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Abstract

Contrastive learning has shown great poten-
tial in unsupervised sentence embedding tasks,
e.g., SimCSE (Gao et al., 2021). However,
We find that these existing solutions are heav-
ily affected by superficial features like the
length of sentences or syntactic structures. In
this paper, we propose a semantics-aware con-
trastive learning framework for sentence em-
beddings, termed Pseudo-Token BERT (PT-
BERT), which is able to exploit the pseudo-
token space (i.e., latent semantic space) repre-
sentation of a sentence while eliminating the
impact of superficial features such as sentence
length and syntax. Specifically, we introduce
an additional pseudo token embedding layer
independent of the BERT encoder to map each
sentence into a sequence of pseudo tokens in
a fixed length. Leveraging these pseudo se-
quences, we are able to construct same-length
positive and negative pairs based on the atten-
tion mechanism to perform contrastive learn-
ing. In addition, we utilize both the gradient-
updating and momentum-updating encoders to
encode instances while dynamically maintain-
ing an additional queue to store the represen-
tation of sentence embeddings, enhancing the
encoder’s learning performance for negative
examples. Experiments show that our model
outperforms the state-of-the-art baselines on
six standard semantic textual similarity (STS)
tasks. Furthermore, experiments on alignments
and uniformity losses, as well as hard examples
with different sentence lengths and syntax, con-
sistently verify the effectiveness of our method.

1 Introduction

Sentence embedding serves as an essential tech-
nique in a wide range of applications, including
semantic search, text clustering, text classification,
etc. (Kiros et al., 2015; Logeswaran and Lee, 2018;
Conneau et al., 2017; Cer et al., 2018; Reimers
and Gurevych, 2019; Gao et al., 2021). Contrastive
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A caterpillar was caught by me

Yesterday Jack and Mary got married Yesterday Mary married Jack

He tore up the book The book was shredded by him

I caught a caterpillar
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Yesterday Jack and Mary got married Yesterday Jack and Mary got married

He tore up the book He tore up the book

A caterpillar was caught by me

A caterpillar was caught by me

Yesterday Jack and Mary got married Yesterday Mary Jack and got married

He tore up the book Book tore he up

A caterpillar caught me

Synonymous statements to human (Our consideration)

Discrete augmentation (CLEAR, etc.)

Continuous augmentation (SimCSE, etc.)

Figure 1: A realistic scenario is described at the top,
negative examples have the same length and structure,
while positive examples act in the opposite way. In
comparison, discrete augmentation obtains positive in-
stances with word deletion or reordering (Wu et al.,
2020; Meng et al., 2021), which may misinterpret the
meaning. The continuous method treats embeddings
of the same original sentence as positive examples and
augments sentences with the different encoding func-
tions (Carlsson et al., 2021; Gao et al., 2021).

learning works on learning representations such
that similar examples stay close whereas dissimilar
ones are far apart, and thus is suitable for sentence
embeddings due to its natural availability of sim-
ilar examples. Incorporating contrastive learning
in sentence embeddings improves the efficiency
of semantic information learning in an unsuper-
vised manner (He et al., 2020; Chen et al., 2020)
and has been shown to be effective on a variety
of tasks (Reimers and Gurevych, 2019; Gao et al.,
2021; Zhang et al., 2020).

In contrastive learning for sentence embeddings,
a key challenge is constructing positive instances.
Both discrete and continuous augmentation meth-
ods have been studied recently. Methods in Wu
et al. (2018); Meng et al. (2021) perform discrete
operations directly on the original sentences, such
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as word deletion and sentence shuffling, to get pos-
itive samples. However, these methods may lead
to unacceptable semantic distortions or even com-
plete misinterpretations of the original statement.
In contrast, the SimCSE method (Gao et al., 2021)
obtains two different embeddings in the continuous
embedding space as a positive pair for one sen-
tence through different dropout masks (Srivastava
et al., 2014) in the neural network for represen-
tation learning. Nonetheless, this method overly
relies on superficial features existing in the dataset
like sentence lengths and syntactic structures and
may pay less reflection on meaningful semantic in-
formation. As an illustrative example, the sentence-
pair in Fig. 1 “A caterpillar was caught by me.” and
“I caught a caterpillar.” appear to organize differ-
ently in expression but convey exactly the same
semantics.

To overcome these drawbacks, in this paper,
we propose a semantic-aware contrastive learn-
ing framework for sentence embeddings, termed
Pseudo-Token BERT (PT-BERT), that is able to
capture the pseudo-token space (i.e., latent seman-
tic space) representation while ignoring effects of
superficial features like sentence lengths and syn-
tactic structures. Inspired by previous works on
prompt learning and sentence selection (Li and
Liang, 2021; Liu et al., 2021; Humeau et al., 2020),
which create a pseudo-sequence and have it serve
the downstream tasks, we present PT-BERT to train
pseudo token representations and then to map sen-
tences into pseudo token spaces based on an atten-
tion mechanism.

In particular, we train additional 128 pseudo
token embeddings, together with sentence em-
beddings extracted from the BERT model (i.e.,
gradient-encoder), and then use the attention mech-
anism (Vaswani et al., 2017) to map the sentence
embedding to the pseudo token space (i.e., se-
mantic space). We use another BERT model (i.e.,
momentum-encoder (He et al., 2020)) to encode the
original sentence, adopt a similar attention mecha-
nism with the pseudo token embeddings, and finally
output a continuously augmented version of the
sentence embedding. We treat the representations
of the original sentence encoded by the gradient-
encoder and the momentum-encoder as a positive
pair. In addition, the momentum-encoder also gen-
erates negative examples, dynamically maintains
a queue to store these negative examples, and up-
dates them over time. By projecting all sentences

onto the same pseudo sentence, the model greatly
reduces the dependence on sentence length and syn-
tax when making judgments and makes the model
more focused on the semantic level information.

In our experiments, we compare our results with
the previous state-of-the-art work. We train PT-
BERT on 106 randomly sampled sentences from
English Wikipedia and evaluate on seven standard
semantic textual similarity (STS) tasks (Agirre
et al., 2012, 2013, 2014, 2015, 2016) (Marelli et al.,
2014). Besides, we also compare our approach
with a framework based on an advanced discrete
augmentation we proposed. We obtain a new state-
of-the-art on standard semantic textual similarity
tasks with our PT-BERT, which achieves 77.74%
of Spearman’s correlation. To show the effective-
ness of pseudo tokens, we calculate the align-loss
and uniformity loss (Wang and Isola, 2020) and
verify our approach on a sub-dataset with hard ex-
amples sampled from STS-(2012-2016). We have
released our source code1 to facilitate future work.

2 Related Work

In this section, we discuss related studies with
repect to the contrastive learning framework and
sentence embedding.

2.1 Contrastive Learning for Sentence
Embedding

Contrastive learning. Contrastive learning
(Hadsell et al., 2006) has been used with much
success in both natural language processing
and computer vision (Yang et al., 2019; Klein
and Nabi, 2020; Chen et al., 2020; He et al.,
2020; Gao et al., 2021). In contrast to generative
learning, contrastive learning requires learning
to distinguish and match data at the abstract
semantic level of the feature space. It focuses
on learning common features between similar
examples and distinguishing differences between
non-similar examples. In order to compare the
instances with more negative examples and less
computation, memory bank (Wu et al., 2018) is
proposed to enhance the performance under the
contrastive learning framework. While with a
large capacity to store more samples, the memory
bank is not consistent enough, which could not
update the negative examples during comparison.
Momentum-Contrast (MoCo) (He et al., 2020)
uses a queue to maintain the dictionary of samples

1https://github.com/Namco0816/PT-BERT
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which allows the model to compare the query with
more keys for each step and ensure the consistency
of the framework. It updates the parameter of the
dictionary in a momentum way.

Discrete and continuous augmentation. By
equipping discrete augmentation that modifies sen-
tences directly on token level with contrastive learn-
ing, significant success has been achieved in obtain-
ing sentence embeddings. Such methods include
word omission (Yang et al., 2019), entity replace-
ment (Xiong et al., 2020), trigger words (Klein and
Nabi, 2020) and traditional augmentations such as
deletion, reorder and substitution (Wu et al., 2020;
Meng et al., 2021). Examples with diverse ex-
pressions can be learned during training, making
the model more robust to expressions of different
sentence lengths and styles. However, these ap-
proaches are limited because there are huge dif-
ficulties in augmenting sentences precisely since
a few changes can make the meaning completely
different or even opposite.

Researchers have also explored the possibil-
ity of building sentences continuously, which in-
stead applies operation in embedding space. CT-
BERT (Carlsson et al., 2021) encodes the same
sentence with two different encoders. Unsup-
SimCSE (Gao et al., 2021) compares the represen-
tations of the same sentence with different dropout
masks among the mini-batch. These approaches
continuously augment sentences while retaining
the original meaning. However, positive pairs seen
by SimCSE always have the same length and struc-
ture, whereas negative samples are likely to act
oppositely. As a result, sentence length and struc-
ture are highly correlated to the similarity score of
examples. During training, the model has never
seen positive samples with diverse expressions, so
that in real test scenarios, the model would be more
inclined to classify the synonymous pairs with dif-
ferent expressions as negatives, and those sentences
with the same length and structures are more likely
to be grouped as positive pairs. This may cause a
biased encoder.

2.2 Pseudo Tokens

In the domain of prompt learning (Liu et al., 2021;
Jiang et al., 2020; Li and Liang, 2021; Gao et al.,
2020), the way to create prompt can be divided into
two types, namely discrete and continuous ways.
Discrete methods usually search the natural lan-
guage template as the prompt (Davison et al., 2019;

Sub-dataset original
STS12 66.54 68.40
STS13 78.50 82.41
STS14 68.76 74.38
STS15 70.27 80.91
STS16 71.31 78.56

Table 1: SimCSE’s results on sub-dataset from STS12-
16, comparing with original results.

SimCSE32 SimCSE64 SimCSE128

Avg. 76.25 75.20 75.29

Table 2: Different acceptable sequence length of Sim-
CSE would affect the result on STS tasks.

Petroni et al., 2019), while the continuous way al-
ways directly works on the embedding space with
"pseudo tokens" (Liu et al., 2021; Li and Liang,
2021). In retrieval and dialogue tasks, the current
approach adopts "pseudo tokens", namely "poly
codes" (Humeau et al., 2020), to jointly encode the
query and response precisely and ensure the infer-
ence time when compared with the Cross-Encoders
and Bi-Encoders (Wolf et al., 2019; Mazaré et al.,
2018; Dinan et al., 2019). The essence of these
methods is to create a pseudo-sequence and have
it serve the downstream tasks without the need for
humans to understand the exact meaning. The pa-
rameters of these pseudo tokens are independent of
the natural language embeddings, and can be tuned
based on a specific downstream task. In the fol-
lowing sections, we will show the idea to weaken
the model’s consideration of sentence length and
structures by introducing additional pseudo token
embeddings on top of the BERT encoder.

3 Methods

In this section, we introduce PT-BERT, which pro-
vides novel contributions on combining advantages
of both discrete and continuous augmentations to
advance the state-of-art of sentence embeddings.
We first present the setup of problems with a thor-
ough analysis on the bias introduced by the textual
similarity theoretically and experimentally. Then
we show the details of Pseudo-Token representa-
tion and our model’s architecture.

3.1 Preliminary
Consider a sentence s, we say that the augmenta-
tion is continuous if s is augmented by different
encoding functions, f(·) and f ′(·). Sentence em-
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Pseudo sentence Instance

Momentum Encoder

Momentum update
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1,2,…,m

1,2,…,m

1,2,…,m

That’s good.

Virgo wrote his memoirs in 1939.

Tomorrow will be better.

Instance

m

Pseudo sentence embedding

Embedding
BERT

Attention

m

Weighted pseudo sentence embedding

Attention
Sentence

embedding
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Q

Final embedding

Queue

Cosine similarity loss 

Gradient

Figure 2: The model is divided into two parts, the upper part (Encoder) updates the learnable parameters with
gradient, while the bottom (Momentum Encoder) inherits parameters from the upper part with momentum-updating.
We repeatedly input the same sequence of pseudo tokens while processing the original sentences. An additional
BERT attention mapping the pooler-output of BERT to pseudo sequence representation, extending the sentence
embedding to a fixed length and mapping the syntactic structure to the style of the pseudo sentence. The two
attentions in the figure are the same and with identical parameters.

beddings h = f(s) and h′ = f ′(s) are obtained
by these two functions. With a slight change of
the encoding function (e.g., encoders with different
dropout masks), h′ can be seen as a more precisely
augmented version of h compared with the discrete
augmentation. Semantic information of h′ should
be the same as h. Therefore, h and h′ are a pair of
positive examples and we could randomly sample
a sentence to construct negative example pairs.

Previous state-of-the-art models (Gao et al.,
2021) adopt the continuous strategy that augments
sentences with dropout (Srivastava et al., 2014). It
is obvious that all the positive examples in SimCSE
have the same length and structure while negative
examples act oppositely. In this way, SimCSE will
inevitably take these two factors as hints during
test. To further verify this conjecture, we sort out
the positive pairs with a length difference of more
than five words and negative pairs of less than two
words from STS-(2012-2016).

Table 1 shows that the performance of SimCSE
plummets on this dataset. Besides, we also find
that SimCSE truncates all training corpus into 32
tokens, which shortens the discrepancy of the sen-
tence’s length. After we scale the max length that

SimCSE could accept from 32 to 64 and 128, the
performance degrades significantly during the test
even though the model is supposed to learn more
from the complete version of sentences(See Ta-
ble 2). The reason for this result may lie in the fact
that, without truncation, all positive pairs still have
the same length, whereas the difference in length
between the negative and positive ones is enlarged.
Therefore, the encoder will rely more on sentence
length and make the wrong decision.

3.2 Pseudo-Token BERT

We realize it is vital to train an unbiased encoder
that captures the semantics and also would not in-
troduce intermediate errors. This motivates us to
propose the PT-BERT, as evidence shows that the
encoder may fail to make predictions when trained
on a biased dataset with same-length positive pairs,
by learning the spurious correlations that work only
well on the training dataset (Arjovsky et al., 2019;
Nam et al., 2020).

Pseudo-Token representations. The idea of PT-
BERT is to reduce the model’s excessive depen-
dence on textual similarity when making predic-
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tions. Discrete augmentation achieves this goal by
providing both positive and negative examples with
diverse expressions. Therefore the model does not
jump to conclusions based on sentence length and
syntactic structure during the test.

Note that we achieve this same purpose in a
seemingly opposite way: mapping the representa-
tions of both positive and negative examples to a
pseudo sentence with the same length and struc-
ture. We take an additional embedding layer out-
side the BERT encoder to represent a pseudo sen-
tence {0, 1, ...,m} with fixed length m and syntax.
This embedding layer is fully independent of the
BERT encoder, including the parameters and cor-
responding vocabulary. Random initialization is
applied to this layer, and each parameter will be
updated during training. The size of this layer de-
pends on the vocabulary of pseudo tokens(length of
pseudo sentences). Besides, adopting the attention
mechanism (Vaswani et al., 2017; Bahdanau et al.,
2015; Gehring et al., 2017), we take the pseudo
sentence embeddings as the query states of cross at-
tention while key and value states are the sentence
embeddings obtained from the BERT encoder. This
allows the pseudo sentence to attend to the core part
and ignore the redundant part of original sentence
while keeping the fixed length and structure.

Fig. 2 illustrates the framework of PT-BERT. De-
noting the pseudo sentence embedding as P and the
sentence embedding encoded by BERT as Y, we
obtain the weighted pseudo sentence embedding of
each sentence by mapping the sentence embedding
to the pseudo tokens with attention:

Z′
i = Attention(PWQ,YiW

K,YiW
V) (1)

Attention(Q,K,V) = softmax(
QKT

√
dk

)V,

(2)

where dk is the dimension of the model, WQ, WK,
WV are the learnable parameters with Rdk×dk , i
denotes the i-th sentence in the dataset. Then we
obtain the final embedding hi with the same atten-
tion layer by mapping pseudo sentences back to
original sentence embeddings:

hi = Attention(YiW
Q,Z′

iW
K,Z′

iW
V). (3)

Finally, we compare the cosine similarities be-
tween the obtained embeddings of h and h′ using
Eq. 4 , where h′ are the samples encoded by the
momentum-encoder and stored in a queue.

Model architecture. Instead of inputting the
same sentence twice to the same encoder, we follow
the architecture proposed in Momentum-Contrast
(MoCo) (He et al., 2020) such that PT-BERT can ef-
ficiently learn from more negative examples. Sam-
ples in PT-BERT are encoded into vectors with
two encoders: gradient-update encoder (the upper
encoder in Fig. 2) and momentum-update encoder
(the momentum encoder in Fig. 2). We dynamically
maintain a queue to store the sentence representa-
tions from momentum-update encoder.

This mechanism allows us to store as much neg-
ative samples as possible without re-computation.
Once the queue is full, we replace the "oldest" neg-
ative sample with a "fresh" one encoded by the
momentum-encoder.

Similar to the works based on continuous aug-
mentation, at the very beginning of the framework,
PT-BERT takes input sentence s and obtains hi

and h′
i with two different encoder functions. We

measure the loss function with:

ℓi = − log
esim(hi,h

′
i)/τ∑M

j=1 e
sim(hi,hj′ )/τ

, (4)

where hi denotes the representations extracted
from the gradient-update encoder, h′

i represents
the sentence embedding in the queue, and M is the
queue size. Our gradient-update and momentum-
update encoder are based on the pre-trained lan-
guage model with the same structure and dimen-
sions as BERT-base-uncased (Devlin et al., 2019).
The momentum encoder will update its parameters
similar to MoCo:

θk ← λθk + (1− λ)θq, (5)

where θk is the parameter of the momentum-
contrast encoder that maintains the dictionary, θq
is the query encoder that updates the parameters
with gradients, and λ is a hyperparameter used to
control the updating process.

Relationship with prompt learning. Rather
than directly perform soft prompting in the em-
bedding space (Li and Liang, 2021; Qin and Eisner,
2021; Liu et al., 2021) of the model, our method
follows the "plug and play" fashion that project
the representations to pseudo sentences only dur-
ing the period of training. During inference time,
PT-BERT predicts the results only with its BERT
backbone. Our original intention of designing this
procedure is to make the model predict sentence
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
Discrete Augmentation

CLEAR 49.00 48.90 57.40 63.60 65.60 72.50 75.60 61.80
MoCo 68.35 81.42 73.34 81.63 78.61 76.40 68.50 75.46
MoCo+reorder 66.14 80.06 73.14 81.35 76.01 73.99 65.76 73.78
MoCo+duplication 65.88 82.24 73.34 81.49 77.48 76.29 68.86 75.08
MoCo+deletion 67.86 81.43 72.8 81.48 77.84 76.91 69.46 75.40
MoCo+SRL 68.92 82.20 73.67 81.58 78.73 77.63 71.07 76.26

Continuous Augmentation
CT-BERT 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05
SimCSE-BERTbase 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
PT-BERTbase 71.20 83.76 76.34 82.63 78.90 79.42 71.94 77.74

Table 3: Sentence embedding performance on STS tasks with Spearman’s correlation measured. We highlight the
highest number for each methods. CLEAR (Wu et al., 2020) is trained on both English Wikipedia and Book Corpus
with 500k steps with their own version of pre-trained models. Result of CT-BERT (Carlsson et al., 2021) is based
on the settings of SimCSE (Gao et al., 2021)

Models STS-B dev
SimCSE-BERTbase + None 82.50
SimCSE-BERTbase + Crop 77.80
SimCSE-BERTbase + Deletion 75.90
MoCo-BERTbase + None 82.03
MoCo-BERTbase + Reorder 81.89
MoCo-BERTbase + Duplication 81.82
MoCo-BERTbase + Deletion 82.97
MoCo-BERTbase + SRL 82.40
PT-BERTbase 84.50

Table 4: Results on STS-B development sets. Results of
SimCSE (Gao et al., 2021) are reported from original
paper.

embedding precisely without adding extra compu-
tation. In some tasks, fixed-LM tuning (Li and
Liang, 2021) in soft prompting becomes compet-
itive only when the language models been scaled
to big enough (Lester et al., 2021). While the
prompt+LM (Ben-David et al., 2021; Liu et al.,
2021) tuning adds more burdens for both the pe-
riod of training and inference. Both prompt+LM
and fixed-LM prompt tuning require storing sepa-
rate copies of soft prompts for different tasks, while
our approach only saves the trained BERT model,
which draws on some ideas in prompt learning
and makes our considerations in computational and
memory efficiency and generality.

4 Experiments

In this section, we perform the standard semantic
textual similarity (STS) (Agirre et al., 2012, 2013,

2014, 2015, 2016) tasks to test our model. For all
tasks, we measure the Spearman’s correlation to
compare our performance with the previous state-
of-the-art SimCSE (Gao et al., 2021). In the fol-
lowing, we will describe the training procedure in
detail.

4.1 Training Data and Settings

Datasets. Following SimCSE, We train our
model on 1-million sentences randomly sampled
from English Wikipedia, and evaluate the model
every 125 steps to find the best checkpoints. Note
that we do not fine-tune our model on any dataset,
which indicates that our method is completely un-
supervised.

Hardware and schedule. We train our model on
the machine with one NVIDIA V100s GPU. Fol-
lowing the settings of SimCSE (Gao et al., 2021),
it takes 50 minutes to run an epoch.

4.2 Implementations

We implement PT-BERT based on Huggingface
transformers (Wolf et al., 2020) and initialize it
with the released BERTbase (Devlin et al., 2019).
We initialize a new embedding for pseudo tokens
with 128×768. During training, we create a pseudo
sentence {0, 1, 2, ..., 127} for every input and map
the original sentence to this pseudo sentence by
attention. With batches of 64 sentences and an
additional dynamically maintained queue of 256
sentences, each sentence has one positive sample
and 255 negative samples. Adam (Kingma and Ba,
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2014) optimizer is used to update the model param-
eters. We also take the original dropout strategy of
BERT with rate p = 0.1. We set the momentum
for the momentum-encoder with λ = 0.885.

4.3 Evaluation Setup
We evaluate the fine-tuned BERT encoder on STS-
B development sets every 125 steps to select the
best checkpoints. We report all the checkpoints
based on the evaluation results reported in Ta-
ble 4. The training process is fully unsupervised
since no training corpus from STS is used. Dur-
ing the evaluation, we also calculate the trends of
alignment-loss and uniformity-loss. Losses were
compared with SimCSE (Gao et al., 2021) under
the same experimental settings. After training
and evaluation, we test models on 7 STS tasks:
STS 2012-2016 (Agirre et al., 2012, 2013, 2014,
2015, 2016), STS Benchmark (Cer et al., 2017)
and SICK-Relatedness (Marelli et al., 2014). We
report the result of Spearman’s correlation for all
the experiments.

4.4 Main Results and Analysis
We first compare PT-BERT with our baseline:
MoCo framework + BERT encoder (MoCo-BERT).
MoCo-BERT could be seen as a version of PT-
BERT without pseudo token embeddings. Then we
apply traditional discrete augmentations such as re-
order, duplication, and deletion on this framework.
We also compare our work with CLEAR (Wu et al.,
2020) that substitutes and deletes the token spans.
Besides, we argue that the performance of these
methods is too weak. We additionally propose
an advanced discrete augmentation approach that
produces positive examples with the guidance of
Semantic Role Labeling (SRL) (Gildea and Juraf-
sky, 2002; Palmer et al., 2010) information, instead
of random deletion and reordering. SRL-guided
augmentation could compensate the errors caused
by these factors, acting as a combination of dele-
tion, duplication, and reordering with better accu-
racy. SRL is broadly used to identify the predicate-
argument structures of a sentence, it detects the
arguments associated with the predicate or verb of
a sentence and could indicate the main semantic
information of who did what to whom. For the
sentences with multiple predicates, we keep all the
sets with order [ARG0, PRED, ARGM− NEG,
ARG1] and concatenate them into a new sequence.
For the sentences without recognized predicate-
argument sets, we keep the original sentence as
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(b) Uniformity loss comparison on STS-B

Figure 3: Alignment and uniformity loss plot for PT-
BERT and SimCSE. We visualize the checkpoints every
125 training steps. For both measurements, lower num-
bers are better.

positive examples. In addition to the work based
on discrete approaches, we also compare with Sim-
CSE (Gao et al., 2021) which continuously aug-
ment sentences with dropout. In Table 3, PT-BERT
with 128 pseudo tokens further pushed the state-of-
the-art results to 77.74% and significantly outper-
formed SimCSE over six datasets.

In Fig 3, we observe that PT-BERT also achieves
better alignment and uniformity against SimCSE,
which indicates that pseudo tokens really help the
learning of sentence representations. In detail,
alignment and uniformity are proposed by (Wang
and Isola, 2020) to evaluate the quality of repre-
sentations in contrastive learning. The calculation
of these two metrics are shown in the following
formulas:

Lalignment = E
(x,x+)∼ppos

||f(x)− f(x+)||2, (6)
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Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
(a) Ablation studies on pseudo sequence length

L-64 67.04 82.04 73.65 81.12 78.64 77.35 71.33 75.88
L-90 68.94 82.08 74.53 81.22 79.06 78.01 71.49 76.48
L-128(Ours) 71.20 83.76 76.34 82.63 78.90 79.42 71.94 77.74
L-256 67.09 82.25 72.63 81.48 78.55 77.30 69.53 75.55
L-360 68.90 82.21 73.77 81.31 77.50 77.22 69.32 75.75

(b) Ablation studies on queue size
Q-192 70.29 83.78 75.98 82.13 78.48 78.91 72.53 77.44
Q-256(Ours) 71.20 83.76 76.34 82.63 78.90 79.42 71.94 77.74
Q-320 71.71 83.36 75.00 82.99 78.76 79.17 72.85 77.69

(c) Evaluations on hard sentence pairs with different length
SimCSE 66.54 78.50 68.76 70.27 71.31 - - 71.08
PT-BERT 72.02 80.24 72.92 74.50 72.50 - - 74.44

Table 5: Evaluation results of ablation studies and hard sentence pairs.

Luniformity = log E
(x,y)∼pdata

e−2||f(x)−f(y)||2 ,

(7)
where (x, x+) is the positive pair, (x, y) is the pair
consisting of any two different sentences in the
whole sentence set, f(x) is the normalized repre-
sentation of x. We employ the final embedding h
to calculate these scores.

According to the above formulas, lower align-
ment loss means a shorter distance between the
positive samples, and low uniformity loss implies
the diversity of embeddings of all sentences. Both
are our expectations for the representations based
on contrastive learning. To evaluate our model’s
performance on alignment and uniformity, we
compare it with SimCSE on the STS-benchmark
dataset (Cer et al., 2017), and the result is shown
in Figure 3. The result demonstrates that PT-BERT
outperforms SimCSE on these two metrics: our
model has a lower alignment and uniformity than
SimCSE in almost all the training steps, which in-
dicates that the representations produced by our
model are more in line with the goal of the con-
trastive learning.

5 Analysis

5.1 Ablation Studies

In this section, we first investigate the impact of
different sizes of pseudo token embeddings. Then
we would like to report the performance difference
caused by queue size under the MoCo framework.

Pseudo Sentence Length Different lengths of
pseudo tokens can affect the ability of the model to
express the sentence representations. By mapping
the original sentences to various lengths of pseudo
tokens, the performance of PT-BERT could be dif-
ferent. In this section, we keep all the parts except
the pseudo tokens and their embeddings unchanged.
We scale the pseudo sequence length from 64 to
360. Table 5(a) shows a comparison between dif-
ferent lengths of pseudo sequence in PT-BERT. We
find that during training, PT-BERT performs bet-
ter when attending to pseudo sequences with 128
tokens. Too few pseudo tokens do not fully ex-
plain the semantics of the original sentence, while
too many pseudo tokens increase the number of
parameters and over-express the sentence.

Queue Size The introduction of more negative
samples would make the model’s training more re-
liable. By training with different queue sizes, we
report the result of PT-BERT with different perfor-
mances due to the number of negative samples. In
Table 5(b), queue size q = 4 performs best. How-
ever, the difference in performance between the
three sets of experiments is not large, suggesting
that the model can learn well as long as it can see
enough negative samples.

5.2 Exploration on Hard Examples with
Different Length

To prove the effectiveness of PT-BERT that could
weaken the hints caused by textual similarity, we
further test PT-BERT on the sub-dataset introduced
in Sec. 3.1. We sorted out the positive pairs with

253



a length difference of more than five words and
negative pairs of less than two words from STS-
(2012-2016). PT-BERT significantly outperforms
SimCSE with 3.36% Spearman’s correlation, in-
dicating that PT-BERT could handle these hard
examples better than SimCSE. This further proves
that PT-BERT could debias the spurious correla-
tion introduced by sentence length and syntax, and
focus more on the semantics.

6 Conclusion

In this paper, we propose a semantic-aware con-
trastive learning framework for sentence embed-
dings, termed PT-BERT. Our proposed PT-BERT
approach is able to weaken textual similarity infor-
mation, such as sentence length and syntactic struc-
tures, by mapping the original sentence to a fixed
pseudo sentence embedding. We provide analysis
of these factors on methods based on continuous
and discrete augmentation, showing that PT-BERT
augments sentences more accurately than discrete
methods while considering more semantics instead
of textual similarity than continuous approaches.
Lower uniformity loss and alignment loss prove
the effectiveness of PT-BERT and further experi-
ments also show that PT-BERT could handle hard
examples better than existing approaches.

Providing a new perspective to the continuous
data augmentation in sentence embeddings, we be-
lieve our proposed PT-BERT has great potential
to be applied in broader downstream applications,
such as text classification, text clustering, and sen-
timent analysis.

Acknowledgements

We would like to thanks the anonymous review-
ers for their valuable and constructive comments.
This work was supported in part by the Hong Kong
RGC grant ECS 21212419, Technological Break-
through Project of Science, Technology and Innova-
tion Commission of Shenzhen Municipality under
Grants JSGG20201102162000001, the Hong Kong
Laboratory for AI-Powered Financial Technolo-
gies, the CityU Teaching Development Grants un-
der 6000755, and the UGC Special Virtual Teach-
ing and Learning Grants under 6430300.

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei

Guo, Iñigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. SemEval-2015 task 2: Semantic tex-
tual similarity, English, Spanish and pilot on inter-
pretability. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 252–263, Denver, Colorado. Association for
Computational Linguistics.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer,
Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Rada Mihalcea, German Rigau, and Janyce Wiebe.
2014. SemEval-2014 task 10: Multilingual semantic
textual similarity. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval
2014), pages 81–91, Dublin, Ireland. Association for
Computational Linguistics.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. SemEval-2016
task 1: Semantic textual similarity, monolingual
and cross-lingual evaluation. In Proceedings of the
10th International Workshop on Semantic Evaluation
(SemEval-2016), pages 497–511, San Diego, Califor-
nia. Association for Computational Linguistics.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 task 6: A
pilot on semantic textual similarity. In *SEM 2012:
The First Joint Conference on Lexical and Compu-
tational Semantics – Volume 1: Proceedings of the
main conference and the shared task, and Volume
2: Proceedings of the Sixth International Workshop
on Semantic Evaluation (SemEval 2012), pages 385–
393, Montréal, Canada. Association for Computa-
tional Linguistics.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *SEM 2013 shared
task: Semantic textual similarity. In Second Joint
Conference on Lexical and Computational Semantics
(*SEM), Volume 1: Proceedings of the Main Confer-
ence and the Shared Task: Semantic Textual Similar-
ity, pages 32–43, Atlanta, Georgia, USA. Association
for Computational Linguistics.

Martín Arjovsky, Léon Bottou, Ishaan Gulrajani, and
David Lopez-Paz. 2019. Invariant risk minimization.
ArXiv, abs/1907.02893.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473.

Eyal Ben-David, Nadav Oved, and Roi Reichart.
2021. PADA: example-based prompt learning for
on-the-fly adaptation to unseen domains. CoRR,
abs/2102.12206.

Fredrik Carlsson, Amaru Cuba Gyllensten, Evan-
gelia Gogoulou, Erik Ylipää Hellqvist, and Magnus
Sahlgren. 2021. Semantic re-tuning with contrastive
tension. In ICLR.

254

https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.3115/v1/S14-2010
https://doi.org/10.3115/v1/S14-2010
https://doi.org/10.18653/v1/S16-1081
https://doi.org/10.18653/v1/S16-1081
https://doi.org/10.18653/v1/S16-1081
https://aclanthology.org/S12-1051
https://aclanthology.org/S12-1051
https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
http://arxiv.org/abs/2102.12206
http://arxiv.org/abs/2102.12206


Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169–174, Brussels, Belgium. Association for
Computational Linguistics.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In
Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 1597–1607.
PMLR.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Joe Davison, Joshua Feldman, and Alexander Rush.
2019. Commonsense knowledge mining from pre-
trained models. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1173–1178, Hong Kong, China. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2019. Wizard
of Wikipedia: Knowledge-powered conversational
agents. In Proceedings of the International Confer-
ence on Learning Representations (ICLR).

Tianyu Gao, Adam Fisch, and Danqi Chen. 2020.
Making pre-trained language models better few-shot
learners. CoRR, abs/2012.15723.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence

embeddings. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings of
the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning
Research, pages 1243–1252. PMLR.

Daniel Gildea and Daniel Jurafsky. 2002. Auto-
matic labeling of semantic roles. Comput. Linguist.,
28(3):245–288.

R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimension-
ality reduction by learning an invariant mapping. In
2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’06),
volume 2, pages 1735–1742.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for un-
supervised visual representation learning. In 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 9726–9735.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux,
and Jason Weston. 2020. Poly-encoders: Architec-
tures and pre-training strategies for fast and accurate
multi-sentence scoring. In International Conference
on Learning Representations.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How Can We Know What Language
Models Know? Transactions of the Association for
Computational Linguistics, 8:423–438.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. 2015. Skip-thought vectors. In
Proceedings of the 28th International Conference on
Neural Information Processing Systems - Volume 2,
NIPS’15, page 3294–3302, Cambridge, MA, USA.
MIT Press.

Tassilo Klein and Moin Nabi. 2020. Contrastive self-
supervised learning for commonsense reasoning. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7517–
7523, Online. Association for Computational Lin-
guistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation.

255

https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://www.aclweb.org/anthology/D17-1070
https://www.aclweb.org/anthology/D17-1070
https://www.aclweb.org/anthology/D17-1070
https://doi.org/10.18653/v1/D19-1109
https://doi.org/10.18653/v1/D19-1109
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2012.15723
http://arxiv.org/abs/2012.15723
https://proceedings.mlr.press/v70/gehring17a.html
https://proceedings.mlr.press/v70/gehring17a.html
https://doi.org/10.1162/089120102760275983
https://doi.org/10.1162/089120102760275983
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR42600.2020.00975
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.18653/v1/2020.acl-main.671
https://doi.org/10.18653/v1/2020.acl-main.671
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190


Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too. arXiv:2103.10385.

Lajanugen Logeswaran and Honglak Lee. 2018. An
efficient framework for learning sentence represen-
tations. In International Conference on Learning
Representations.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. A SICK cure for the evaluation of
compositional distributional semantic models. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation, LREC 2014,
Reykjavik, Iceland, May 26-31, 2014, pages 216–223.
European Language Resources Association (ELRA).

Pierre-Emmanuel Mazaré, Samuel Humeau, Martin Rai-
son, and Antoine Bordes. 2018. Training millions of
personalized dialogue agents. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 2775–2779, Brussels,
Belgium. Association for Computational Linguistics.

Yu Meng, Chenyan Xiong, Payal Bajaj, Saurabh Tiwary,
Paul Bennett, Jiawei Han, and Xia Song. 2021. Coco-
lm: Correcting and contrasting text sequences for
language model pretraining.

Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee,
and Jinwoo Shin. 2020. Learning from failure: Train-
ing debiased classifier from biased classifier. In Ad-
vances in Neural Information Processing Systems.

Martha Palmer, Daniel Gildea, and Nianwen Xue. 2010.
Semantic role labeling. Synthesis Lectures on Human
Language Technologies, 3(1):1–103.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying lms with mixtures of soft prompts.
CoRR, abs/2104.06599.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural net-
works from overfitting. J. Mach. Learn. Res.,
15(1):1929–1958.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Tongzhou Wang and Phillip Isola. 2020. Understanding
contrastive representation learning through alignment
and uniformity on the hypersphere. In International
Conference on Machine Learning, pages 9929–9939.
PMLR.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019. Transfertransfo: A transfer
learning approach for neural network based conver-
sational agents.

Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua
Lin. 2018. Unsupervised feature learning via non-
parametric instance-level discrimination.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian Khabsa,
Fei Sun, and Hao Ma. 2020. Clear: Contrastive
learning for sentence representation.

Wenhan Xiong, Jingfei Du, William Yang Wang, and
Veselin Stoyanov. 2020. Pretrained encyclopedia:
Weakly supervised knowledge-pretrained language
model. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net.

Zonghan Yang, Yong Cheng, Yang Liu, and Maosong
Sun. 2019. Reducing word omission errors in neural
machine translation: A contrastive learning approach.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 6191–
6196, Florence, Italy. Association for Computational
Linguistics.

Yan Zhang, Ruidan He, Zuozhu Liu, Kwan Hui Lim,
and Lidong Bing. 2020. An unsupervised sentence
embedding method by mutual information maximiza-
tion. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1601–1610, Online. Association for
Computational Linguistics.

256

https://openreview.net/forum?id=rJvJXZb0W
https://openreview.net/forum?id=rJvJXZb0W
https://openreview.net/forum?id=rJvJXZb0W
http://www.lrec-conf.org/proceedings/lrec2014/summaries/363.html
http://www.lrec-conf.org/proceedings/lrec2014/summaries/363.html
https://doi.org/10.18653/v1/D18-1298
https://doi.org/10.18653/v1/D18-1298
http://arxiv.org/abs/2102.08473
http://arxiv.org/abs/2102.08473
http://arxiv.org/abs/2102.08473
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
http://arxiv.org/abs/2104.06599
http://arxiv.org/abs/2104.06599
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://arxiv.org/abs/1901.08149
http://arxiv.org/abs/1901.08149
http://arxiv.org/abs/1901.08149
http://arxiv.org/abs/1805.01978
http://arxiv.org/abs/1805.01978
http://arxiv.org/abs/2012.15466
http://arxiv.org/abs/2012.15466
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH
https://doi.org/10.18653/v1/P19-1623
https://doi.org/10.18653/v1/P19-1623
https://doi.org/10.18653/v1/2020.emnlp-main.124
https://doi.org/10.18653/v1/2020.emnlp-main.124
https://doi.org/10.18653/v1/2020.emnlp-main.124

