –

Table 11: M-1 accuracy on UD-All. C’10 is for Christodoulopoulos et al. (2010), B’10 for Berg-Kirkpatrick et al.
(2010), S’16 for Stratos et al. (2016), S’19 for Stratos (2019), and G’20 for Gupta et al. (2020).

3290

