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Abstract

Automatically generating compilable programs
with (or without) natural language descrip-
tions has always been a touchstone problem
for computational linguistics and automated
software engineering. Existing deep-learning
approaches model code generation as text gen-
eration, either constrained by grammar struc-
tures in decoder, or driven by pre-trained lan-
guage models on large-scale code corpus (e.g.,
CodeGPT, PLBART, and CodeT5). However,
few of them account for compilability of the
generated programs. To improve compilability
of the generated programs, this paper proposes
COMPCODER, a three-stage pipeline utilizing
compiler feedback for compilable code gener-
ation, including language model fine-tuning,
compilability reinforcement, and compilability
discrimination. Comprehensive experiments on
two code generation tasks demonstrate the ef-
fectiveness of our proposed approach, improv-
ing the success rate of compilation from 44.18
to 89.18 in code completion on average and
from 70.3 to 96.2 in text-to-code generation,
respectively, when comparing with the state-of-
the-art CodeGPT.

1 Introduction

Automated code generation (or program synthe-
sis) has attracted much attention over the past few
years (Lu et al., 2021), because of its potential to
improve the productivity of developers, as well
as to speed up the software development (Parvez
et al., 2021; Wang et al., 2021). In the life cycle
of software development, different types of code
generation tasks are desired, including code com-
pletion (Liu et al., 2020b,a), text-to-code gener-
ation (Hashimoto et al., 2018), program transla-
tion (Chen et al., 2018), and program repair (Ya-
sunaga and Liang, 2021).
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Figure 1: An illustration of Python code completion
by COMPCODER, utilizing the compiler feedback with
three stages.

Recently, much effort has been made to ad-
vance the development of code generation (Li et al.,
2018), using different logical forms of code, such
as the abstract syntax tree (AST) (Kim et al., 2021;
Yin and Neubig, 2017; Rabinovich et al., 2017),
sketch (Nye et al., 2019) and graph (Yasunaga and
Liang, 2020). Benefiting from the strong power
of pre-training techniques (Devlin et al., 2019;
Wang et al., 2021a) in natural language process-
ing, several attempts have been made towards pre-
training a language model on large-scale code cor-
pus for code generation, such as CodeGPT (Lu
et al., 2021), PLBART (Ahmad et al., 2021), and
CodeT5 (Wang et al., 2021b).

However, to the best of our knowledge, most
deep-learning approaches for code generation are
still difficult to guarantee the compilability of the
generated code, resulting in non-compilable code.
For example, Chen et al. (2021) found that up
to 67%-97% of patches generated by the most
advanced deep-learning-based models are non-
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compilable. We think this is because they generally
do not directly optimize the compilability for code
generation. The generation of non-compilable code
will waste the time of programmers, as well as seri-
ously reduce the trust and satisfaction of developers
with the model. To improve the compilability of the
generated code, some works attempt to repair the
synthesized program which fails to compile (Ku-
lal et al., 2019; Yasunaga and Liang, 2020, 2021).
Recently, Korbak et al. (2021) attempt to directly
generate compilable code using an energy model
with compilability constraints.

This paper focuses on the task of compilable
neural code generation. Different from previous
works, we use compilability signals in two ways
and design a novel method to jointly train the dis-
criminator and generator for compilable code gen-
eration. Concretely, we propose COMPCODER, a
novel three-stage pipeline utilizing compiler feed-
back for compilable code generation, including lan-
guage model fine-tuning, compilability reinforce-
ment, and compilability discrimination. Figure 1
shows an example of Python code completion by
COMPCODER, which utilizes the compiler feed-
back in two ways. In Figure 1(b), we use the com-
piler feedback to optimize the generator. In Fig-
ure 1(c), we use the discriminator to check if the
results generated by the generator can be success-
fully compiled. The joint training of the generator
and discriminator significantly improves the com-
pilability of the generated code.

Overall, the key contributions of this paper are

as follows:
* We use compilability signals in two ways and de-
sign a novel method to jointly train the generator
and discriminator for compilable code generation,
called COMPCODER. We refine a pre-trained
code generator using reinforcement learning and
jointly learn a discriminator to enforce the gener-
ator to correct its own mistakes.

Comprehensive experiments on two code gen-
eration tasks demonstrate the effectiveness of
COMPCODER. It boosts the average compila-
tion rate of CodeGPT from 44.18 to 89.18 in the
code completion task and from 70.3 to 96.2 in
the text-to-code generation task.

2 Preliminary

In this section, we set out notations for task formu-
lation, as well as some preliminaries of compiler
feedback. Let s € S denote a given input, which
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can be a piece of partial code, natural-language
description, or buggy program. Let ¢ € T denote
the generated source code. Formally, the problem
of code generation can be formulated as learning a
mapping f between the input space and target code
space, i.e. f : & — T. In this paper, we investigate
two specific code generation tasks, code comple-
tion and text-to-code generation, conditioned on
different inputs.

Code Completion Letc = {ci,c2,...,¢} de-
note a sequence of code tokens for program c,
where |c| denotes the length of the code. We
use notation c¢j.,, € &S to refer to the previ-
ous code snippet {ci,c2,...,cn} and notation
Cm41: | € T to represent the subsequent code
snippet {Cm+1,---,¢|}. The code completion
task can be defined as generating the subsequent (%)
code token sequence ¢, 1. |¢|. given the previous
(8) code sequence c; . -

Text-to-Code Generation Different from code
completion, text-to-code generation aims to gen-
erate a whole program based on natural language
description. Let d = {d1,d>,...,dy} refer to a
sequence of natural-language tokens. The text-to-
code generation task can be defined as generating
source code ¢ =t € T, given the corresponding
natural language descriptiond = s € S.

Compiler Feedback As the whole program c is
generated, no matter from partial code snippets
or natural-language descriptions, we feed it into a
compiler to test whether it can be compiled suc-
cessfully. Formally, we define the the compiler
feedback as:

feedback = 1 Compiler (C> s (1)

where the compiler feedback is a binary value (com-
pilable or non-compilable), and ¢ denotes the code
snippet fed into the compiler. As for the task of
text-to-code generation, we simply feed the gener-
ated code ¢ into the compiler, i.e., ¢ = t. As for the
task of code completion, we concatenate the partial
code with generated code as a whole program, i.e.,
¢ = [s; t], where ; is the concatenation operation.

3 CoOMPCODER

Figure 2 shows the overall architecture of COMP-
CODER on the code completion task, which covers
three stages, i.e., language model fine-tuning (Stage
1), compilability reinforcement (Stage 2) and com-
pilability discrimination (Stage 3). In the following
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Figure 2: An illustration of our proposed three-stage pipeline for Python code completion. (a) We first fine-tune the
generator based on pre-trained language models. (b) We take the compiler feedback into account as a reward via
reinforcement learning. (c) We design a compilability discriminator which is jointly trained with the generator, to
enforce the generator to correct its own mistakes. Stages 2 and 3 are performed alternately.

subsections, we will elaborate on each stage one
by one. We alternately perform Stages 2 and 3, as
described in Section 3.4.

3.1 Stage 1: Language Model Fine-Tuning

As shown in Figure 2(a), we adopt CodeGPT as the
generator, which uses GPT-2 (Radford et al., 2019)
as the starting point and is continually pre-trained
on the large-scale code corpus. Our generator is
then fine-tuned on the target task to minimize the
cross-entropy loss:

;MY
aez—mzzyﬁbgﬂj, )
v g

where M denotes the set of the generated code
tokens, V represents the vocabulary, Y;; denotes
the label of the code token i in class j, and F;; is
the predicted probability of token ¢ in class j.

During training, the generator takes x
{<B0OS>, ¢, <E0S>} as the input in the code com-
pletion task, and x = {d, <BOS>, ¢, <EOS>} as in-
put in the text-to-code generation task, correspond-
ingly. Special tokens <BOS> and <EOS> indicate
the start and end symbols of code sequences. Af-
ter several epochs of supervised fine-tuning on the
target task dataset, we save the trained generator,
which will be used in the next stage.

3.2 Stage 2: Compilability Reinforcement

Reinforcement Learning (RL) is a method of learn-
ing the optimal policy by obtaining reward signals
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from the real environment (Sutton and Barto, 1998;
Wan et al., 2018). As shown in Figure 2(b), we
use the fine-tuned generator p (after Stage 1) as
the reference model. Then we initialize a policy
7 = p. Given an input sequence s € S, our goal
is to find a policy 7 that generates an output se-
quence t € T with the objective of maximizing the
compilability-based reward. We use RL (specifi-
cally PPO2 version of Proximal Policy Optimiza-
tion (Schulman et al., 2017)) to directly optimize
the expected reward as:

Er [7"} = Est,tww(.|s) [7"(8, t)] ’ (3)

where the policy 7 is rewarded by the compiler
(Eq. 1), r is the reward function. We define
r(s,t) = 1.0 iff the code can be compiled by the
program compiler and (s, t) = —1.0 otherwise.
It is worth mentioning that code compilability
constraints can be strong or weak. Strong con-
straint is defined that a long piece of code snippet
may not be correctly compiled if a certain token
is changed. And weak constraint means a blank
string consisting of whitespace characters can be
correctly compiled by the compiler. Concretely, in
the text-to-code generation task, if the generator
generates a string composed of whitespace charac-
ters, the compiler will consider it as a good case.
In the code completion task, if the previous code
snippet is compilable, the generator can fool the
compiler easily. The RL is good at making use of
this, resulting in the generated code can be com-
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An example of code completion. We mask the last five tokens of the code and let the generator complete

them. Some minor mistakes prevent four candidates from being correctly compiled by the program compiler.

piled, but seriously deviating from the generation
likelihood objective.

To avoid active model T being too far away from
reference model p, we add a Kullback-Leibler (KL)
penalty with expectation, e.g., SKL(, p) (Ziegler
et al., 2019). Therefore, the modified reward will
be reformulated as follows:

m(t|s)
p(tls)’

where [ is a constant, which plays the role of an
entropy bonus, preventing the policy from moving
too far from the range where r is valid.

To alleviate the imbalance between the reward
term and the KL penalty term and improve the sta-
bility of training, we use autoregressive fine-tuning
(Causal Language Modeling) (Radford et al., 2019)
to make the KL penalty term fluctuate within a
small range after RL training. This fine-tuning pro-
cess incorporates a compilability-aware discrimi-
nator that will be introduced in the next stage.

r(s,t) =r(s,t) — B log 4

3.3 Stage 3: Compilability Discrimination

Figure 3 shows an example of code completion. We
mask the last five tokens of a Python function and
ask the generator to complete them. The generator
generates five candidates with high probabilities.
Some minor mistakes prevent four of them from
being successfully compiled. We hope the gener-
ator can have more perception power to explicitly
distinguish compilable and non-compilable code
generated by itself. Therefore, at this stage, we
design a compilability-aware discriminator to deal
with this issue.

Concretely, we add a discriminator (a two-layer
MLP equipped with the tanh activation function
between layers) after the final hidden layer of the
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generator. As shown in Figure 2(c), given the input
sequence (s), we perform beam search on the gen-
erator to generate top-k candidates (¢). Each entire
code ¢ € Q (¢ = [s; ] in the code completion task)
is labeled by the program compiler as positive (1)
or negative (0), depending on whether it can be
successfully compiled (see Eq. 1).

We use the hidden representation of the last to-
ken (<EOS>) as the final representation of the en-
tire code c. Finally, the hidden representation of
the last token (<EOS>) is fed into the discriminator
for prediction:

h<zoss = CodeGPT(s,t), %)
h.zos. = Discriminator(hezoss), (6)
P(|t,s) = softmax(h.zos.), (7)

where h.gos> denotes the representation of the last
token <EOS>. The training loss of the discrimina-
tion process can be defined as:

1

£ =
A

> log P(1lt, )
ceQt

@®)
+ ) log P(Olt.s) | .

ceQ~

where Q" and Q™ represent positive and negative
sets respectively. The parameters of the generator
and discriminator will be jointly updated.

At this stage, we jointly train the generator and
discriminator, including a generating objective (to
learn the generator only) and a discriminating ob-
jective (to learn the generator and discriminator
together), as shown in Figure 2(c). The joint train-
ing loss is defined as follows:

L=Lc+Lp. (©)]



3.4 Opverall Pipeline

Training Procedure We perform an interactive
training procedure. Concretely, except that the first
epoch contains Stages 1, 2, and 3, each subsequent
epoch only consists of Stages 2 and 3. We update
the reference model (at Stage 2), and candidates in
Stage 3 is generated on the training dataset, which
is time consuming, so we update the candidates in
a preset frequency.

For better understanding, Stage 2 improves the
compilability of generated code, Stage 3 distin-
guishes the compilable and non-compilable code
generated by itself. Stage 2 and 3 refine each other
and improve the performance iteratively, which is
a basic idea of this training procedure. We think
that the generator with high compilability (after
Stage 2) facilitates the learning of the discriminator
(discriminating objective at Stage 3). The autore-
gressive fine-tuning (generating objective at Stage
3) helps the KL penalty term (at Stage 2) fluctu-
ate in a small range, improving the stability of RL
training. At Stage 3, the discriminating objective
is optimized by learning the generator and discrim-
inator together, which makes the generator have
more perception power to distinguish compilable
and non-compilable code.

Inference Procedure The model inference con-
sists of two stages. Given an input sequence (s),
we perform the beam search on the generator to
generate top-k candidates. The code (c in Eq. 1)
with the highest compilability probability evalu-
ated by the discriminator will be selected. Then the
output (¢) can be obtained as the final result.

4 Experiment Setup

4.1 Evaluation Tasks and Datasets

We conduct experiments on two tasks: code com-
pletion and text-to-code generation. To investigate
the compilability of the generated code, we need
to preserve the indentation and newline operations
in code. We also need to make sure that the code
and its version belong to the scope of the compiler.
Existing datasets on both of the two tasks usually
do not serve these considerations. For convenience,
we choose Python for experiments, as it is very
popular and used in many projects. We conduct all
experiments based on Python 3 environment and
adopt the codeop! module to simulate the pro-

"https://docs.python.org/3.6/library/
codeop.html
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gram compiler. We remove code that could not be
compiled correctly by the compiler.

Code Completion For the code completion task,
we use the Python corpus in CodeSearchNet (Hu-
sain et al., 2019). We want to study the compilabil-
ity of long enough code, while longer code means
higher computational overhead. Therefore, we ex-
tract 50k compilable Python methods (Python 3
version) with eclectic token lengths ranging from
64 to 96. We randomly select 45k samples for train-
ing and the remaining 5k samples for testing. We
mask a different number of tokens at the tail of the
source code and let the model complete.

Text-to-Code Generation For the text-to-code
generation task, we adopt the AdvTest dataset (Lu
et al., 2021), which contains 251,820 text and
Python code pairs. We only need code in Python
3 version. We expect code token lengths to range
from 128 to 170, a moderate length, and text to-
ken lengths to be at least more than 5, containing
sufficient semantics. Finally, we extract about 41k
text-code pairs. We randomly select 40k text-code
pairs for training, and the remaining 1k text-code
pairs for testing.

4.2 Evaluation Metrics

To evaluate the quality of the generated code, we
adopt two widely-used evaluation metrics: Leven-
shtein Edit Similarity (ES) (Svyatkovskiy et al.,
2020; Lu et al., 2021) and Compilation Rate
(CR) (Kulal et al., 2019). Levenshtein Edit Similar-
ity measures the number of single-character edits
required to transform one string into another. It is
a critical evaluation metric for the code generation
scenario, as it measures the effort required for the
developer to correct the code. Compilation Rate
measures how many code can be correctly com-
piled by the program compiler. For both of these
metrics, bigger values indicate better performance.

4.3 Baseline Methods

We compare our approach with various state-of-

the-art models in the code completion task and the

text-to-code generation task:

* BiLSTM is a Seq2Seq model based on Bidirec-
tional LSTM with an attention mechanism (Lu-
ong et al., 2015).

¢ Transformer (Vaswani et al., 2017) is the base
architecture of CodeGPT. We use 6-layer Trans-
former decoder to conduct experiments.
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Figure 4: : Results in the code completion task (completing 30, 35, 40, 45 tokens respectively) evaluating with Edit
Similarity (ES) and Compilation Rate (CR) metrics, using the CodeSearchNet-Python dataset.

GPT-2 (Radford et al.,, 2019) is an auto-
regressive pre-trained model trained on large-
scale text corpus.

* CodeGPT (Lu et al., 2021) is pre-trained with
source code corpus on the basis of GPT-2 vis
causal language modeling objective (Radford
et al., 2019).

PLBART (Ahmad et al., 2021) is based on the
BART (Lewis et al., 2020) architecture, which is
pre-trained on large-scale Java and Python cor-
pora via denoising autoencoding.

CodeT5 (Wang et al., 2021b) is based on the
T5 (Raffel et al., 2020) architecture, which
employs denoising sequence-to-sequence pre-
training on multiple programming languages.

4.4 Implementation Details

In the code completion task, we set the learning
rate as 1.5e-5, the batch size as 32, the maximum
fine-tuning epoch as 20, the maximum code se-
quence length as 96. We mask different numbers
of code tokens (25, 30, 35, 40, and 45) and ask
the model to complete them. We set the minimum
generation length as 25, 30, 35, 40, and 45 accord-
ingly. In the text-to-code generation task, we set
the learning rate as 1.5e-5, the batch size as 16, the
maximum fine-tuning epoch as 20, the maximum
text and code sequence length as 32 and 170. We
set the minimum generation length as 96 (the gen-
erated code is slightly shorter than the ground-truth
is allowed). In these two tasks, the generated se-
quence consisting of whitespace characters will be
considered as a bad case.

We use the Adam optimizer to update model
parameters. We train our model on the basis of
CodeGPT checkpoint®. Our model is trained on 2

https://huggingface.co/microsoft/
CodeGPT-small-py—adaptedGPT2
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NVIDIA Tesla V100 with 32GB memory. We em-
ploy the same tokenizer as CodeGPT. To train the
policy 7, we use the PPO2 version of Proximal Pol-
icy Optimization (Schulman et al., 2017). In each
epoch, we only randomly select 5% training data
for the stability of RL training (Stage 2). In other
stages (Stages 1 and 3), we use the full training
data. To generate candidates (at Stage 3), we set
the beam size as 5 in beam search. For efficiency,
we update the candidates every 5 epochs.

Models ES CR

BiLSTM 55.32 36.34
Transformer 61.47 40.22
GPT-2 63.02 43.26
CodeGPT 64.47 46.84
CoMPCODER 64.53 94.48

Table 1: Results in the code completion task (com-
pleting 25 tokens) evaluating with Edit Similarity
(ES) and Compilation Rate (CR) metrics, using the
CodeSearchNet-Python dataset.

5 Results and Analysis
5.1 Code Completion

Table 1 shows the results of the code completion
task. We mask 25 tokens at the tail of code func-
tions and ask the generation model to complete.
We can observe that: (1) The code generated by
existing autoregressive models has a low Compi-
lation Rate. CodeGPT and GPT-2 only achieve
46.84 and 43.26 scores respectively on the Compi-
lation Rate, which means that more than half of the
code generated by them cannot be correctly com-
piled by the program compiler. (2) COMPCODER
significantly improves the Compilation Rate. It ob-
tains 94.48 scores on the Compilation Rate, which
is 47.64 points higher than the closest competitor
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(CodeGPT). (3) When our approach significantly
improves the Compilation Rate, it does not sacrifice
the fluency of the generated code. COMPCODER
obtains a comparable and even slightly better Edit
Similarity score than other baselines, indicating
that it effectively preserves the code fluency.

Figure 4 presents more results of the code com-
pletion task in the setting of completing 30, 35,
40, and 45 tokens. COMPCODER still effectively
improves the Compilation Rate when generating
longer code. As the completion length increases,
our approach outperforms CodeGPT by 49.66,
47.68, 46.64, and 33.36 points in the setting of
completing 30, 35, 40, and 45 tokens, respectively.
On average, our approach outperforms CodeGPT
by 45 points across a different number of tokens
for the task of code completion.

Models ES CR
BiLSTM 54.86 48.7
Transformer 57.47 55.6
GPT-2 60.54 63.3
CodeGPT 61.82 70.3
PLBART 62.43 71.9
CodeT5 62.58 73.1
COoMPCODER 62.74 96.2

Table 2: Results in the text-to-code generation task eval-
uating with Edit Similarity (ES) and Compilation Rate
(CR), using the AdvTest dataset.

5.2 Text-to-Code Generation

Table 2 presents the results of the text-to-code gen-
eration task. We could see that: (1) COMPCODER
significantly outperforms all other models w.r.t. the
Compilation Rate. E.g., COMPCODER achieves
23.1 points and 24.3 points improvements when
compared with PLBART and CodeTS5 respectively.
(2) Compared to code completion task (Table 1),
all models in the text-to-code generation task have
relatively higher Compilation Rate. One of the
main reasons we think may be: code completion re-
quires the generated code to be constrained by the
existing (previous) code, which is a much stronger
restriction than the text-to-code generation.

5.3 Ablation Study

We compare several simplified versions of our
model to understand contributions of different com-
ponents, including the Reinforcement Learning
(RL) component and the discriminator’s effect for
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Models ES CR
(1) CodeGPT 64.47 46.84
(2) W/ Dyain 65.46 64.88
(3) w/RL 64.71 76.48
(4) w/ RL+Dypain 64.43 83.14
(5) W/ Dyain+Drest 65.24 81.96
(6) W/ RL4+Dyain+Diest (Ours)  64.53  94.48

Table 3: Ablation study in the code completion task in
the setting of completing 25 code tokens.

both model training (Dy,in) and model inference
(Deest)- As a case study, we take the code comple-
tion task as an example in the setting of completing
25 tokens and present the results in Table 3.

Several meaningful observations can be drawn:
First, both RL (Row 2) and Dy, (Row 3) effec-
tively increase the code Compilation Rate of the
generation model (CodeGPT in Row 1), which con-
firms that the two components we designed can
indeed improve the ability of the generator for com-
pilable code generation. Second, applying RL and
Dirain together (Row 4) further improves the Com-
pilation Rate over their individual contributions.
Third, using the discriminator to select the output
during model inference stage (D) is beneficial.
It further boosts the Compilation Rate of vanilla
“Dyain”” by 17.08% (Row 5 v.s. Row 2) and boosts
“RLADyin” by 11.34% (Row 6 v.s. Row 4). Forth,
these three components (RL, Dyyain, Diest) that effec-
tively improve the Compilation Rate do not com-
promise the generation capability measured by the
Edit Similarity.

5.4 Case Study

To better understand the effectiveness of our pro-
posed approach, we present two cases for code com-
pletion and text-to-code generation tasks respec-
tively. For both CodeGPT and COMPCODER, we
present top-1 result in Figure 5. For code comple-
tion, we observe that CodeGPT can not complete
code with high quality (non-compilable), while
COMPCODER can complete the code well, and it
is exactly the same for the reference solution. For
text-to-code generation, we observe that although
both models can not generate exactly the same code
as the reference solution, COMPCODER generates a
compilable code at the function level. These results
reveal the effectiveness of our proposed approach
for compilable code generation.
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Natural Language Comment
Encode a Password
:param password: Password
:param algorithm
:param salt: salt
:param iterations: iterations
:return: PBKDF2 hashed Password

1 def encode(passaord, algorithm, salt, iterations):

2 hash = hashlib.pbkdf2_hmac(digest() .name, password.encode(), salt.encode(), iterations)|
3 encoded = base64.b64encode (hash) .decode('ascii') .stripO)

4 return "%s$$%s$%s" % (algorithm, iterations, salt, encoded)

def _encode_password(password, algorithm):
salt = salt.encode('utf-8")
iterations = int(iterations)
pbkdf2 = PBKDF2(algorithm, salt,

59 x

1
2
3
4

1 def encode_password(password, algorithm, salt, iterations):
2 hasher = PBKDF2HVAC(

3 algorithm=algorithm,

4 salt=salt,
5
6
7

‘|

iterations=iterations)
hasher . update (password)
return hasher.finalize(Q

Text-to-Code Generation

Figure 5: Case study for code completion and text-to-
code generation tasks.

6 Related Work

Neural Code Generation With the rapid devel-
opment of Deep Learning (DL), some researchers
attempt to use DL for code generation tasks. Liu
et al. (2020a) proposed a neural architecture for
code completion task with multi-task learning
based on the architecture of Transformer-XL Dai
et al. (2019) and BiLSTM (Schuster and Paliwal,
1997). Kim et al. (2021) presented several ways of
feeding the code structure to Transformer (Vaswani
et al., 2017) and further improved the accuracy of
the code prediction (next token prediction) task.
Wei et al. (2019) adopted an encoder-decoder ar-
chitecture and utilized the relations between code
generation and code summarization to improve the
performance of both tasks. Yasunaga and Liang
(2021) proposed a new training approach for pro-
gram repair. They used the critic to check a fixer’s
output on real bad inputs and add good outputs to
the training data, and trains a breaker to generate
realistic bad code from good code. Yasunaga and
Liang (2020) used compiler error messages to re-
pair programs. They designed a program-feedback
graph and then applied a graph neural network on
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top to model the reasoning process. Many unla-
beled programs are used for program repair with
self-supervised learning.

Benefiting from the strong power of pre-training
techniques (Devlin et al., 2019; Wang et al., 2021a)
in natural language processing, such as GPT (Rad-
ford and Narasimhan, 2018), BART (Lewis et al.,
2020), and T5 (Raffel et al., 2020), some recent
works attempt to pre-train language models on the
corpus of source code for code generation. Lu et al.
(2021) proposed CodeGPT follows the architec-
ture of GPT-2 (Radford et al., 2019), which is pre-
trained with a causal language modeling (CLM)
objective on large-scale source code. Ahmad et al.
(2021) proposed PLBART follows the architecture
of BART (Lewis et al., 2020), which is pre-trained
on Java and Python functions paired with code
comments via denoising autoencoding. Wang et al.
(2021b) proposed CodeT5 based on the TS (Raffel
et al., 2020) architecture, which employs denois-
ing sequence-to-sequence pre-training on multiple
programming languages.

Reinforced Text Generation Reinforcement
learning (Sutton and Barto, 1998) has shown great
success in various tasks. It focuses on how agents
ought to take actions in an environment to max-
imize the cumulative reward, is well suited for
decision-making tasks. Ranzato et al. (2016)
were among the first to apply REINFORCE algo-
rithm (Williams, 1992) to train recurrent neural
networks on sequence generation tasks, suggesting
that directly optimizing the metric used at the test
phase can lead to better results. Chen and Bansal
(2018) proposed a hybrid extractive-abstractive ar-
chitecture with policy-based reinforcement learn-
ing. They used an extractor agent to select salient
sentences and then employed an abstractor network
to rewrite these extracted sentences. Wan et al.
(2018); Wang et al. (2022) incorporated the tree
structure and sequential content of code snippets
and designed a deep reinforcement learning frame-
work optimized by the metric of BLEU to improve
the performance of the code summarization task.
Yao et al. (2019) proposed a reinforcement learning
framework, which encourages the code annotation
model to generate annotations that can be used for
code retrieval tasks. Korbak et al. (2021) proposed
an energy-based model with an imposed constraint
of generating only compilable sequences to im-
prove compilation rates of generated code.



7 Conclusion and Future Work

In this paper, we use the compilability signals in
two ways and design a novel method to jointly
train the generator and discriminator for compilable
code generation, called COMPCODER. Compre-
hensive experiments on two code generation tasks
demonstrate the effectiveness of COMPCODER, im-
proving the average compilation rate of state-of-
the-art CodeGPT from 44.18 to 89.18 in the code
completion task and from 70.3 to 96.2 in the text-
to-code generation task.

This work presents our preliminary attempt to
generate compilable code. Yet, considering the
compilation rate is not the whole story as it still
cannot guarantee the correctness of generated code.
As a future work, we would like to utilize unit tests
to evaluate the code correctness towards building
more useful code generation models.
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