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Abstract

Nested entities are observed in many domains
due to their compositionality, which cannot
be easily recognized by the widely-used se-
quence labeling framework. A natural solution
is to treat the task as a span classification prob-
lem. To learn better span representation and
increase classification performance, it is cru-
cial to effectively integrate heterogeneous fac-
tors including inside tokens, boundaries, labels,
and related spans which could be contributing
to nested entities recognition. To fuse these
heterogeneous factors, we propose a novel tri-
affine mechanism including triaffine attention
and scoring. Triaffine attention uses boundaries
and labels as queries and uses inside tokens and
related spans as keys and values for span rep-
resentations. Triaffine scoring interacts with
boundaries and span representations for classi-
fication. Experiments show that our proposed
method outperforms previous span-based meth-
ods, achieves the state-of-the-art F; scores on
nested NER datasets GENIA and KBP2017,
and shows comparable results on ACE2004 and
ACE2005.

1 Introduction

Named entity recognition (NER) is a fundamental
natural language processing task that extracts enti-
ties from texts. Flat NER has been well studied and
is usually viewed as a sequence labeling problem
(Lample et al., 2016). However, nested entities also
widely exist in real-world applications due to their
multi-granularity semantic meaning (Alex et al.,
2007; Yuan et al., 2020), which cannot be solved
by the sequence labeling framework since tokens
have multiple labels (Finkel and Manning, 2009).
Various paradigms for nested NER have been
proposed in recent years. A representative direc-
tion is the span-based approach that learns deep
representation for every possible span and then
classifies it to the corresponding type (Zheng et al.,
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protein

a defective NF - chi B site was completely
inactive in EBV - transformed B cells , ...

cell line

Figure 1: An example sentence with nested entities from
the GENIA dataset.

2019; Xia et al., 2019; Wadden et al., 2019; Tan
et al., 2020; Wang et al., 2020; Yu et al., 2020).
By leveraging the large-scale pretrained language
model, several works show that the simple model
structure for span representation and classification
can achieve satisfactory results (Luan et al., 2019;
Zhong and Chen, 2021). However, we still believe
that explicit modeling of some relevant features
will further benefit the span representation and clas-
sification under the complex nested setting. Taking
Figure 1 as an example, we claim that the following
factors are critical for recognizing whether a span
is an entity. (1) Tokens: It is obvious that tokens
of the given span contribute to the recognition. (2)
Boundaries: We emphasize boundaries (or bound-
ary tokens) because they are special tokens with
rich semantics. Works with simple structure may
just produce the span representation based on the
concatenation or biaffine transformation of bound-
ary representation (Yu et al., 2020; Fu et al., 2021).
Some other works take boundary detection as addi-
tional supervision for better representation learning
(Zheng et al., 2019; Tan et al., 2020). More im-
portantly, a unilateral boundary cannot determine
the entity type since it can exist in multiple en-
tities with different labels (e.g., “NF”, “B”, and
“cells”) under the nested setting. (3) Labels: As
mentioned above, tokens could belong to entities
with different labels. Therefore, we propose that
the model should learn label-aware span represen-
tation to take into consideration of the different
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token contributions at the label level.! For exam-
ple, “NF” may contribute more to “protein” type
when classifying the span “NF - chi B”, as well
as “chi B” and “site” contribute more to “DNA”
type when classifying the span “NF - chi B site”.
(4) Related spans: Interactions among spans are
important in nested entities (Luo and Zhao, 2020;
Wang et al., 2020; Fu et al., 2021). The insider and
outsider entities may hint at each other’s types. For
example, entities inside “EBV-transformed B cells”
have more possibilities to be cell-related entities.
Interactions can also help the non-entity span like
“transformed B cells” to validate its partialness by
looking at outer entity “EBV - transformed B cells”.

Although some of the factors may have been
explored in previous works, to the best of our
knowledge, it is the first work to fuse all these
heterogeneous factors into a unified network. As
the traditional additive, multiplicative attention, or
biaffine transformation cannot interact with such
multiple heterogeneous factors simultaneously, we
propose a novel triaffine mechanism as the tensor
multiplication with three rank-1 tensors (vectors)
and a rank-3 tensor, which makes it possible to
jointly consider high-order interactions among mul-
tiple factors. Specifically, our method follows the
pipeline of span representation learning and classi-
fication. At the stage of span representation learn-
ing, we apply the triaffine attention to aggregate
the label-wise span representations by considering
boundaries and labels as queries as well as inside
tokens as keys and values. Then, a similar triaffine
attention is applied to produce the label-wise cross-
span representations by querying boundaries and
labels with related spans. At the stage of span
classification, we fuse the span representations and
boundaries for label-wise classification with a tri-
affine score function. In practice, we add an aux-
iliary object function to classify spans without the
cross-span interaction, which benefits learning ro-
bust span representation and can be used as a span
filter to speed up both training and inference with-
out performance degradation.

We conduct experiments on four nested NER
datasets: ACE2004, ACE2005, GENIA, and
KBP2017. Our model achieves 88.56, 88.83, 81.23,
and 87.27 scores in terms of F1, respectively. Using
the BERT encoder, our model outperforms state-
of-the-art methods on GENIA and KBP2017 and

"Label is the perdition object that we cannot touch in rep-
resentation learning. Here, leveraging label information only
means we need label-aware representation learning.

shows comparable performances on ACE2004 and

ACE2005 with the latest generative methods. Ab-

lation studies show the effectiveness of each factor

and the superiority of the triaffine mechanism.
Our contributions are summarized as *:

* We propose that heterogeneous factors (i.e.,
tokens, boundaries, labels, related spans)
should be taken into consideration in the span-
based methods for nested NER.

* We propose a span-based method with a novel
triaffine mechanism including triaffine atten-
tion and scoring to fuse the above-mentioned
heterogeneous factors for span representations
and classification.

* Experiments show that our proposed method
performs better than existing span-based
methods and achieves state-of-the-arts perfor-
mances on GENIA and KBP17.

2 Related Work

2.1 Nested NER

Nested NER approaches do not have a unified
paradigm. Here we mainly focus on span-based
methods since they are close to our work.

The span-based methods are one of the most
mainstream ways for the nested NER. With the de-
velopment of pre-training, it is easy to obtain the
span representation by the concatenation of bound-
ary representation (Luan et al., 2019; Zhong and
Chen, 2021) or the aggregated representation of
tokens (Zheng et al., 2019; Wadden et al., 2019),
and then follow a linear layer (Xia et al., 2019) or
biaffine transformation (Yu et al., 2020) for clas-
sification. Several works improve the span-based
methods with additional features or supervision.
Zheng et al. (2019); Tan et al. (2020) point out the
importance of boundaries and therefore introduce
the boundary detection task. Wang et al. (2020)
propose Pyramid to allow interactions between
spans from different layers. Fu et al. (2021) adopt
TreeCRF to model interactions between nested
spans. Compared with previous methods, our
method can jointly fuse multiple heterogeneous
factors with the proposed triaffine mechanism.

Other methods for nested NER vary greatly. Ear-
lier research on nested NER is rule-based (Zhang
et al., 2004). Lu and Roth (2015); Katiyar and

2Codes and models are available at https://github.
com/GanjinZero/Triaffine-nested-ner.
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Cardie (2018); Wang and Lu (2018) leverage the
hypergraph to represent all possible nested struc-
tures, which needs to be carefully designed to
avoid spurious structures and structural ambigui-
ties. Wang et al. (2018); Fisher and Vlachos (2019)
predict the transition actions to construct nested
entities. Lin et al. (2019) propose an anchor-based
method to recognize entities. There are other works
that recognize entities in a generative fashion (Yan
et al., 2021; Shen et al., 2021; Tan et al., 2021).
Generally, it is not a unified framework for nested
NER, and we model it with a span-based method
since it is most straightforward.

2.2 Affine Transformations in NLP

Dozat and Manning (2017) introduce the biaffine
transformation in the dependency parsing task for
arc classification. Later, it is widely used in many
tasks that need to model bilateral representations
(Li et al., 2019; Yu et al., 2020). The triaffine
transformation is further introduced to extend bi-
affine transformation for high-order interaction in
the field of dependency parsing (Wang et al., 2019;
Zhang et al., 2020) and semantic role labeling (Li
et al., 2020b). Except for the similar formula of
vectors’ interactions, the motivation and the use
of triaffine are different in our paper. Firstly, they
only model the homogeneous features such as three
tokens, but our triaffine transformation can model
heterogeneous factors including labels, boundaries,
and related spans. Secondly, they usually leverage
triaffine transformation to obtain log potentials for
CREFs, but we apply it for span representation and
classification.

3 Approach

Figure 2 shows an overview of our method. We will
first introduce the triaffine transformations, which
lie in the heart of our model to fuse heterogeneous
factors. Then, we will introduce our model includ-
ing triaffine attention and triaffine scoring based on
the proposed triaffine transformations.

3.1 Deep Triaffine Transformation

We define the deep triaffine transformation with
vectors u, v, w € R and a tensor W € R¥*1 x
R? x R¥+1 which outputs a scalar by applying dis-
tinct MLP (multi-layer perceptron) transformations
on input vectors and calculating tensor vector multi-
plications. A constant 1 is concatenated with inputs

to retain the biaffine transformation.

MLP, MLP,
o= [ W] [ <v>] 0
1 1
w’' =MLPy,(w) (2)
TriAff(u, v, w, W) =W x; u’ xo w' x3V’
(3)

where %, is the mode-n tensor vector multiplica-
tion and MLP; is a ¢-layer MLP (0-layer MLP is
equal to identify function). The tensor W is ini-
tialized using A/(0, 0?). In our approach, we use
boundary representations as u and v. Inside tokens
or span representations are used as w. We denote
the tensors in the triaffine attention as { W, } and tri-
affine scoring as {V; }, which decouples attention
weights and scores for different labels.

3.2 Text Encoding

We follow Ju et al. (2018); Shen et al. (2021); Tan
et al. (2021) to encode the text. For text X =
[x1,z2,...,xn]| with N tokens, we first generate
the contextual embedding x; with the pre-trained
language model,

x{, X5, ..., x5y = PLM(z1, 22, ...,zn)  (4)
Then, we concatenate x§ with word embedding x,
part-of-speech embedding x? and character embed-
ding xfh, and feed the concatenated embedding
x; into a BILSTM (Hochreiter and Schmidhuber,
1997) to obtain the token representations {h,}.

3.3 Triaffine Attention for Span
Representations

To fuse heterogeneous factors for better span repre-
sentation, we propose a triaffine attention mech-
anism shown in Figure 3a. To interact tokens
with labels and boundaries, we learn the label-wise
span representation h; ;, with the triaffine atten-
tion cv; j . » for the span (7, j):

Si,j,k,'f‘ = ﬁlAﬁ(hl7 hj7 hk’) WT‘) (5)
exp(Sijk,r)

Rr—i ©XD(8i j k' )

ai7j7k7r -

(6)

J
hi,j,r = Z aid,kﬂnMLP(hk) (7)
k=i

Boundary representations (h;, h;) and the label-
wise parameters (V) can be viewed as attention
queries, and tokens (hy) can be viewed as keys
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Figure 2: The architecture of our method. Green cubes indicate triaffine attention. Blue cubes indicate triaffine
scoring. Orange arrows mean boundary information. Blue arrows mean inside tokens or related spans information.
For each span, we have head and tail representations in yellow and label-wise span representations in different

colors. The grey color indicates None class.
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Figure 3: Visualization of triaffine attention, triaffine scoring, and the decomposition of triaffine scoring.

and values. Compared with the general attention
framework (additive or multiplicative attention),
our triaffine attention permits all high-order inter-
actions between heterogeneous queries and keys.

3.4 Triaffine Attention for Cross-span
Representations

Motivated by the span-level interactions in the
nested setting, we fuse related spans informa-
tion into cross-span representations. We view
the boundaries of the span and labels as attention
queries, related spans (containing the span itself)
as attention keys and values to obtain cross-span
representations. Similar to the Equation 7, we ob-
tain label-wise cross-span representations h . = for

/L?j?/r
the span (7, j) based on triaffine attention 3; j 4.,

Gijgr = TriAff(hi, h;, hig,jg,ra Wr) (8
eXp(Qi,j,g,r)
Bi, g, — (9)
2,9 Zg, eXp(Qi,j,g’,T)
hzj/’“ = Z/Bi7j7g7rMLP(higajgvr) (10)

g

where {(ig4,js)} are the related spans. One can
treat all enumerated spans as related spans, and we

will introduce how we select them in Section 3.6.

3.5 Triaffine Scoring for Span Classification

To classify the entity type of the span, we calcu-
late label-wise scores based on cross-span repre-
sentations. Since boundary information has been
proved effective in previous works (Yu et al., 2020;
Fu et al., 2021), we leverage the boundaries in-
formation and cross-span representations for span
classification via triaffine scoring. Specifically, we
estimate the log probabilities p{ ; ,. of the span (4,7)
for label r using boundaries h;, h; and cross-span

representations hy ; ..

pg,jﬂ” = TrlAﬁ(hZ, hj, h¢

,L?j?,r’

V) D

Since hfﬁj’T are composed by h;_ ; ., we can de-
compose Equation 11 into following if and only if

the layer of MLP transformation on hf ;  is 0:
ti,j,gﬂ' = ﬁiAﬁ(hl7 h]’ higngﬂ"’ VT) (12)
Pigr = Bijgrtijor (13)
g

Figure 3b and 3c show the mechanism of triaffine
scoring and the decomposition. We also apply the
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similar decomposition functions in the auxiliary
span classification task, which applies the triaffine
scoring on boundary representations and intermedi-
ate span representations h; ; . to estimate log prob-
abilities p; ; » as intermediate predictions.

3.6 Training and Inference

In practice, it is expensive and non-informative
to consider interactions between all spans. There-
fore, we propose an auxiliary task to classify spans
with intermediate span representations. Then, we
can rank all spans based on the maximum of log
probabilities (except None) from the intermedi-
ate predictions p; ; = maxZ? | p; j,, and retain
top-m spans { (i, ji)};", as candidates. We cal-
culate cross-span representations hy ; . for re-
tained spans by considering the full interactions
among them, and estimate the classification logits
5, ;- Thus, we have two groups of predictions
in our model {p; jr }1<i<j<n and {pf j . }1<i<m.
{pi jr} are calculated for every possible span, and
{p5, j,»} are calculated only on top-m spans.

In the training phase, we jointly minimize two
groups of cross-entropy losses:

2 exp(Pijri;)
E — 1 'wJTig
aux N(iN T 1) ; og

> exp(Pijir)
(14)
1 exp(p, v o)
£main = - Z log”—]lzl“ (15)
m 1<i<m ZT eXp(piz,jz ,T)
L :Mau:rﬁauz + Linain (16)

where 7;; is the label of span (4, j).

In both the training and inference phase, {p; j, }
are used to select spans with high possibilities
based on the supervision from Lg,,. We infer-
ence the labels of selected spans using {p, ; ..} by
assigning label 7, j, = arg, maxpyj ; ., and we
assign None class for others.

4 Experiments

4.1 Datasets

We conduct our experiments on the ACE2004°,
ACE2005* (Doddington et al., 2004), GENIA (Kim
etal., 2003) and KBP2017° (Ji et al., 2017) datasets.

*https://catalog.ldc.upenn.edu/
LDC2005T09

4https ://catalog.ldc.upenn.edu/
LDC2006T06

Shttps://catalog.ldc.upenn.edu/
LDC2019T12

To fairly compare with previous works, we follow
the same dataset split with Lu and Roth (2015) for
ACE2004 and ACE2005 and use the split from Lin
et al. (2019) for GENIA and KBP2017 datasets.
The statistics of all datasets are listed in Table 1.
Following previous work, we measure the results
using span-level precision, recall, and F scores.

4.2 TImplementation Details

We use BERT-large-cased (Devlin et al.,
2019) and albert-xxlarge-v2 (Lan et al.,,
2020) as the contextual embedding, fast Text
(Bojanowski et al., 2017) as the word embedding
in ACE2004, ACE2005 and KBP2017 dataset.
We use BioBERT-v1.1 (Lee et al., 2020) and
BioWordVec (Zhang et al., 2019) as the contex-
tual and word embedding in the GENIA dataset
respectively. We truncate the input texts with con-
text at length 192. The part-of-speech embeddings
are initialized with dimension 50. The char embed-
dings are generated by a one-layer BiLSTM with
hidden size 50. The two-layers BILSTM with a hid-
den size of 1,024 is used for the token representa-
tions. For triaffine transformations, we use d = 256
for the ACE2004, ACE2005, and KBP2017 dataset,
and d = 320 for the GENIA dataset, respectively.
We set ftqy to 1.0, and select m = 30 in both train-
ing and inference. We use AdamW (Loshchilov
and Hutter, 2019) to optimize our models with a
linear learning rate decay. Detailed training param-
eters are presented in Appendix A.

4.3 Baselines

DYGIE (Luan et al., 2019) uses multi-task learning
to extract entities, relations, and coreferences.
MGNER (Xia et al., 2019) uses a detector to find
span candidates and a classifier for categorization.
BENSC (Tan et al., 2020) trains the boundary de-
tection and span classification tasks jointly.
TreeCRF (Fu et al., 2021) views entities as nodes
in a constituency tree and decodes them with a
Masked Inside algorithm.
Biaffine (Yu et al., 2020) classifies spans by a bi-
affine function between boundary representations.
Pyramid (Wang et al., 2020) designs pyramid layer
and inverse pyramid layer to decode nested entities.
We also report the results of models with other
paradigms, including hypergraph-based methods
(Wang and Lu, 2018), transition-based methods
(Fisher and Vlachos, 2019), generative methods
(Yanetal.,2021; Tan et al., 2021; Shen et al., 2021),
and so on. We do not compare to BERT-MRC (Li
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ACE2004 ACE2005 GENIA KBP2017

Train Dev Test Train Dev Test Train Test Train Dev Test
## sentences 6,200 745 812 7,194 969 1,047 16,692 1,854 10,546 545 4,267
7 entities 22,204 2514 3,035 24411 3,200 2993 50,509 5,506 31,236 1,879 12,601
## nested entities 10,149 1,092 1,417 9,389 1,112 1,118 9,064 1,199 8,773 605 3,707
max entity count 28 22 20 27 23 17 25 14 58 15 21

Table 1: Statistics of nested NER datasets ACE2004, ACE2005, GENIA, and KBP2017.
Model + Encoder ACE2004 ACE2005 GENIA
P R " P R 13 P R "

Span-based Methods
DYGIE (Luan et al., 2019) + LSTM - - 84.7 - - 82.9 - - 76.2
MGNER (Xia et al., 2019) + ELMo 81.7 77.4 79.5 79.0 717.3 78.2 - - -
BENSC (Tan et al., 2020) 85.8 84.8 85.3 83.8 83.9 83.9 79.2 77.4 78.3
TreeCRF (Fu et al., 2021) 86.7 86.5 86.6 84.5 86.4 85.4 78.2 78.2 78.2
Biaffine (Yu et al., 2020) 87.3 86.0 86.7 85.2 85.6 85.4 81.8 79.3 80.5
Pyramid (Wang et al., 2020) 86.08 86.48 86.28 8395 8539 84.66 79.45 7894 79.19
Pyramid (Wang et al., 2020) + ALBERT 87.71 87.78 87.74 8530 8740 86.34 80.33 7831 79.31
Others
SH (Wang and Lu, 2018) + LSTM 78.0 72.4 75.1 76.8 72.3 74.5 77.0 73.3 75.1
ARN (Lin et al., 2019) + LSTM 76.2 73.6 74.9 75.8 73.9 74.8 - - -
BiFlag (Luo and Zhao, 2020) + LSTM - - - 75.0 75.2 75.1 77.4 74.6 76.0
Merge Label (Fisher and Vlachos, 2019) - - - 82.7 82.1 82.4 - - -
Seq2seq (Strakova et al., 2019) - - 84.40 - - 84.33 - - 78.31
Second-best (Shibuya and Hovy, 2020) 85.94 8569 8582 83.83 84.87 8434 7781 7694 77.36
BartNER (Yan et al., 2021) + BART 87.27 86.41 86.84 83.16 86.38 84.74 7887 79.60 79.23
Sequence to Set (Tan et al., 2021) 88.46 86.10 87.26 8748 86.63 87.05 8231 78.66 80.44
Locate and Label (Shen et al., 2021) 8744 8738 8741 86.09 87.27 86.67 80.19 80.89 80.54
Triaffine (Ours) 87.13 87.68 8740 86.70 86.94 86.82 80.42 82.06 81.23
Triaffine (Ours) + ALBERT 88.88 88.24 88.56 87.39 90.31 88.83 - - -

Table 2: Results on the ACE2004, ACE2005, and GENIA datasets. BERT is the default encoder if not specified.

Model + Encoder KBP2017
P R I3

ARN + LSTM 77.7 71.8 74.6
BiFlag + LSTM 77.1 74.3 75.6
Sequence to Set 8491 83.04 83.96
Locate and Label 85.46 82.67 84.05
Triaffine (Ours) 86.50 83.65 85.05
Triaffine (Ours) + ALBERT 89.42 85.22 87.27

Table 3: Results on the KBP2017 dataset. BERT is the
default encoder if not specified.

et al., 2020a) since they use additional resources
as queries. DYGIE++ (Wadden et al., 2019) and
PURE (Zhong and Chen, 2021) use different splits
of the ACE datasets which are not comparable.

4.4 Results

We compare our method with baseline methods in
Table 2 for the ACE2004, ACE2005, and GENIA
datasets and Table 3 for the KBP2017 dataset, re-
spectively. With BERT as the encoder, our model
achieves 87.40, 86.82, 81.23, and 85.05 scores in
terms of F, outperforming all other span-based

methods such as BENSC, Pyramid, TreeCRF, and
Biaffine (+0.70 on ACE2004, +1.42 on ACE2005,
+0.73 on GENIA). Compared with methods in other
paradigms, our model also achieves the state-of-the-
art results on the GENIA (+0.69 vs. Locate and
Label) and KBP2017 dataset (+1.00 vs. Locate
and Label) and shows comparable performances
on ACE2004 (-0.01 vs. Locate and Label) and
ACE2005 (-0.23 vs. Sequence to Set). With a
stronger encoder ALBERT, our model achieves
88.56, 88.83, and 87.27 scores in terms of F} on
ACE2004, ACE2005, and KBP2017 respectively,
which exceeds all existing baselines including the
Pyramid model with ALBERT (+0.82 on ACE2004,
+2.49 on ACE2005) and the previous state-of-the-
art method on KBP2017 dataset (+3.22 vs. Locate
and Label).

4.5 Ablation Study

Considering we leverage multiple factors in mul-
tiple parts of the model, we design the following
ablation settings to validate the effectiveness of
each factor and the proposed triaffine mechanism.
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Setting Datasets
Span Representation Span Classification ACE2004 GENIA

Setting Label Boundary Function Boundary Attention Cross Function 13

(a) X X X Vv X X bi. 86.71 78.97
(b) 4 Vv tri. X 4 X lin. 87.36 80.50
(©) X v tri. Vv Vv X tri. 87.17 80.49
(d) 4 X lin. V4 4 X tri. 87.14 80.50
(e) Vv v lin. Vv Vv X tri. 87.35 80.63
() 4 4 tri. V4 4 X lin. 87.49 80.70
(2 v v tri. Vv Vv X tri. 87.54 80.84
(h) 4 V4 tri. Vv 4 4 tri. 87.82 81.23

Table 4: Ablation tests on ACE2004 development set and GENIA test set. Cross means using cross attention for
span classification. Lin. means linear transformation, bi. means biaffine transformation, and tri. means triaffine

transformation.

(a) To show the effectiveness of triaffine mecha-
nism, we use a baseline biaffine model with the
combination of boundary representations:

h|" [hy
Pijr = 1 Vr 1

(b) To show the effectiveness of boundaries in scor-
ing, we remove boundaries factor from scoring:

a7

Dijr = Vrhi,j,r + br (18)

(c) To show the effectiveness of labels in represen-
tation, we remove label factor in attention:

Si gk = TriAff(hi, hj, hy, W) (19)
(d) To show the effectiveness of boundaries in repre-
sentation, we remove boundaries factor in attention:

Sijkr = Skr = dr - hg (20)

(e) To show the effectiveness of the triaffine mech-
anism in representations, we replace triaffine atten-
tion with linear attention:
Sij ke = We(hi | by [ hg) + ¢, 21)
(f) To show the effectiveness of triaffine scoring,
we replace triaffine scoring to linear scoring:
pigr = Ve(hi [ hy [ hi ;) + by (22)
(g) To show the effectiveness of cross-span interac-
tions, we use our partial model with intermediate
predictions (model (a)-(g) use p; ;).
(h) Our full model (i.e, use pfl iy @S predictions).
Table 4 shows the results of ablation stud-
ies on ACE2004 and GENIA datasets. We use
BERT-large—-cased as the backbone encoder

on ACE2004 and BioBERT-v1 .1 on GENIA, re-
spectively. By comparing (a) with (g), we observe
significant performances drop (-0.87 on ACE2004, -
1.87 on GENIA), which indicates that our proposed
triaffine mechanism with multiple heterogeneous
factors performs better than the biaffine baseline.
Comparing (b) with (g), we find that the bound-
ary information contributes to span classification.
Comparing (c) and (d) with (g) supports that either
label or boundary in the triaffine attention improves
the performance. The setting (g) performs better
than (e) and (f), which shows the superiority of
the triaffine transformation over the linear func-
tion. We observe that (h) performs better than (g)
(+0.28 on ACE2004, +0.39 on GENIA), proving
the strength of triaffine attention with interactions
among related spans. The above studies support
that our proposed triaffine mechanism with asso-
ciated heterogeneous factors is effective for span
representation and classification.

4.6 Discussion

We compare the I scores of GENIA between tri-
affine model (g) and biaffine model (a) grouped
by entity lengths in Figure 4. In all columns, the
F3 score of our method is better than the baseline.
Furthermore, the right columns show that the £
score of the baseline gradually decreases with the
incremental entity lengths. However, our method
based on the triaffine mechanism with heteroge-
neous factors takes advantage of the interaction
from boundaries and related spans, which keeps
consistent results and outperforms the baseline.
The results grouped by flat or nested entities
are shown in Table 6. Our method has consistent
improvements than the baseline, especially for the
nested setting. Based on the above observations,
our method is good at solving long entities that are
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Dij,r D jr
Span Type Probability ~ Rank Type Probability
... [Cisco]org’s been slammed, but once [they]orc're exposed to [the rest of [the trading population]pgr |per -..
Cisco ORG 1.00 1 ORG 1.00
they ORG 1.00 2 ORG 1.00
the rest of the trading population PER 1.00 3 PER 1.00
the trading population GPE 0.50 4 PER 0.68
population None 1.00 5 None 1.00
... simian virus 40 enhancer activity was blocked by the [MnlI-Alul fragment]pna in [HeLa cells]¢ but not in [B cells]c.
HelLa cells cell line 0.99 1 cell line 0.99
B cells cell type 0.97 2 cell type 0.88
MnlI-Alul fragment DNA 0.96 3 DNA 0.95
simian virus 40 enhancer DNA 0.90 4 DNA 0.89
MnllI-Alul protein 0.43 5 None 0.41
40 enhancer None 0.99 6 None 1.00

Table 5: Case study on ACE2004 and GENIA dataset. Colored brackets indicate the boundaries and semantic types
of entities in true labels. “cl” and “ct” is the abbreviation of cell line and cell type, respectively.

100
== (a) Biaffine
= (h) Triaffine

4016 +0.02

+5.80
ao || || || || | ]

0
1(2135) 2(1828) 3(935) 4(389) 5(113) 6(46) 7(23) 8(17) 8+(20)
Entity length

+30.07

4217 +134 .

F1 scores
2
g

N
3

N

Figure 4: Comparison between triaffine and biaffine
models on GENIA with different lengths of entities.
Entity counts are in the parentheses.

ACE2004 GENIA
Flat Nested Flat Nested
(1,422) (1,092) (4,307) (1,199)
(a) 88.51 84.19 80.09 74.23
(h) 89.54 85.45 82.18 77.24
A +1.03 +1.26 +2.09 +3.01

Table 6: Comparison between triaffine and biaffine mod-
els on ACE2004 and GENIA grouped by flat or nested
entities. Entity counts are in the parentheses.

more likely to be nested, which supports our model
is built upon the characteristics of nested NER.

At the stage of cross-span interactions, we only
select top-m spans in practice. In Figure 5, we ana-
lyze the number m in two aspects. Firstly, we check
the recall of entity spans. We observe that tak-
ing top-30 spans achieves a recall of 99.89, which
means it covers almost all entities. As the max-
imum number of entities is 25, we believe it is
enough to select top-30 spans. Secondly, we check
the model performance. With top-30 spans, the
model achieves 81.23 scores in terms of F} and

Ent Recall
8
F1

100
81.0
BN EntRecall lgos
9 . 1

10 20 30 40 50 60 70 80 90 100
m

Figure 5: Recall for entity spans and Fj scores with
different numbers of candidate spans in GENIA dataset.

there is no obvious performance improvement with
more candidates. Based on two above observations,
we choose m = 30, which can well balance the
performance and efficiency.

Finally, we test the efficiency of the decompo-
sition. Compared with the naive triaffine scoring
that takes 638.1ms (509.4ms in GPU + 128.7ms
in CPU), the decomposed triaffine scoring takes
432.7ms (330.5ms in GPU + 102.2ms in CPU) for
10 iterations, which leads to approximately 32%
speedup (details are shown in Appendix B).

4.7 Case Study

To analyze the effect of fusing information from
related spans with the cross-span interaction, we
show two examples from ACE2004 and GENIA
datasets in Table 5. In the first example, the model
first predicts “the trading population” as “GPE”,
however, it revises to “PER” correctly by consider-
ing span interactions with the outer span “the rest
of the trading population”. In the second exam-
ple, it first predicts “Mnll-Alul” as “protein”. By
interacting with surrounding entities “Mnll-Alul
fragment”, the model corrects its label to None.
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5 Conclusion

In this paper, we propose a span-based method
for nested NER. Heterogeneous factors includ-
ing tokens, boundaries, labels, and related spans
are introduced to improve span classification with
a novel triaffine mechanism. Experiments show
our method outperforms all span-based methods
and achieves state-of-the-art performance on four
nested NER datasets. Ablation studies show the in-
troduced heterogeneous factors and triaffine mech-
anism are helpful for nested setting. Despite that
large-scale pretrained language models have shown
consistent improvement over many NLP tasks, we
argue that the well-designed features and model
structures are still useful for complex tasks like
nested NER. Furthermore, although we only verify
our triaffine mechanism in nested NER, we believe
it can also be useful in tasks requiring high order
interactions like parsing and semantic role labeling.
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A Reproducibility Checklist

We set seeds of torch, torch.cuda, numpy, and ran-
dom in Python to ensure reproducibility. We use

a grid search to find the best hyperparameters de-
pending on development set performances. We
search contextual embedding learning rate among
{1e-5,3e-5}. If the contextual embedding learn-
ing rate is 1e-5, we use static embedding learning
rate and task learning rate as le-4 and le-5. If the
contextual embedding learning rate is 3e-5, we use
static embedding learning rate and task learning
rate as 5e-4 and 3e-5. We search batch size among
{8,48,72}. We search MLP dropout ratio among
{0.1,0.2}. The final hyperparameters we used for
four datasets are listed in Table 7 and Table 8.

Parameters ACE0O4 ACEO5 KBP17 GENIA
Epoch 50 50 50 15
PLM Ir le-5 3e-5 le-5 3e-5
Static emb. Ir le-4 Se-4 le-4 Se-4
Task Ir le-5 3e-5 le-5 3e-5
o 0.01 0.01 0.01 0.01
Batch size 8 72 8 48
d 256 256 256 320
m 30 30 30 30
Adam e le-8 le-8 le-8 le-8
Warmup ratio 0.0 0.0 0.0 0.0
Emb. dropout 0.2 0.2 0.2 0.2
MLP dropout 0.1 0.1 0.1 0.2
Weight decay 0.01 0.01 0.01 0.01
Clipping grad 0.1 0.1 0.1 0.1

Table 7: Hyper-parameters for using BERT encoder.

Parameters ACE04 ACEO05 KBP17
Epoch 10 10 10
PLM Ir le-5 le-5 3e-5
Static emb. Ir le-4 le-4 Se-4
Task Ir le-5 le-5 3e-5
o 0.01 0.01 0.01
Batch size 8 8 72
d 256 256 256
m 30 30 30
Adam € le-8 le-8 le-8
Warmup ratio 0.0 0.0 0.0
Emb. dropout 0.2 0.2 0.2
MLP dropout 0.1 0.1 0.2
Weight decay 0.01 0.01 0.01
Clipping grad 0.1 0.1 0.1

Table 8: Hyper-parameters for using ALBERT encoder.

B The Decomposition of Triaffine Scoring

We introduce the decomposition of triaffine scoring
in calculating p; ; » and p§ o
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The naive calculation procedure of p; ; , is:

Si,j,k,r = TriAff(hi, hj, hk, Wr)
i = — Pk 4)
1,7,k T y
=i exP(Sijiwr)

(23)

J
hj, = Z a; jk+MLP(hy,)
k=1
pi,jﬂ“ = TrlAﬁ(hZ, hj, hi,j,ra Vr)

(25

(26)

For our proposed decomposition of p; ; ., we
first calculate «; ; . - as equations 23 and 24. And
we calculate:

0 jkor = TI‘lAff(hZ, hj, hk, Vr) 27

J
Dijr = Z QG j ki k. (28)

k=i

The main difference between naive calculation and
decomposition calculation is between Equation 26
and Equation 27.

We suppose our batch size as B, sequence count
as IV, output dimensions of MLP layers as d, the
count of spans for calculating cross span repre-
sentations as m, and label count as R (including
None class). The shapes of tensors [h;], [h;], [hy]
are B x N x d. The shape of tensor [h; ;] is
BxNxN xR xd.

We benchmark the performances of Equation 26
and Equation 27 in PyTorch for 10 iterations. We
use the same hyper-parameters and devices as our
main experiments. We levearge opt_einsum® to cal-
culate triaffine transformations in both equations.

Table 9 shows the time usage comparison be-
tween Equation 26 and Equation 27. Equation 26
uses 309.7ms (300.5ms in GPU + 9.2ms in CPU)
and Equation 27 uses 150.1ms (145.6ms in GPU
+ 4.4ms in CPU). The larger tensor size and
higher rank of [h; ; ] results in slower calculations
of aten::bmm, aten::copy_ and aten::permute in
Equation 26. The time usage differences are clearly
dominated by the function aten::copy_, which is
optimized by our decomposition.

We also compare the time usage between the
naive triaffine scoring and the decomposed triaffine
scoring in Table 9. The naive triaffine scoring
takes 638.1ms (509.4ms in GPU + 128.7ms in
CPU), and the decomposed triaffine scoring takes
432.7ms (330.5ms in GPU + 102.2ms in CPU)

*https://github.com/dgasmith/opt_
einsum

for 10 iterations, which leads to approximately
32% speedup. The GPU time usages are reason-
able since they both need to calculate two triaffine
transformations. The CPU time usages increase
for both naive and decomposition triaffine scoring.
Additional CPU time usages come from function
aten::einsum, aten::permute, and aten::reshape,
and the naive calculation increases more due to
slower aten::einsum. Overall, the decomposition
triaffine scoring uses less time on both GPU and
CPU than the naive triaffine scoring.

Futhermore, we also test the time usage of p; ; .
using two calculation procedures. We find using
the decomposition triaffine scoring still has about
6% speed up (naive:125.8ms in GPU + 15.0ms in
CPU vs. decomposition:115.5ms in GPU + 16.8ms
in CPU) regardless the relatively small size of h{

z’]’/r

(The shape of tensor [h$ ;] is B x m x R x d).
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Method Function CPU Time GPU Time
Usage Percentage Usage Percentage

Equation 26  aten::copy_ 0.5ms 5.9% 223.7Tms 74.5%
aten::bmm 0.5ms 5.0% 38.2ms 12.7%
aten::mm 1.5ms 15.7% 37.1ms 12.3%
Total 9.2ms 100.0% 300.5ms 100.0%
Equation 27  aten::copy_ 0.2ms 4.7% 62.5ms 42.9%
aten::bmm 0.4ms 10.0% 47.4ms 32.6%
aten::mm 0.3ms 6.0% 34.4ms 23.7%
Total 4.4ms 100.0% 145.6ms 100.0%
Naive aten::copy_ 7.3ms 5.7% 302.3ms 59.3%
aten::bmm 1.2ms 0.9% 109.3ms 21.5%
aten::mm 1.7ms 1.4% 74.4ms 14.6%
aten::einsum 61.8ms 48.0% 1.1ms 0.2%
aten::permute  36.7ms 28.5% 0.8ms 0.2%
aten::reshape 1.3ms 3.1% 0.5ms 0.1%
Total 128.7ms 100.0% 509.4ms 100.0%
Decompose  aten::copy_ 0.7ms 0.8% 136.7ms 41.4%
aten::bmm 1.2ms 1.2% 102.6ms 31.0%
aten::mm 5.4ms 5.3% 69.0ms 20.9%
aten::einsum 32.0ms 31.3% 1.1ms 0.3%
aten::permute  15.4ms 15.1% 0.7ms 0.2%
aten::reshape 37.4ms 36.6% 0.5ms 0.2%
Total 102.2ms 100.0% 330.5ms 100.0%

Table 9: Time usage compared with naive triaffine scoring and decomposed triaffine scoring.
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