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Abstract
Word embeddings are powerful dictionaries,
which may easily capture language variations.
However, these dictionaries fail to give sense
to rare words, which are surprisingly often cov-
ered by traditional dictionaries. In this paper,
we propose to use definitions retrieved in tra-
ditional dictionaries to produce word embed-
dings for rare words. For this purpose, we intro-
duce two methods: Definition Neural Network
(DefiNNet) and Define BERT (DefBERT). In
our experiments, DefiNNet and DefBERT sig-
nificantly outperform state-of-the-art as well
as baseline methods devised for producing em-
beddings of unknown words. In fact, DefiNNet
significantly outperforms FastText, which im-
plements a method for the same task-based on
n-grams, and DefBERT significantly outper-
forms the BERT method for OOV words. Then,
definitions in traditional dictionaries are useful
to build word embeddings for rare words.

1 Introduction

Words without meaning are like compasses without
needles: pointless. Indeed, meaningless words lead
compositionally to meaningless sentences and, con-
sequently, to meaningless texts and conversations.
Second language learners may grasp grammatical
structures of sentences, but, if they are unaware
of the meaning of single words in these sentences,
they may fail to understand the whole sentences,
especially when there is an insufficient context for
unfamiliar words. This is why a large body of
natural language processing research is devoted to
devising ways to capture word meaning.

As language is a living body, distributional meth-
ods (Turney and Pantel, 2010; Mikolov et al., 2013;
Pennington et al., 2014) are seen as the panacea to
capture word meaning as opposed to more static
models based on dictionaries (Fellbaum, 1998) and

other lexical resources (Baker et al., 1998; Kip-
per et al., 2000). Distributional methods may eas-
ily capture new meaning of existing words and,
eventually, can easily assign meaning to emerging
words. In fact, the different methods can scan cor-
pora and derive the meaning of these new words
by observing them in context (Harris, 1954; Firth,
1950; Wittgenstein, 1953). Words are then repre-
sented as vectors – now called word embeddings –
which are then used to feed neural networks to pro-
duce meaning for sentences (Bengio et al., 2003;
İrsoy and Cardie, 2014; Kalchbrenner et al., 2014;
Tai et al., 2015) and meaning for whole texts (Joulin
et al., 2017; Lai et al., 2015).

Distributional methods have a strong limitation:
word meaning can be assigned only for words
where sufficient contexts can be gathered. Rare
words are not covered and become the classical
out-of-vocabulary words, which may hinder the
understanding of specific yet important sentences.
To overcome this problem, n-grams based distribu-
tional models have emerged (Joulin et al., 2016)
where word meaning is obtained by composing

“meaning” of character n-grams forming a word.
These n-grams act as proto-morphemes and, hence,
meaning of unknown words can be obtained by
composing meaning of proto-morphemes.

Traditional dictionaries can offer a solution to
find meaning of rare words. They have been put
aside since they cannot easily adapt to language
evolution and they cannot easily provide distributed
representations for neural networks.

In this paper, we propose to use definitions in
dictionaries to compositionally produce distribu-
tional representations for out-of-vocabulary (OOV)
words. Trying to reproduce in a distributional set-
ting the compositional properties that hold between
symbols is a debated task since compositional dis-
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Figure 1: Exploiting definitions for out-of-vocabulary words: the DefiNNet and the DefBERT models.

tributional models were proposed (Mitchell and La-
pata, 2008; Baroni and Zamparelli, 2010; Zanzotto
and Dell’Arciprete, 2011; Paperno et al., 2014; Fer-
rone and Zanzotto, 2020). Definitions in dictio-
naries are intended to describe the meaning of a
word to a human reader. Then, we propose two
models to exploit definitions to derive the mean-
ing of OOV words: (1) Definition Neural Network
(DefiNNet), a simple neural network; (2) DefBERT,
a model based on pre-trained BERT. We experi-
mented with different tests and datasets derived
from WordNet (Fellbaum, 1998). Firstly, we de-
termined if DefiNNet and DefBERT can learn to
derive word meaning from definitions. Secondly,
we aimed to establish whether DefiNNet and Def-
BERT can cover OOV words, which are not cov-
ered by word2vec (Mikolov et al., 2013) or by
the BERT pre-trained encoder, respectively. In
our experiments, DefiNNet and DefBERT signifi-
cantly outperform state-of-the-art as well as base-
line methods devised for producing embeddings of
unknown words. In fact, DefiNNet significantly
outperforms FastText (Joulin et al., 2016), which
implements a method for the same task-based on n-
grams, and DefBERT significantly outperforms the
BERT method for OOV words. Then, definitions
in traditional dictionaries are useful to build word
embeddings for rare words.

2 Background and Related Work

Out-of-vocabulary (OOV) words have been often
a problem as these OOV words may hinder the
applicability of many NLP systems. For example,

if words are not included in a lexicon of a Proba-
bilistic Context-Free Grammar, interpretations for
sentences containing these words may have a null
probability. Hence, solutions to this problem date
back in time.

In the context of word embeddings, three fami-
lies of solutions have been proposed: (1) context-
based methods, (2) form-based methods, (3) com-
bination of previous. The first family includes
methods addressing the issue of learning new terms
from tiny data either tuning existing models (Her-
belot and Baroni, 2017) or performing a linear
transformation on the average of all context word
embedding (Khodak et al., 2018). In form-based
methods, the most common solution is to use word
n-grams (Joulin et al., 2016) or word pieces of vari-
able length (Wu et al., 2016) as proxies to model
morphemes. Embeddings are learned for 3-grams
as well as for word pieces. In Joulin et al. (2016)
these 3-grams are then combined to obtain the em-
bedding for the entire word. For example, the word
cheerlessness, which contains 3 morphemes (cheer,
less and ness), is modeled by using embeddings
for ⃗che, h⃗ee, ..., e⃗ss in the 3-gram approach and
by using embeddings for ⃗cheer and ⃗lessness in
the word pieces approach. These embeddings are
possibly capturing information about the related
morphemes. In this way, OOV word embeddings
are correlated with meaningful bits of observed
words. These models are our baselines. The last
family includes methods taking into account both
contextual and morphological information (Schick
and Schütze, 2019; Hu et al., 2019; Schick and
Schütze, 2020).
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Deriving word embeddings for OOV words from
dictionary definitions is an alternative approach.
This approach has shown to be competitive in low
resource scenarios in Bahdanau et al. (2017) where
an LSTM model was fed with the definition. Dic-
tionary definitions have been used in early attempts
to train rudimentary compositional distributional
semantic models (Zanzotto et al., 2010), which
aimed to build embeddings for sequences of two
words. In the word embedding field, several al-
gorithms using definitions were proposed to build
new embeddings matrices (Hill et al., 2016; Tissier
et al., 2017; Bosc and Vincent, 2018). However,
those methods are alternatives to the corpus-based
distributional ones while our method is focused on
tackling the OOV words problem, complementing
existing word embedding spaces. Lexical resources
have been also used exploiting their underlying se-
mantic graph as an additional source of information
(Pilehvar and Collier, 2017; Prokhorov et al., 2019).
However, models based on those semantic graphs
rely on a stronger assumption than models based
on definitions only.

Universal sentence embedders (USEs) (Conneau
et al., 2018) can play an important role in this
novel approach. In fact, definitions are particu-
lar sentences aiming to describe meaning of words.
Therefore, USEs should obtain an embedding rep-
resenting the meaning of a word by composing
embeddings of words in the definition.

Moreover, deriving word embeddings from def-
initions can be seen as a semantic stress test of
universal sentence embedders. Generally, the abil-
ity of USEs (Devlin et al., 2019; Yang et al., 2020;
Clark et al., 2020) to semantically model sentences
is tested with end-to-end downstream tasks, for
example, natural language inference (NLI) (Jiang
and de Marneffe, 2019a; Raffel et al., 2020; He
et al., 2021), question-answering (Zhang, 2019) as
well as dialog systems (Wu et al., 2020). USEs
such as BERT (Devlin et al., 2019) are encoding
semantic features in hidden layers (Jawahar et al.,
2019; Miaschi et al., 2020). However, USEs’ suc-
cess in downstream tasks may be due to superficial
heuristics (as supposed in McCoy et al. (2019) and
Ranaldi et al. (2022)) and not to deep modeling of
semantic features. Therefore, our study can con-
tribute to this debate. In fact, to the best of our
knowledge, it is the first study aiming to investigate
if USEs can model meaning by producing embed-
ding for words starting from their definitions.

3 Model

This section introduces our proposals to use
definitions in generating embeddings for out-of-
vocabulary words: Definition Neural Network
(DefiNNet) and BERT for Definitions (DefBERT).
Section 3.1 describe the basic idea to process Word-
Net definitions. Section 3.2 describes the defini-
tion of the feed-forward neural network DefiNNet.
Finally, Section 3.3 describes how we used the
Universal Sentence Embedder BERT in producing
embeddings for definitions.

3.1 Basic Idea

Our model stems from an observation: when some-
one steps into a rare unknown word while reading,
definitions in traditional dictionaries are the natural
resource used to understand the meaning of this
rare, out-of-one’s-personal-dictionary word. Then,
as people rely on dictionaries in order to under-
stand meanings for unknown words, learners of
word embeddings could do the same.

Indeed, definitions in dictionaries are conceived
to define compositionally the meaning of target
words. Therefore, these are natural candidates for
deriving a word embedding of an OOV word by
composing the word embeddings of the words in
the definition. The hunch is that universal sentence
embedders can be used for this purpose.

Moreover, these definitions have a recurrent
structure, which can be definitely used to derive
a simpler model. Definitions for words w are of-
ten organized as a particular sentence that contains
the super-type of w and a modifier, which special-
izes the super-type (Amsler, 1980). For example
(Fig. 1), cheerlessness is defined in WordNet as
a feeling, which is the super-type, and of dreary
and pessimistic sadness, which is the modifier. By
using this structure, we propose a simpler model
for composing meaning.

In the following sections, we propose two mod-
els: (1) DefiNNet, a model that exploits the struc-
ture of the definitions to focus on relevant words;
and (2) DefBERT, a model that utilizes BERT as
universal sentence embedder to embed the defini-
tion in a single vector.

3.2 DefiNNet: a feed-forward neural network
to learn word embedding from definitions

The Definition Neural Network (DefiNNet) is our
first model and has two main components (see Fig-
ure 1). The first component, DefAnalyzer, aims
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to spot the two important words of the definition:
the super-type wh and the main word wm of the
modifier of the super-type. The second component,
DeNN, is a feed-forward neural network that takes
in input the embeddings, w⃗h and w⃗m, of the two
selected words and produces the embedding for the
target word w⃗def .

To extract the two main words from a given defi-
nition, DefAnalyzer exploits the recurrent structure
of definitions by using their syntactic interpreta-
tions. In our study, we use constituency parse trees
and correlated rules to extract the super-type wh

and its closest modifier wm. Basically, the sim-
ple algorithm is the following: given a definition
s, parse the definition s and select the main con-
stituent. If the main constituent contains a semantic
head and a modifier, then those are the two target
words. In the other case, select the semantic head
of the main constituent as the super-type wh and
the semantic head of the first sub-constituent as the
relevant modifier wm. For example, the parse tree
for the definition of cherlessness in Fig. 1 is the
following:

NP

NP

DT

a

NN

feeling

PP

IN

of

NP

ADJP

JJ

dreary

CC

or

JJ

pessimistic

NN

sadness

In this case, the main constituent is the first NP: the
selected wh is the word feeling which is semantic
head of the first NP; wm is noun sadness which is
the semantic head of PP. The semantic heads are
computed according to a slightly modified version
of the semantic heads defined by Collins, 2003.

The second component is DeNN that, given the
words embeddings w⃗h and w⃗m from the Word2Vec
embedding space for respectively wh and wm from
the definition, their POS tag ph, pm and the target’s
POS tag pc as additional information, outputs the
embedding w⃗c for the target word wc. The input
of DefiNNet is illustrated in Fig.1. The general
equation for DeNN is:

w⃗c = DeNN(w⃗h, w⃗m, ph, pm, pc)

The DeNN function can be described starting
from three simpler subnets: (1) FFw processes
word embeddings w⃗h and w⃗m; (2) FFp embeds
and processes ph, pm and pc; finally, (3) FF pro-
cesses the joint information from the previous
steps.

The equation describing the subnet FFw that
takes as input w⃗h and w⃗m is the following:

s⃗ = FFw(w⃗h, w⃗m) = σ(Wsσ(Whw⃗h +Wmw⃗m))

(1)
where Wh, Wm and Ws are dense layers and σ
is the LeakyReLU activation function.

The subnet FFp processes POS tags: ph, pm,
pc. Each pi for i ∈ {h,m, c} is firstly fed into
an embedding layer ϵ which weights are learned
from scratch. The resulting embedding ϵ(pi) is
then fed into a dense layer Wi. Hence p⃗i is defined
as follows:

p⃗i = Wiϵ(pi)

The resulting p⃗h, p⃗m, p⃗c are then concatenated (⊕)
and fed into a dense layer Wp. The following
equation describes the subnet FFp:

p⃗ = FFp(ph, pm, pc) = σ(Wp(p⃗h ⊕ p⃗m ⊕ p⃗c)
(2)

The s⃗ resulting from Equation 1 and the p⃗ from
Equation 2 are then concatenated (⊕):

h⃗ = s⃗⊕ p⃗

As final step h⃗ is fed into a feed-forward subnet
FF composed of the dense layers W1, W2 and
W3 as follows:

FF(⃗h) = W3σ(W2(σ(W1h⃗))) (3)

Hence the following:

w⃗c = FF(FFw(w⃗h, w⃗m),FFp(ph, pm, pc))

describes how DeNN computes the embedding w⃗c

for an OOV word having as input w⃗h, w⃗m, ph, pm
from DefAnalyzer and pc.

For comparative purposes, we defined two ad-
ditional baseline models: an hypernym model
(Head) and an additive model (Additive)
(Mitchell and Lapata, 2008). The Head model de-
rives the embedding for the OOV word c by using
the embedding for its hypernym h in WordNet, that
is, w⃗c = w⃗h. The Additive model instead adds the
embeddings of the two words in the definition used
by DefiNNet, that is, w⃗c = w⃗h + w⃗m.

3.3 DefBERT: Transforming definitions in
word embeddings

DefBERT aims to use BERT’s ability to process
sentences to use directly the definition for wc in
order to produce its embedding w⃗c. DefBERT[CLS]
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and DefBERTHead are the approaches followed in
exploiting the definition.

DefBERT[CLS] is the first of these approaches:
in this case, the definition of wc is given in input
to a pretrained BERT-base model and, as shown
in Figure 1, b⃗[CLS], the embedding for the [CLS]
token, is taken as sentence embedding in the USE
acceptation of BERT.

DefBERTHead is the second approach and in
this case is selected b⃗head, which is contextual em-
bedding of w⃗h from the definition. Since BERT’s
embedding are contextual, b⃗head could benefit from
the definition being the input sentence. A BERT
pretrained model as USE in DefBERT[CLS] and
its ability in producing contextualized word em-
beddings in DefBERTHead definition can hence be
exploited in producing embeddings for OOV.

For comparative purposes, we also de-
fine BERTwordpieces and BERTHead−Example.
BERTwordpieces is used to see if our model
outperforms the classical behavior of BERT when
it encounters OOV words. In this case, BERT is
fed with a sample sentence containing the target
OOV word, for example “... melancholy to pastel
cheerlessness” for the target OOV “cheerlessness”
(see Figure 1). Then, the word is divided into word
pieces. To obtain the embedding for the target
word, we sum up vectors of these word pieces.
BERTHead−Example instead is used to determine
if definitions are really useful for modeling
meaning of the head word. BERTHead−Example is
similar to DefBERTHead but the input is different.
BERTHead−Example has a random sentence that
contains the head word. Hence, comparing
DefBERTHead with BERTHead−Example gives
intuition if the head in definition really absorbs its
meaning.

4 Experiments

Experiments aim to investigate three issues:
(1) if DefiNNet and DefBERT word embed-
dings are reasonably better than baseline mod-
els for indirectly generating embeddings; (2) the
highly debated question whether similarity mea-
sures over WordNet are correlated with word em-
beddings (Lastra-Díaz et al., 2019); (3) finally,
if DefiNNet and DefBERT word embeddings for
out-of-vocabulary words obtained are good word
representations in terms of their correlation with
similarity measures on WordNet. Clearly, issue (2)
is necessary to investigate issue (3).

The rest of the section is organized as follows.
Section 4.1 introduces the general settings of our
experiments. Section 4.2 presents results and it is
organized in four subsections, which address the
above three issues. If needed, these subsections
introduce additional settings for the experiments.

4.1 Experimental set-up

Our experiments are defined around WordNet (Fell-
baum, 1998) and around the two word embedding
spaces of Word2Vec (Mikolov et al., 2013) (Ww2v)
and of BERT (Devlin et al., 2019) (WBERT ).
WordNet (Fellbaum, 1998) is the source of word
definitions, it is used to collect testing sets of pairs
of similar and dissimilar words and similarity mea-
sures over WordNet are used to rank them.

Then, IVw2v and IVBERT are WordNet words in
the target embedding matrices Ww2v and WBERT ,
respectively, and OOVw2v and OOVBERT are
WordNet words outside these matrices.

Additionally, IVBERT and OOVBERT are re-
stricted to words with usage example in WordNet
as these examples are needed for applying Def-
BERT. The datasets derived from those sets are
described in Table 1.

Word2Vec (Mikolov et al., 2013) and BERT (De-
vlin et al., 2019) offer instead large pre-trained
word embedding spaces. Indeed, Word2Vec’s em-
bedding space (Mikolov et al., 2013) is pre-trained
on part of Google News dataset (about 100 billion
words) and the BERT’s word embedding space
(Devlin et al., 2019) is pre-trained on lower-cased
English text from BooksCorpus (800M words)
(Zhu et al., 2015) and English Wikipedia (2,500M
words) as described by Devlin et al. (2019).

Dataset Subset of Size

Trainw2v IVw2v
31,471 (train)
7,867 (val)

Testw2v IVw2v 9,931
TestBERT IVBERT 3,218
Dataset Subset of Size # Sublists
PairsIVw2v IVw2v × IVw2v 14,000 2,000
PairsIVBERT

IVBERT × IVBERT 560 80
PairsIVfasttext

IVfasttext × IVfasttext 14,000 2,000
Pairsw2v OOVw2v × IVw2v 4,500 600
PairsBERT OOVBERT × IVBERT 3,500 450
Pairsw2v∩BERT Pairsw2v ∩ PairsBERT 450 60

Table 1: Datasets defined over WordNet

To investigate the first issue described at the be-
ginning of this section, we introduced Trainw2v,
Testw2v, and TestBERT . Trainw2v is DefiNNet
training set: this dataset contains definition for
IVw2v words since they are needed as target of
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DefiNNet. Testw2v is a test dataset and it is com-
pletely analogous to Trainw2v (Sec, 4.2.1). Since
DefBERT[CLS] is not trained, TestBERT is the
dataset prepared. Benchmarks on similarity and
relatedness are also introduced in Sec 4.2.2

DefiNNet and DefBERT are also tested to assess
their ability to produce embeddings for OOV that
may replicate some similarity measure between
words in pairs. The investigated pairs consist of
WordNet “sister terms”: two words are sister if
they are both immediate hyponyms of the same
node. In WordNet sister terms are definitely posi-
tive examples of similar words as well as negative
example pairs can be generated by selecting pairs
of words uniformly at random. Pairs datasets are
composed of positive or negative examples of sis-
ter terms. To address the second issue presented in
Sec 4, PairsIVw2v , PairsIVBERT

, PairsIVfasttext

datasets are generated. In this datasets both w1 and
w2 are IV words. Then, we collected two sets of
pairs of words Pairsw2v and PairsBERT : those
datasets are used to test if the correlation with sim-
ilarity measures holds with OOV word embedding
derived from DefiNNet or DefBERT. To capture dif-
ferent degrees of similarity among pairs of words in
WordNet, we selected three similarity measures de-
fined over WordNet: path (Rada et al., 1989), wup
(Wu and Palmer, 1994) and res (Resnik, 1995).
To correctly apply Spearman’s correlation between
our systems and the expected rank on the list of
pairs induced by a similarity measure, we divided
Pairs datasets into lists of 7 pairs. Pairs in the list
are selected to have 7 clearly different values of the
selected similarity (path, wup and res) between
the two words. The final Spearman’s correlation is
a distribution of correlation over these lists.

To comparatively investigate our DefiNNet and
DefBERT, we used FastText (Bojanowski et al.,
2016) as realized in Grave et al. (2018) along with:
(1) Additive and Head defined in Section 3.2; (2)
BERTwordpieces and BERTHead−Example defined
in Section 3.3. FastText defines embeddings un-
known words c by combining embeddings of 3-
grams, for example, the embedding for the OOV
word cheerlessness is represented as the vector
f⃗c = ⃗che+ h⃗ee+ ...+ e⃗ss.

As final experimental setting, definitions are
parsed using Stanford’s CoreNLP probabilistic
context-free grammar parser (Manning et al., 2014).
NLTK (Loper and Bird, 2002) is used to access
WordNet and compute similarity measures over it.

4.2 Results and discussion

For clarity, this section is organized around the
three issues we aim to investigate: the ability of
proposed methods to build embeddings of words
starting from dictionary definitions (Sec. 4.2.1,
Sec. 4.2.2); the debated relation between similarity
over word embeddings and similarity in WordNet
(Sec. 4.2.3); and, finally, the ability of the proposed
methods to produce embeddings for OOV words
(Sec. 4.2.4).

4.2.1 Word Embeddings from Dictionary
Definitions

The first issue to investigate is whether our
methods produce word embeddings from dic-
tionary definitions that are similar with respect
to word embeddings directly discovered. We
then studied the cosine similarity between the
two kinds of embeddings, for example, between
the embedding of cheerlessness and the embed-
ding of the definition a feeling of .... sad-
ness. For the diffent methods, the comparison
is on their own space, that is, sim(w⃗c, w⃗def ) for
DefiNNet and sim(⃗bc, b⃗[CLS]) or sim(⃗bc, b⃗head)
for DefBERT[CLS] and DefBERTHead, respec-
tively (see Fig. 1). Experiments are conducted on
In-Vocabulary words for both spaces by using the
Testw2v, TestBERT and Testw2v∩BERT datasets.

nouns verbs
Dataset Model sim sim

Testw2v

Additive 0.25(±0.17)◦ 0.29(±0.19)◦

Head 0.26(±0.21)⋆ 0.29(±0.25)⋆

DefiNNet 0.39(±0.18)◦⋆ 0.46(±0.14)◦⋆

TestBERT

DefBERTHead 0.46(±0.13)†‡ 0.41(±0.14)†‡

DefBERT[CLS] 0.32(±0.08)† 0.30(±0.09)†

BERTHead−Example 0.41(±0.12)‡ 0.39(±0.12)‡

Testw2v∩BERT

DefBERTHead 0.47(±0.13)†△ 0.42(±0.15)†△

DefBERT[CLS] 0.28(±0.09)†⋄ 0.30(±0.09)†⋄

DefiNNet 0.33(±0.13)△⋄ 0.47(±0.13)△⋄

Table 2: Cosine similarity between word embeddings
and embeddings of their definitions. The marking signs
⋆, ◦, †, ‡ and ⋄ indicate pairs of models results for which
the higher result is statistically significant better than
the other (with a 95% confidence level) according to the
one-sided Wilcoxon signed-rank test.

Definitions seem to be better sources of word em-
beddings instead of baseline methods and other so-
lutions. In fact, both DefiNNet and DefBERTHead

outperform different methods in their respective
tests for both nouns and verbs (see Table 2).
For nouns, DefiNNet has an average cosine sim-
ilarity of 0.39(±0.18), which is well above that
of Additive (0.25(±17)) and Head (0.26(±21)).
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In the same syntactic category, DefBERTHead

outperforms BERTHead−Example, 0.46(±0.13) vs.
0.41(±0.12). For verbs, DefiNNet has an aver-
age cosine similarity of 0.46(±0.14), which is
well above the Additive and the Head. In the
same category, DefBERTHead slightly outperforms
BERTHead−Example. Finally, in the common test,
that is, Testw2v∩BERT , definition-based models
outperform simpler models. DefBERTHead has
a better similarity for nouns and DefiNNet has a
better similarity for verbs.

For BERT, the embedding related to the token
[CLS] does not seem to represent the good token
where to take semantics of the sentence in terms
of a real composition of the meaning of compo-
nent words. DefBERT[CLS] performs poorly with
respect to DefBERTHead and also with respect to
BERTHead−Example in both syntactic categories
for TestBERT (see Table 2). This is confirmed in
the restricted set Testw2v∩BERT . Therefore, even
if the embedding in token [CLS] is often used as
universal sentence embedding for classification pur-
poses (Devlin et al., 2019; Adhikari et al., 2019;
Jiang and de Marneffe, 2019b), it may not contain
packed meaning whereas it may contain other kinds
of information regarding the sentence.

4.2.2 Standard Relatedness and Similarity
Tests

In this section, DefiNNet embeddings are evalu-
ated by measuring their ability to capture similarity
and relatedness of words pairs. The used bench-
marks contain words pairs and a score of similarity
for each pair assigned by human assessors. If the
similarity among embeddings correlates with the
assigned similarity score, then the embeddings are
considered capable of capturing similarity and relat-
edness. In this scenario, the first word’s embedding
of each pair is computed according to the exam-
ined method, the second embedding comes from
the Word2Vec embedding space. The obtained
Spearman’s coefficients are presented in Table 3.
Head and Additive baseline models are also tested.

DefiNNet achieves better correlation with all
the tested relatedness benchmarks: MEN (Bruni
et al., 2014), MTurk-287 (Radinsky et al., 2011)
and MTurk-771 (Halawi et al., 2012). Among
the similarity benchmarks, DefiNNet outperforms
the Additive and Head baseline in different tasks.
With RareWords (Luong et al., 2013), composed
of words with low occurrences, DefiNNet signif-
icantly outperforms both baselines. The corre-

Benchmark DefiNNet Head Additive
MEN 0.48(±0.01)⋄† 0.37⋄ 0.39†

MTurk-287 0.46(±0.02)⋄† 0.39⋄ 0.39†

MTurk-771 0.37(±0.01)⋄† 0.33⋄ 0.33†

RareWords 0.32(±0.01)⋄† 0.20⋄ 0.02†

SimLex999 0.18(±0.01)⋄† 0.15⋄ 0.19†

RG-65 0.43(±0.04)⋄ 0.63⋄ 0.41

MC-30 0.27(±0.07)⋄† 0.71⋄ 0.33†

SimVerb-3500 0.27(±0.01)⋄† 0.22⋄ 0.22†

Verb-143 0.41(±0.02)⋄† 0.25⋄ 0.26†

YP-130 0.43(±0.02)⋄† 0.27⋄ 0.27†

Table 3: Spearman’s correlation coefficients on simi-
larity and relatedness benchmarks. Mean and standard
deviation results in DefiNNet are obtained from 10 runs.
The symbols ⋄ and † indicate a statistically significant
difference between two results (with a 95% confidence
level) according to the one-sided Wilcoxon signed-rank
test.

lation coefficients calculated with SimLex999
(Hill et al., 2015) are instead closer and rela-
tively lower. Head achieves the best results with
the smaller RG-65 (Rubenstein and Goodenough,
1965) and its subset MC-30 (Miller and Charles,
1991). DefiNNet achieves a higher Spearman’s co-
efficient in SimVerb-3500 (Gerz et al., 2016),
Verb-143 (Baker et al., 2014) and YP-130
(Yang and Powers, 2006) which assess similarity
on verbs pair.

4.2.3 Word Embedding Spaces and WordNet
WordNet and its correlated similarly metrics can
be an interesting opportunity to extract testsets for
assessing whether our methods can be used to de-
rive embeddings of OOV words. However, it is a
strongly debated question whether similarities in
WordNet are correlated with similarities over word
embeddings (Lastra-Díaz et al., 2019).

Model Dataset Measure Spearman

Word2Vec PairsIV w2v

path 0.25(±0.39)
wup 0.25(±0.38)
res 0.50(±0.31)

FastText PairsIV fasttext

path 0.31(±0.38)
wup 0.40(±0.35)
res 0.52(±0.29)

BERT PairsIV BERT

path 0.09(±0.41)
wup 0.30(±0.39)
res 0.28(±0.38)

Table 4: Average Spearman’s coefficient measuring cor-
relation on cosine similarity among embedding and sim-
ilarity over WordNet taxonomy.

The aim of this section is to select WordNet

2657



Dataset Model Corr(path) Corr(wup) Corr(res)

Pairsw2v

Additive 0.24(±0.40)◦ 0.46(±0.32)◦ 0.44(±0.34)◦

Head 0.23(±0.37)⋆ 0.49(±0.30) 0.49(±0.31)⋆

FastText 0.07(±0.40) 0.43(±0.36)⋄ 0.41(±0.35)⋄

DefiNNet 0.03(±0.42)◦⋆ 0.50(±0.31)◦⋄ 0.51(±0.31)◦⋆⋄

PairsBERT

DefBERTHead 0.27(±0.36)‡• 0.33(±0.37)†‡• 0.31(±0.36)†‡•

DefBERT[CLS] 0.26(±0.36) 0.17(±0.37)† 0.11(±0.39)†

BERTHead−Example 0.15(±0.41)‡ 0.25(±0.38)‡ 0.19(±0.40)‡

BERTwordpieces 0.09(±0.37)• 0.19(±0.37)• 0.23(±0.38)•

Pairsw2v∩BERT

DefBERTHead 0.12(±0.44)⋄ 0.33(±0.36)• 0.27(±0.39)•

DefiNNet 0.31(±0.37)⋄△ 0.39(±0.33)△ 0.35(±0.36)△

FastText 0.19(±0.42) 0.35(±0.36) 0.32(±0.37)
BERTwordpieces 0.11(±0.37)△ 0.14(±0.42)•△ 0.18(±0.34)•△

Table 5: Average Spearman’s coefficient from the sister terms investigation. The marking signs ⋆, ◦, •, †, ‡, △ and
⋄ indicate pairs of models results for which the higher result is statistically significant better than the other (with a
95% confidence level) according to the one-sided Wilcoxon signed-rank test.

similarity measures that can be used to investi-
gate the quality of embeddings generated for OOV
words. For this experimental session, we used the
PairsIVw2v , PairsIVBERT

and PairsIVfasttext

datasets defined in Section 4.1, which are com-
posed of sister terms in WordNet.

Sister terms may be very similar or less similar.
For example, cheerlessness and depression (see
Figure 1) are sister terms and are definitely similar.
On the contrary, house and architecture are sister
terms but are less similar with respect to the pre-
vious pair of words. In WordNet, this difference
in similarity is captured by using many different
metrics.

We investigated three different WordNet simi-
larity measures: path (Rada et al., 1989), wup
(Wu and Palmer, 1994) and res (Resnik, 1995).
The measure path uses the length of the path con-
necting two synsets over the WordNet taxonomy.
The measure wup is still based on the length of
path between the synsets related to the two words
and takes into account the number of edges from
synsets to their Least Common Subsumer (LCS)
and the number of links from the LCS up to the
root of the taxonomy. Finally, the measure res be-
longs to another family of measures as it is based
on the Information Content. In res, the similarity
between synsets of the related words is a function
of the Information Content of their LCS. In this
case, a more informative LCS (a rare as well as a
specific concept) indicates that the hyponym con-
cepts are more similar.

The best correlated WordNet measure is res. In
fact, it is highly correlated for two spaces out of

three, Word2Vec and FastText, and it is on par with
wup in the BERT space (see 4). The average
Spearman’s correlation between the word embed-
ding spaces of Word2Vec and res is 0.50(±0.31),
which is well above path and wup. The same hap-
pens for the space FastText where the correlation
is 0.52(±0.29).

As a final consideration, for our purposes, word
embedding spaces are correlated and the best mea-
sure that captures this correlation is res.

4.2.4 Testing over out-of-vocabulary words
The final analysis is on real OOV words for
Word2Vec and for BERT. These last experiments
are carried out by considering the positive relation
between WordNet similarity measures and the word
embedding spaces.

Using definitions for deriving word embeddings
for OOV words seems to be the good solution com-
pared to alternative available approaches.

In its space, DefiNNet achieves very important
results for the correlation with the two WordNet
similarity measures wup and res (see Table 5).
In both cases, it outperforms FastText, which is a
standard approach for deriving word embeddings
for OOV words (0.51 ± 0.31 vs. 0.41 ± 0.35 for
res and 0.50 ± 0.30 vs. 0.43 ± 0.36 for wup).
Moreover, DefiNNet outperforms Head, a baseline
method based on WordNet, and Additive, the sim-
plest model to use WordNet definitions.

The same happens for DefBERTHead in its
space (see Table 5). DefBERTHead signifi-
cantly outperforms BERTwordpieces, showing that
DefBERTHead is a better model to treat OOV with
respect to that already included in BERT. Results
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on DefBERTHead confirm that the output related to
the token representing the head carries better infor-
mation than the output related to the token [CLS].
Moreover, the definition has is a positive effect on
shaping the word embedding of the head word to-
wards the defined word. In fact, DefBERTHead

and BERTHead−Example are applied on the same
head word and DefBERTHead transforms better
the meaning than BERTHead−Example, which is
applied to a random sentence containing the head
word. Indeed, also for BERT, definitions are impor-
tant in determining embeddings of OOV words.

The final comparison is between DefiNNet and
DefBERTHead and it is done on the small dataset
Pairsw2n∩BERT . DefiNNet achieves better re-
sults than DefBERTHead for all the three WordNet
measures (see Table 5) but statistical significance
between them cannot be asserted with the fixed
p-value (0.05).

5 Conclusions and Future Work

Building word embedding for rare out-of-
vocabulary words is essential in natural language
processing systems based on neural networks. In
this paper, we proposed to use definitions in dic-
tionaries to solve this problem. Our results show
that this can be a viable solution to retrieve word
embedding for OOV rare words, which work better
than existing methods and baseline systems.

Moreover, the use of dictionary definitions in
word embedding may open also another possible
line of research: a different semantic probe for
universal sentence embedders (USEs). Indeed, def-
initions offer a definitely interesting equivalence
between sentences and words. Hence, unlike ex-
isting semantic probes, this approach can unveil
if USEs are really changing compositionally the
meaning of sentences or are just aggregating pieces
of sentences in a single representation.

Finally, this paper promotes responsible Artifi-
cial Intelligence as intended in Human-in-the-Loop
Artificial Intelligence (Zanzotto, 2019). In fact, it
gives the possibility to track how human knowledge
is used by learning algorithms.
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Daniela Gerz, Ivan Vulić, Felix Hill, Roi Reichart, and
Anna Korhonen. 2016. SimVerb-3500: A large-scale
evaluation set of verb similarity. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2173–2182, Austin,
Texas. Association for Computational Linguistics.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings of
the International Conference on Language Resources
and Evaluation (LREC 2018).

Guy Halawi, Gideon Dror, Evgeniy Gabrilovich, and
Yehuda Koren. 2012. Large-scale learning of word re-
latedness with constraints. In Proceedings of the 18th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’12, page
1406–1414, New York, NY, USA. Association for
Computing Machinery.

Zellig S. Harris. 1954. Distributional structure.
<i>WORD</i>, 10(2-3):146–162.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention.

Aurélie Herbelot and Marco Baroni. 2017. High-risk
learning: acquiring new word vectors from tiny data.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
304–309, Copenhagen, Denmark. Association for
Computational Linguistics.

Felix Hill, Kyunghyun Cho, Anna Korhonen, and
Yoshua Bengio. 2016. Learning to understand
phrases by embedding the dictionary. Transactions
of the Association for Computational Linguistics,
4:17–30.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
SimLex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Ziniu Hu, Ting Chen, Kai-Wei Chang, and Yizhou Sun.
2019. Few-shot representation learning for out-of-
vocabulary words. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 4102–4112, Florence, Italy. Asso-
ciation for Computational Linguistics.
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