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Abstract

Chinese Spell Checking (CSC) aims to de-
tect and correct Chinese spelling errors, which
are mainly caused by the phonological or vi-
sual similarity. Recently, pre-trained language
models (PLMs) promote the progress of CSC
task. However, there exists a gap between the
learned knowledge of PLMs and the goal of
CSC task. PLMs focus on the semantics in
text and tend to correct the erroneous char-
acters to semantically proper or commonly
used ones, but these aren’t the ground-truth
corrections. To address this issue, we pro-
pose an Error-driven COntrastive Probability
Optimization (ECOPO) framework for CSC
task. ECOPO refines the knowledge represen-
tations of PLMs, and guides the model to avoid
predicting these common characters through
an error-driven way. Particularly, ECOPO is
model-agnostic and it can be combined with
existing CSC methods to achieve better per-
formance. Extensive experiments and detailed
analyses on SIGHAN datasets demonstrate
that ECOPO is simple yet effective.

1 Introduction

Chinese Spell Checking (CSC) aims to detect and
correct spelling errors in Chinese texts (Wu et al.,
2013a). It is a crucial research field for various NLP
downstream applications, such as Optical Character
Recognition (Afli et al., 2016), search query cor-
rection (Gao et al., 2010) and essay scoring (Dong
and Zhang, 2016). However, CSC is also very
challenging because it mainly suffers from confus-
ing characters, such as phonologically and visually
similar characters (Liu et al., 2010; Zhang et al.,
2020). As illustrated in Figure 1, “素(sù, plain)”
and “诉(sù, sue)” are confusing characters for each
other due to the shared pronunciation “sù”.
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Phono-

logical

83%

Input 希望您帮我素 (plain) 取公平。
s ù

Correct 希望您帮我诉 (sue) 取公平。
s ù

Candidate 1 希望您帮我争 (fight) 取公平。
zhēng

Candidate 2 希望您帮我谋 (plan) 取公平。
móu

Candidate 3 希望您帮我获 (acquire) 取公平。
h u ò

Translation Hope you help me to sue and get justice.

Visual

48%


Input 我们为这个目标努力不解 (understand) 。 
j i ě

Correct 我们为这个目标努力不懈 (slack) 。 
x i è

Candidate 1 我们为这个目标努力不休 (rest) 。
x i ū

Candidate 2 我们为这个目标努力不断 (break) 。
duàn

Candidate 3 我们为这个目标努力不停 (stop) 。
t í n g

Translation We fight for this goal without slack.

Figure 1: Examples of Chinese spelling errors. Pre-
vious research (Liu et al., 2021) shows that 83%
of errors belong to phonological error and 48% be-
long to visual error. We give the characters with
their pronunciation and translation. We mark the in-
put confusing/golden/common candidate characters in
red/blue/orange. The characters in “Candidate” sen-
tences are all predicted by fine-tuned BERT.

Recently, pre-trained language models (PLMs)
such as BERT (Devlin et al., 2019) have been uti-
lized in the CSC task and became mainstream so-
lutions (Zhang et al., 2020; Cheng et al., 2020).
However, there exists a significant gap between the
learned knowledge of PLMs and the goal of CSC
task. PLMs provide informative representations
from the perspective of semantics, but if only con-
sidering the semantics in CSC, there are multiple
appropriate characters as the correction. Without
the constraints of phonological and visual similar-
ities, PLMs easily predict semantically proper or
common characters due to the masking strategy in
the pre-training procedure.

Figure 1 presents two predictions of BERT to bet-
ter understand the gap mentioned before. The first
example is caused by the misuse of “素(sù, plain)”
and “诉(sù, sue)”. An ideal CSC model should
pay attention to the pronunciation information “sù”
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and output the golden character “诉(sue)” as a cor-
rection for the input confusing character. How-
ever, as pre-trained on general corpora, BERT tend
to predict semantically proper characters, such as
“争(zhēng, fight)”, “谋(móu, plan)” and “获(huò,
acquire)”. These characters are also from more
commonly used phrases. In the second example,
BERT also overlooks the visual similarity between
“解(jiě, understand)” and “懈(xiè, slack)”, resulting
in wrong correction.

To alleviate this gap, we propose to empower
the PLMs to avoid predicting the above-mentioned
common characters by optimizing the knowledge
representation of PLMs. Intuitively, if we guide the
model to not make the same mistakes it would
prone to make before, the model performance
should be improved. Hence, the mistakes that the
model has ever made can be utilized as constraints
on the knowledge representation of the model. In
other words, we exploit the past mistakes that the
model may make to further enhance the model
itself, this is the meaning of our title, “the past
mistake is the future wisdom”.

Motivated by the above intuition, we propose the
Error-driven COntrastive Probability Optimization
(ECOPO), a simple yet effective training frame-
work which aims to refine the knowledge represen-
tation of models for CSC. The ECOPO consists of
two stages: (1) Negative samples selection. Based
on the model’s prediction probabilities for different
characters, we select the common characters with
high probability as negative samples. The golden
character is directly regard as the positive sample.
(2) Contrastive probability optimization. After ob-
taining the positive and negative samples, we train
the model by Contrastive Probability Optimization
(CPO) objective which aims to optimize the predic-
tion probabilities for different characters. Through
this optimization process, we can finally narrow the
gap between the pre-trained knowledge of PLMs
and the goal of CSC. Additionally, ECOPO has no
strict restrictions on the model to be optimized, so
it can further improve the performance of various
existing CSC models.

In summary, our contributions are in three folds:
(1) We firstly observe and focus on the nega-
tive impact of the gap between the knowledge of
PLMs and the goal of CSC. (2) We propose model-
agnostic ECOPO framework, which can teach the
models to grow and progress with their own past
mistakes. (3) We conduct extensive experiments

and detailed analyses on SIGHAN benchmarks and
achieve state-of-the-art performance.

2 Related Work

2.1 Chinese Spell Checking

Early works in CSC mainly focus on design-
ing heuristic rules to detect different kinds of er-
rors (Chang et al., 2015; Chu and Lin, 2015). Most
of these methods rely on solid linguistic knowledge
and manually designed features, and thus do not
have the generalization performance required for
large-scale application. Next, various traditional
machine learning algorithms, such as Conditional
Random Field (CRF) and Hidden Markov Model
(HMM), are applied in CSC (Wang and Liao, 2015;
Zhang et al., 2015). Then, deep learning-based
models have gradually become the mainstream of
CSC in recent years (Wang et al., 2021a; Guo et al.,
2021; Zhang et al., 2021).

Wang et al. (2018) utilize a BiLSTM trained
on an automatically generated dataset to convert
CSC to sequence labeling problem. Hong et al.
(2019) propose to generate and curtail the candidate
characters through a BERT-based denoising autoen-
coder. The Soft-Masked BERT model (Zhang et al.,
2020) uses two separate networks for detection and
correction. Then SpellGCN (Cheng et al., 2020)
uses GCN (Kipf and Welling, 2017) to fuse char-
acter embedding with similar pronunciation and
shape, explicitly modeling the relationship between
characters. PLOME (Liu et al., 2021) is proposed
to be a task-specific pre-trained language model for
CSC, which designs a confusion set based masking
strategy and introduces various external knowledge.
Additionally, REALISE (Xu et al., 2021) verifies
that the multimodal knowledge can be leveraged to
improve CSC performance.

2.2 Contrastive Learning

The main motivation of contrastive learning is to
attract the positive samples and repulse the nega-
tive samples in a certain space (Hadsell et al., 2006;
Chen et al., 2020; Khosla et al., 2020). Existing
contrastive learning models in NLP are mainly fo-
cusing on the language representation space (e.g,
word/sentence/semantic representations) (Iter et al.,
2020; Gao et al., 2021; Wang et al., 2021b). Dif-
ferent from them, our proposed method directly
optimizes the model’s probability space for differ-
ent characters through selected positive/negative
samples and their original predicted probability.
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… 经过磨练才能让自己

更加拙 (clumsy) 壮 …
zhuō

… 

…不经一番寒辙(rut)骨，
z h é

焉得梅花扑鼻香…

Input

… 

Input Sentences with  
Corresponding Correct Characters

茁 
zhuó

(strong) 

… 

Correct

… 

彻 
c h è

(bite) 

… through the grind to make 
ourselves clumsy (strong) …

… if not for the bone-rutting (biting) 
winter cold ,  

how can the plum blossom and its 
fragrance assail the nostrils? …

N

PLMs such as BERT

Classification layer 强

Prediction 
Probability  

ℒCPO
∂ℒCPO

∂θ
∂ℒCPO
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Propagation
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健

雄

瘦

寒

打

冬

冷

… 

… 
茁

… 
彻

… … 
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Existing 
Original 

Objective

Contrastive 
Optimization 

Objective

Top   K

Figure 2: Overview of ECOPO framework. We select negative samples according to the original prediction prob-
ability of PLMs (e.g, for the position of “拙”, PLMs predicts the Top 5 characters as “强”, “壮”, “粗”, “健”, and
“雄”.), then optimize the PLMs with the contrastive optimization objective and traditional original objective.

3 Methodology

In this section, we introduce the proposed ECOPO
in details, as illustrated in Figure 2. ECOPO aims
to refine the knowledge representation of PLMs
to narrow the gap between it and the essential of
CSC task. As mentioned in Section 1, with the
model before our optimization process, we select
the mistakes generated by this model itself to be
the negative samples. Then through the Contrastive
Probability Optimization objective, we maximize
the prediction probabilities of the model for correct
answers and minimize the prediction probabilities
of the model for negative samples. In this error-
driven way, the original prediction probabilities of
the model are refined, improving the performance
of the model on the CSC task. Therefore, the model
will grow and progress after making mistakes again
and again, just as humans do. Note that the pro-
posed ECOPO is a model-agnostic framework, we
can choose different PLMs or CSC models to be
optimized in practice for better performance.

3.1 Observation and Intuition

To present our approach more clearly, we first de-
scribe our observation, and then give our explana-
tion of the observation and intuition.

The key observation that ECOPO builds on is
that PLMs such as BERT cannot focus well on the
confusing characters that need to be paid more at-
tention in the CSC task, as illustrated in Figure 1.

We think that this gap comes mainly from the gen-
eral corpora and the training paradigm used in the
pre-training of language models. Taking the BERT
as an example, its pre-training corpus is mainly
from the text in Wikipedia, which has a very low
proportion of contexts containing confusing charac-
ters, as verfied in Section 4.6. Additionally, Devlin
et al. (2019) randomly choose 15% of tokens in
the entire corpus to be masked by a fixed token
“[MASK]” and then recover them. This masking-
recovering strategy makes the knowledge acquired
by PLMs in pre-training process discontinuous in
the CSC task (Liu et al., 2021). Because the size
of confusing characters will be lower in the 15% of
characters that are randomly selected.

In fact, there also exists the same challenge when
humans correct spelling errors. When only given
the context of input sentence without seeing the
misspelling, they tend to associate the common
character rather than the confusing character with
the context. Therefore, humans or models would
wrongly predict common characters. Intuitively, if
the model can be optimized with common charac-
ters through an error-driven way, then the model
can certainly be further enhanced, just as humans
get progress from the mistakes they have made.

3.2 Stage 1: Negative Samples Selection
We define the negative samples in CSC as those
common characters that be incorrectly assigned
high prediction probability by PLMs before our
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optimization process. According to our observa-
tion, negative samples that can form common col-
locations or phrases with the context tend to be
assigned higher probability than the golden charac-
ter, leading the model to make wrong corrections.
Therefore, we use a simple strategy based on the
prediction probability to select the negative sam-
ples which we utilize in the next stage.

Specifically, we use PLMs such as BERT to
predict the original character for each input token
based on the output of the last transformer layer.
The prediction probability of the i-th token xi in a
sentence X is defined as:

p (yi = j | X) = softmax (Whi + b) [j], (1)

where p (yi = j | X) means the conditional prob-
ability that the i-th token xi is predicted as the
j-th character in the vocabulary of PLMs, W ∈
Rvocab×hidden and b ∈ Rvocab are learnable pa-
rameters, vocab is the size of vocabulary and
the hidden is the size of hidden state, hi ∈
Rhidden is hidden state output of PLMs for the
i-th token xi.

Based on the original prediction probability, if
the model makes wrong correction for the input
character, we will select negative samples for the
input character. The negative samples set Neg is
selected from the candidate set T as:

T = {t | t ∈ V and t 6= t+}, (2)

Neg = argmax
T ′⊂T,|T ′|=K

∑
t−∈T ′

p
(
yi = t− | X

)
, (3)

where t− and t+ mean the negative and positive
samples, respectively. The negative samples t− are
selected from those tokens whose prediction proba-
bility is in the Top K of the vocabulary V , and the
best value of K is selected empirically. It is worth
noting that the training process is supervised in the
CSC task, so we can regard the golden character as
the positive sample t+.

3.3 Stage 2: Contrastive Probability
Optimization

After obtaining the positive/negative samples and
their corresponding prediction probability, we train
the model by Contrastive Probability Optimization
(CPO) objective which is defined as:

LCPO = − 1

N

N∑
i=1

1

K

K∑
k=1

{p
(
yi = t+ | X

)
−p
(
yi = t−k | X

)
},

(4)

where N is the batch size, K is the selected neg-
ative samples size, t−k is the k-th negative sam-
ple in Neg. The CPO objective aims to teach the
model to increase the prediction probability for
positive sample (i.e., confusing character) and de-
crease the prediction probabilities for negative sam-
ples (i.e., common characters) by the maximum
likelihood of the difference between the original
probabilities for positive and negative samples.

To preserve the generalization performance of
the model, we train both the existing original ob-
jective LORI and the CPO objective LCPO. The
overall objective is defined as:

L = λ1LORI + λ2LCPO, (5)

where λ1 and λ2 are weighting factors for two
objectives. We use cross-entropy loss function
as the LORI for BERT in our experiments. The
training pseudo-code of ECOPO is shown in Ap-
pendix A.1. As described in Equation 5, we can
replace the LORI with other models’ training ob-
jectives, so ECOPO is model-agnostic and it can be
easily used in other PLMs or previous CSC meth-
ods to achieve further improvements.

Most previous works use softmax
and cross-entropy functions to train CSC
models. But why just using softmax is not enough
and using CPO is necessary? Theoretically: (1)
Their motivations are different, softmax is to
normalize the PLMs’ logits into a probability
distribution, but CPO aims to refine the knowledge
representation of PLMs in the probability space.
(2) Their scopes are different, softmax relies on all
logits output by models for weighted calculation,
this global weighting mechanism makes it not
have good local attention. However, CPO can pay
attention to a part of really difficult samples that
models would often make mistakes through the
negative samples selection stage. (3) Their results
are different, through the softmax operation, we
finally obtain a probability distribution that is
softer than the original logits. But the CPO we
proposed can eventually change the order of the
original prediction probability, directing the model
to assign higher probability to positive sample and
lower probabilities to negative samples. Therefore,
our work can be regarded as a great complement to
the traditional softmax+ cross-entropy training
paradigm. Empirically, we conducted in-depth
analyses in Sections 4.5.1- 4.5.3.
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4 Experiments

In this section, we introduce the details of exper-
iments and main results we obtained. Then we
conduct detailed analyses and discussions to verify
the effectiveness of our method.

4.1 Datasets

Training Data We use the same training data by
following previous works (Zhang et al., 2020; Liu
et al., 2021; Xu et al., 2021), including the train-
ing samples from SIGHAN13 (Wu et al., 2013b),
SIGHAN14 (Yu et al., 2014), SIGHAN15 (Tseng
et al., 2015) and the pseudo training samples
(size of 271K, we denote this part of samples as
Wang271K in our paper) automatically generated
by OCR-based and ASR-based methods (Wang
et al., 2018).

Test Data To ensure the fairness, we use the ex-
act same test data as the baseline methods, from
the test datasets of SIGHAN13/14/15. Noted that
the text of original SIGHAN datasets is in the
Traditional Chinese, we pre-process these origi-
nal datasets to the Simplified Chinese using the
OpenCC1. This data conversion procedure has been
widely used in previous works (Wang et al., 2019;
Cheng et al., 2020; Zhang et al., 2020). The de-
tailed statistic of the training/test data we use in our
experiments is presented in Appendix A.2.

4.2 Baseline Methods

To evaluate the performance of ECOPO, we se-
lect several advanced strong baseline methods:
BERT (Devlin et al., 2019) is directly fine-tuned
on the training data. Hybrid (Wang et al., 2018)
casts CSC into sequence labeling problem and im-
plements BiLSTM model. FASpell (Hong et al.,
2019) consists of a denoising autoencoder and a
decoder. Soft-Masked BERT (Zhang et al., 2020)
consists of a detection network and a correction net-
work. SpellGCN (Cheng et al., 2020) integrates
the confusion set to the correction model through
GCNs. PLOME (Liu et al., 2021) is a task-specific
PLM which jointly learns how to understand lan-
guage and correct spelling errors. REALISE (Xu
et al., 2021) is a multimodel model which cap-
tures and mixes the semantic, phonetic and graphic
information to improve CSC performance. RE-
ALISE is the previous state-of-the-art method on
SIGHAN13/14/15 datasets.

1https://github.com/BYVoid/OpenCC

4.3 Experimental Setup

In terms of evaluation granularity, there are two
levels of metrics, namely character/sentence-level.
Obviously, the sentence-level metric is stricter than
the character-level metric because there may be
multiple wrong characters in a sentence. One sen-
tence sample is considered to be correct only when
all the wrong characters in it are detected and
corrected successfully. Therefore, we report the
sentence-level metrics for evaluation, which are
widely used in previous works (Li et al., 2021;
Huang et al., 2021; Xu et al., 2021).

Specifically, the metrics we report include Accu-
racy, Precision, Recall and F1 score for detection
and correction levels. At the detection level, all
locations of wrong characters in a sentence should
be identical successfully. At the correction level,
the model must not only detect but also correct all
the erroneous characters with the gold standard.

Other implementation details and hyper-
parameters choices are presented in Appendix A.3.

4.4 Experimental Results

From Table 1, we can observe that:

1. The ECOPO (BERT) performs better than
BERT on all test sets and evaluation metrics.
Specifically, ECOPO (BERT) achieves signif-
icant improvement on SIGHAN15, and out-
performs the previous state-of-the-art models
with a very thin model, while REALISE and
PLOME are two complex models with some
auxiliary modules. Note that ECOPO (BERT)
only consists of a BERT encoder.

2. From the results on the SIGHAN14 test set,
we can see that the performance improvement
of ECOPO (BERT) based on BERT is not
as large as on the other two test sets, but
still effective. Additionally, due to the model-
agnostic advantage of ECOPO, it can be sim-
ply combined with other previous state-of-the-
art models such as REALISE and get further
enhancement, which are presented in the rows
of REALISE and ECOPO (REALISE).

3. Considering the impact of external knowledge,
several previous works exploit various addi-
tional information to improve performance.
For example, FASpell and SpellGCN intro-
duce character similarity to CSC, REALISE
and PLOME propose to leverage multimodal
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Dataset Method Detection Level Correction Level
Acc Pre Rec F1 Acc Pre Rec F1

SIGHAN13

Hybrid (Wang et al., 2018) - 54.0 69.3 60.7 - - - 52.1
FASpell (Hong et al., 2019) 63.1 76.2 63.2 69.1 60.5 73.1 60.5 66.2
SpellGCN (Cheng et al., 2020) - 80.1 74.4 77.2 - 78.3 72.7 75.4

BERT (Xu et al., 2021) 77.0 85.0 77.0 80.8 77.4 83.0 75.2 78.9
ECOPO (BERT) 81.7↑ 87.2↑ 81.7↑ 84.4↑ 80.7↑ 86.1↑ 80.6↑ 83.3↑

REALISE (Xu et al., 2021) 82.7 88.6 82.5 85.4 81.4 87.2 81.2 84.1
ECOPO (REALISE) 83.3↑ 89.3↑ 83.2↑ 86.2↑ 82.1↑ 88.5↑ 82.0↑ 85.1↑

SIGHAN14

Hybrid (Wang et al., 2018) - 51.9 66.2 58.2 - - - 56.1
FASpell (Hong et al., 2019) 70.0 61.0 53.5 57.0 69.3 59.4 52.0 55.4
SpellGCN (Cheng et al., 2020) - 65.1 69.5 67.2 - 63.1 67.2 65.3

BERT (Xu et al., 2021) 75.7 64.5 68.6 66.5 74.6 62.4 66.3 64.3
ECOPO (BERT) 76.7↑ 65.8↑ 69.0↑ 67.4↑ 75.7↑ 63.7↑ 66.9↑ 65.3↑

REALISE (Xu et al., 2021) 78.4 67.8 71.5 69.6 77.7 66.3 70.0 68.1
ECOPO (REALISE) 79.0↑ 68.8↑ 72.1↑ 70.4↑ 78.5↑ 67.5↑ 71.0↑ 69.2↑

SIGHAN15

Hybrid (Wang et al., 2018) - 56.6 69.4 62.3 - - - 57.1
FASpell (Hong et al., 2019) 74.2 67.6 60.0 63.5 73.7 66.6 59.1 62.6
SpellGCN (Cheng et al., 2020) - 74.8 80.7 77.7 - 72.1 77.7 75.9
PLOME (Liu et al., 2021) - 77.4 81.5 79.4 - 75.3 79.3 77.2

Soft-Masked BERT (Zhang et al., 2020) 80.9 73.7 73.2 73.5 77.4 66.7 66.2 66.4
ECOPO (Soft-Masked BERT) 81.2↑ 74.0↑ 76.6↑ 75.3↑ 79.1↑ 67.0↑ 72.3↑ 69.6↑

BERT (Xu et al., 2021) 82.4 74.2 78.0 76.1 81.0 71.6 75.3 73.4
ECOPO (BERT) 85.5↑ 78.2↑ 82.3↑ 80.2↑ 84.6↑ 76.6↑ 80.4↑ 78.4↑

REALISE (Xu et al., 2021) 84.7 77.3 81.3 79.3 84.0 75.9 79.9 77.8
ECOPO (REALISE) 85.0↑ 77.5↑ 82.6↑ 80.0↑ 84.2↑ 76.1↑ 81.2↑ 78.5↑

Table 1: The performance of ECOPO and all baseline methods. Note that all baseline results are directly from
other published paper. ECOPO (model-X) means that we perform ECOPO framework on model-X. We underline
the previous state-of-the-art performance for convenient comparison. “↑” indicates that the corresponding baseline
method receives a further performance improvement after optimization by ECOPO.

knowledge such as phonetic and graphic infor-
mation. Unlike the aforementioned models,
ECOPO (BERT) achieves competitive perfor-
mance without any additional knowledge and
optimizing only based on the mistakes that the
original BERT itself has made.

4. To verify the model-agnostic characteristic of
ECOPO, we choose two other models includ-
ing Soft-Masked BERT and REALISE to be
optimized. Practically, we train the combined
model with the joint objective, as described in
Equation 5. From the results of Table 1, we
can see that ECOPO’s improvement is stable
and significant over the three models.

4.5 Analysis and Discussion
4.5.1 Statistics of Different Characters
To further empirically explain why the method we
proposed is effective, we conduct sufficient statis-
tical experiments, as shown in Table 2. We apply
different methods to the SIGHAN13/14/15 datasets,

and carry out statistical analyses on their wrong cor-
rection samples. Note that if a character co-occurs
with the character before or after the error position
more than 1,000 times in wiki2019zh2, we regard
it as a common character.

From Table 2, we can see that when
only softmax is used, most of the failures of the
model are because it incorrectly assigns higher pre-
diction probabilities to common characters, which
reflects the gap between the pre-trained knowl-
edge of PLMs and the goal of CSC. When we run
ECOPO or only CPO, the model does pay more
attention to the less common but more confusing
characters. Our proposed CPO indeed effectively
change the model’s predictions for different types
of characters. Thus, CPO refines the knowledge
representation of PLMs for CSC and narrow the
gap between PLMs and CSC, but softmax does
not.

2The general pre-training corpus which is from Wikipedia
dump (as of February 7, 2019) and contains one million pages.
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BERT ECOPO (BERT)

Confusing

Common

Samples

Confusing

Common

Samples

Figure 3: Heat map visualization of probability. The darker the blue, the higher the model’s prediction probability
for a particular character (vertical axis) given the input of samples containing misspelled characters (horizontal
axis). The selected samples are from SIGHAN15, and the original BERT would make wrong corrections for them.

Dataset Method Common Confusing

SIGHAN13

softmax 172 (76%) 54 (24%)

CPO 108 (54%) 92 (46%)

ECOPO 100 (52%) 93 (48%)

SIGHAN14

softmax 208 (77%) 62 (23%)

CPO 159 (61%) 101 (39%)

ECOPO 152 (59%) 106 (41%)

SIGHAN15

softmax 171 (82%) 38 (18%)

CPO 72 (41%) 103 (59%)

ECOPO 68 (40%) 101 (60%)

Table 2: Statistical results on different types of charac-
ters. The statistical samples are the all wrong correc-
tion samples of different methods.

4.5.2 Visualization of Common/Confusing
Character Probability

The key objective of ECOPO is to optimize the
prediction probability of the PLMs for two differ-
ent kinds of characters, i.e., common characters
which original PLMs would be more inclined and
confusing characters which CSC task should pay
more attention to. Therefore, we visualize the prob-
ability optimization effect of ECOPO in this part
of experiment. Specifically, we apply BERT and
ECOPO (BERT) to predict the character which
should appear at the position of the misspelled
character based on its context. We select the Top-5
characters co-occurring with the context of the mis-
spelled character as the common characters, and 5
confusing characters from the widely used confu-
sion set (Wu et al., 2013b). Note that we ensure
that the common and confusing characters selected

are not duplicated, and the golden character must
be in the selected 5 confusing characters. Then
we visualize the prediction probabilities of com-
mon/confusing characters as a heat map.

Figure 3 shows the prediction probability dis-
tributions of BERT and ECOPO (BERT) for the
common/confusing characters. By comparison, we
can see that BERT assigns higher probability to
common characters than confusing characters, and
ECOPO (BERT) focuses more on confusing charac-
ters which are similar to the golden character. This
difference in BERT before and after ECOPO’s op-
timization is consistent with our study motivation
and design objective. We can see that ECOPO does
refine the knowledge representation and prediction
probability of BERT for different characters.

4.5.3 Effects of Weighting Factors λ1, λ2

Firstly, from Figure 4, we can see that no matter
how the values of λ1, λ2 change, ECOPO (BERT)
always has improvement compared to the base-
line BERT, which reflects the general effective-
ness of our proposed method. We also can find
that whether only using LORI (λ1 = 1, λ2 = 0)
or LCPO (λ1 = 0, λ2 = 1) for training, there is
an improvement compared to the baseline model.
Besides, only using LCPO has a greater improve-
ment than only using LORI , which illustrates the
advantage of our proposed CPO over softmax. Fur-
thermore, when λ2 is fixed to 1, as λ1 increases, the
model performance shows a trend of first decreas-
ing and then increasing. From this phenomenon,
we suspect that the widely used LORI in previ-
ous works has a certain regularization effect on the
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(a) Detection performance (b) Correction performance

Figure 4: The F1 results on SIGHAN15, using
different combinations of λ1, λ2 in Equation 5 in
ECOPO (BERT). When λ1 = 0, λ2 = 0, it is equiva-
lent to the baseline BERT.

Figure 5: The F1 results on SIGHAN15, using different
values of K in Equation 3 in ECOPO (BERT). The dot-
ted lines represent the baseline BERT’s performance.

probability space of the model. Also for this rea-
son, only using LORI has improvements compared
to the baseline. Additionally, the regularization
effect of LORI is good for the process of LCPO

optimizing the probability representation, and can
help model avoid over-fitting. Therefore, in prac-
tice, we chose the combination that perform best in
SIGHAN13/14/15, namely λ1 = 1, λ2 = 1.

4.5.4 Effects of Negative Samples Size K
As different amounts of negative samples can affect
ECOPO’s performance, it is essential to study the
impact of negative samples size K in Equation 3.

Figure 5 illustrates the performance change from
the perspective of detection and correction. We find
that when the value of K reaches a certain value
(e.g.,K > 5), the overall performance of the model
(F1 score) does not improve anymore. This is be-
cause ECOPO optimizes the model based on the
probability representation, when the value of K
becomes very large, the predicted probabilities of
samples become so small that they have almost no
effect on the probability optimization of the posi-
tive sample. Therefore, choosing an appropriate K
value is critical to the performance improvement

Input: 与其自暴自气 (弃)不如往好处想。
It’s better to think for the good than to
be angry (give up).

BERT: [己(own),大(big),利(benefit)]
ECOPO: [弃(give up),尊(respect),强(strong)]

Input: 我努力打败数不进 (尽)的风雨。
I try to beat the enter (endless) storms.

BERT: [起(raise),上(up),得(get)]
ECOPO: [尽(endless),得(get),完(end)]

Table 3: Examples of spelling errors and cor-
responding output (Top 3 candidates) of original
BERT and ECOPO (BERT). We mark the in-
put confusing/golden/wrong correction characters in
red/blue/orange.

of ECOPO, although ECOPO has significant im-
provement based on BERT at all values of K.

4.6 Case Study for Probability Optimization

Table 3 shows the comparisons between the correc-
tion results of BERT and ECOPO (BERT). In the
first examples, the output of BERT such as “己”,
“大” and “利” all can form a correct Chinese phrase
with “自”, but they cause a semantic incoherence
for the whole sentence. The statistics of the gen-
eral pre-training corpus wiki2019zh show that “自
己” co-occurs 136,318 times and “自弃” co-occurs
119 times, which verifies the intuition about com-
mon/confusing characters described in Section 3.1.
In the second example as well, the output of BERT
can be formed with “数不” as reasonable phrases.
From the two examples, we can see that ECOPO
does guide the BERT to accurately predict the ideal
confusing characters by the highest probability and
make the right corrections. Such experimental re-
sults are in line with our work’s core motivation.

5 Conclusion

In this paper, we introduce to promote CSC by
narrowing the gap between the knowledge of PLMs
and the goal of CSC. We propose the ECOPO, a
simple yet effective training framework that aims to
perform an error-driven optimization for the PLMs
based on their original probability representation.
Extensive experiments and empirical results show
the competitive performance of our method. In the
future, we will study how to automatically measure
the quality of negative samples to further enhance
our method. Additionally, applying our core idea
to other tasks will be an interesting direction.
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A Appendices

A.1 Pseudo-code of ECOPO
Figure 6 shows the Pytorch-style pseudo-code for
the ECOPO. As described in Section 3, our pro-
posed ECOPO consists of two stages, namely Nega-
tive Samples Selection and Contrastive Probability
Optimization. It is worthy noting that in the pseudo-
code, we only show the process of calculating the
loss of one training sample.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

# vocab_prob : the prediction probability for all characters in vocabulary 
# pos_idx     : the index of positive sample (golden character) in vocabulary 
# K            : the selected negative samples amount 
 
# Negative Samples Selection 
pos_prob = vocab_prob[pos_idx] 
neg_prob = torch.topk(vocab_prob, K)[0] 
neg_idx = torch.topk(vocab_prob, K)[1].tolist() 
 
# Contrastive Probability Optimization Objective 
loss_list = [] 
for x in range(0, K): 
    if neg_idx[x] != pos_idx: 
        loss_list.append(pos_prob - neg_prob[x]) 
loss = - torch.stack(loss_list).mean() 
 

Figure 6: Pseudo-code of our practical implementation.

A.2 Datasets Details
Table 4 shows the detailed statistics of our used
datasets. We report the number of sentences in
the datasets (#Sent), the average sentence length
of the datasets (Avg.Length), and the number of
misspellings the datasets contains (#Errors).

Training Data #Sent Avg. Length #Errors
SIGHAN13 700 41.8 343
SIGHAN14 3,437 49.6 5,122
SIGHAN15 2,338 31.3 3,037
Wang271K 271,329 42.6 381,962
Total 277,804 42.6 390464
Test Data #Sent Avg. Length #Errors
SIGHAN13 1,000 74.3 1,224
SIGHAN14 1,062 50.0 771
SIGHAN15 1,100 30.6 703
Total 3,162 50.9 2,698

Table 4: Statistics of the datasets that we use in exper-
iments. All the training data are merged to train the
models in our experiments. The test sets are used sepa-
rately to evaluate performance.

A.3 Implementation Details
All the source code of our experiments is imple-
mented using Pytorch (Paszke et al., 2019) based on
the Huggingface’s implementation of Transformer
library3 (Wolf et al., 2020). The architecture of

3https://github.com/huggingface/transformers

the BERT encoder we use in the related models
is same as the BERTBASE model, which has 12
transformers layers with 12 attention heads and its
hidden state size is 768. We initialize the BERT
encoder with the weights of Chinese BERT-wwm
model (Cui et al., 2020). We train ECOPO with the
AdamW (Loshchilov and Hutter, 2018) optimizer
for 10 epochs. The training batch size N is set to
64 and the evaluation batch size is set to 50. The
negative samples size K is set to 5 by default. The
weighting factors λ1, λ2 are both set to 1. In all our
experiments, when λ1 is equal to 1, it means that
we use a fine-tuned BERT on the training set as the
initialization model to continue the corresponding
training process under different loss functions. The
initial learning rate is set to 5e-5. We set the maxi-
mum sentence length to 128. The model is trained
with learning rate warming up and linear decay.

It is worth noting that the annotation quality
of SIGHAN13 test dataset is relatively poor. As
we have observed and mentioned in (Cheng et al.,
2020; Xu et al., 2021), quite lots of the mixed usage
of auxiliary (such as “的”, “地”, and “得”) don’t
have correct annotations. Therefore, the evaluation
metrics we use may not accurately reflect the real
model performance on SIGHAN13. To alleviate
this problem, there are two main solutions in previ-
ous works. Cheng et al. (2020) propose to continue
fine-tuning well-trained models on the SIGHAN13
training dataset before testing, which we think will
suffer from the over-fitting problem. Therefore, we
follow the post-processing method proposed in (Xu
et al., 2021) and don’t consider all the detected and
corrected mixed auxiliary. This approach does not
compromise the fairness of the evaluation process
and can better reflect the model performance.
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