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Abstract

Many tasks in text-based computational social
science (CSS) involve the classification of po-
litical statements into categories based on a
domain-specific codebook. In order to be use-
ful for CSS analysis, these categories must
be fine-grained. The typically skewed distri-
bution of fine-grained categories, however, re-
sults in a challenging classification problem on
the NLP side. This paper proposes to make
use of the hierarchical relations among cat-
egories typically present in such codebooks:
e.g., markets and taxation are both subcate-
gories of economy, while borders is a subcat-
egory of security. We use these ontological
relations as prior knowledge to establish addi-
tional constraints on the learned model, thus
improving performance overall and in particu-
lar for infrequent categories. We evaluate sev-
eral lightweight variants of this intuition by ex-
tending state-of-the-art transformer-based text
classifiers on two datasets and multiple lan-
guages. We find the most consistent improve-
ment for an approach based on regularization.

1 Introduction

The argumentative or discursive turn in policy anal-
ysis and political science more generally has long
established the value of textual sources for the anal-
ysis of politics and policies (Fischer and Forester,
1993). Traditionally, data sources such as inter-
views or newspaper reports were annotated using
various methods of qualitative text analysis (Wa-
genaar, 2011; Mayring, 2019). At the heart of this
analysis is always a codebook, i.e., guidelines that
map actual statements or textual passages to the ab-
stract concepts relevant for the respective research.

Categories in codebooks are almost always ar-
ranged hierarchically, with fine-grained categories
being grouped together into supercategories that
are often, but not always, more abstract. Fine-
grained categories are generally generated induc-
tively from the analyzed texts in an iterative pro-

cess of summarizing and abstracting from the orig-
inal text, while the supercategories are deductively
generated from existing knowledge of the relevant
policy field and from theoretical and conceptual
findings of prior research. For example, the code-
book of the long-running Comparative Manifesto
Project (CMP), which analyzes party manifestos
across several countries, includes 7 supercategories
(such as external relations or economy) with 56
subcategories: for economy, among others, free
market, market regulation, economic goals, etc.
(Merz et al., 2016; Werner et al., 2011). Here,
supercategories represent the separation of policy
fields that is reflected in political institutions, e.g.,
ministries. Fine-grained, hierarchical schemes help
researchers both with data annotation and with anal-
ysis. Annotation is often easier when the annotation
decision is (implicitly) first based on a supercate-
gory and then on fine-grained subcategories. For
analysis, supercategories structure the annotated
material according to different levels of abstraction,
thereby supporting interpretation and modeling.

While such a hierarchical process a natural
choice in manual annotation, the situation is differ-
ent when we move to (semi)-automatic analysis in
NLP: due to the large number of fine-grained sub-
categories, the available data is distributed among
many categories. In addition, most categories
are infrequently attested, since categories typically
show a skewed distribution. This makes for a diffi-
cult classification problem, and existing prediction
studies have often only addressed the more coarse-
grained supercategory level (Glavaš et al., 2017a;
Subramanian et al., 2018; Padó et al., 2019).

In this study, we ask whether we can use the hi-
erarchical structure of political science codebooks
to our advantage: knowing that two subcategories
(as free market and market regulation) belong to
the same supercategory (economy) could lead us
to expect that the representations learned for these
categories should be more similar to one another

2367



than to categories that belong to other supercate-
gories. In this manner, the representations learned
for smaller categories can be biased in the right
direction by their larger neighbor categories. This
paper makes the following contributions:

• In Section 3, we define an ontology of
lightweight methods implementing this intu-
ition on top of a state-of-the-art transformer-
based text classifier. Crucially, these meth-
ods introduce almost no additional parame-
ters, thereby addressing the issues related to
the limited amounts of annotated data typi-
cally available in CSS studies.

• We evaluate the resulting models on two
datasets and five different languages, covering
single label (Experiment 1) as well as multi
label classification (Experiment 2). We estab-
lish that regularized methods yield consistent
improvements and establish a new state of the
art for political statement classification. In par-
ticular, these methods improve predictions on
low-frequency categories, improving model
fairness (Dayanik and Padó, 2020).

This paper builds on an earlier study of ours
(Dayanik et al., 2021), whose scope is extended
in multiple dimensions. At the phenomenon level,
we broaden the focus from (forward-looking) polit-
ical claims to (general) political statements. At
the methodological level, we propose an ontol-
ogy of methods for encoding hierarchical infor-
mation. At the experimental level, we now take
into consideration two text types involving five dif-
ferent languages. The code, models and dataset
splits used in this study are available at https:

//www.ims.uni-stuttgart.de/data/inpsc .

2 Background and Related Work

Codebooks for Political Statement Categoriza-
tion Codebooks used in large-scale annotation
projects cover a broad variety of research interests
and text types. Yet, regardless of whether they have
been created to analyze political party manifestos
(Volkens et al., 2020), political statements in the
European public sphere (Koopmans, 2002), legit-
imation discourses about political and economic
regimes (Nullmeier et al., 2015), or the migration
debate in Germany (Blessing et al., 2019), they
all group their categories of interest into a limited
number of supercategories which reflect the exist-
ing research in the respective field.

Text Classification Automatic political state-
ment classification is fundamentally a text classifi-
cation task on relatively short texts, with the class
inventory given by the codebook. Depending on
the properties of the annotation, the task is either
single-label or multi-label text classification. In
single label text classification, each text is assigned
exactly one label, which is used in NLP applica-
tions where the labels are mutually exclusive, such
as in entailment or stance detection (Kim, 2014;
Glavaš and Vulić, 2019; Kennedy et al., 2019; Li
and Caragea, 2019). In contrast, multi-label text
classification assigns any number of categories to a
text, which is better suited for tasks where the cate-
gories are overlapping or describe complementary
aspects, e.g. topic categorization (Rios and Kavu-
luru, 2018; Chalkidis et al., 2019; Irsan and Khodra,
2019; Xiao et al., 2019). Currently, transformer-
based models (Devlin et al., 2019; Liu et al., 2020)
represent the current state of the art for text classifi-
cation in general (Minaee et al., 2021) and political
statement classification in particular (Dayanik et al.,
2021). A number of studies have investigated ways
to integrate hierarchical information into classifi-
cation. A first family of approaches develops dedi-
cated architectures such as capsule networks (Aly
et al., 2019) or encoders of the hierarchies (Song
and Roth, 2014; Zhou et al., 2020). These mod-
els are typically trained end-to-end, which requires
amounts of data that are rarely available in CSS.
We focus on lightweight approaches compatible
with fine-tuning, described in Section 3.

Political Statement Classification Political
statement classification is a task in political text
analysis, other examples of which are political
text scaling (Glavaš et al., 2017b), political event
detection (Nanni et al., 2017) or detection of
frames (Card et al., 2015). Specific studies on
political statement classification includes Verberne
et al. (2014) who develop models for automatic
categorization of political statements in Dutch
and Karan et al. (2016) who assign topic labels to
political texts in Croatian. A number of studies
work with the abovementioned Comparative
Manifesto Project dataset (Merz et al., 2016): Zirn
et al. (2016) and Glavaš et al. (2017a) address
coarse-grained text policy position analysis and
Subramanian et al. (2018) introduce multilingual
models jointly trained for coarse-grained statement
classification and document-level positioning. In
our own previous work, we created a corpus of
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German newspaper articles on the 2015 refugee
crisis, DebateNet-mig15, (Lapesa et al., 2020),
and carried out coarse-grained classification
experiments on the annotated statements regarding
the migration policy (Padó et al., 2019).

3 Method

3.1 Base Classifier

In line with previous work in political statement
classification, we focus on statement classification
and assume that statements have already been de-
tected (Subramanian et al., 2018; Padó et al., 2019).
We use a standard pre-trained and fine-tuned BERT
(Devlin et al., 2019) transformer as a state of the
art base classifier.1 Pre-trained BERT models are
available for many languages and domains, and
can be fine-tuned for text classification tasks with
a simple fully-connected layer.2

Formally, the input consists of a word state-
ment x; we do not consider the statement’s con-
text. BERT encodes the input into a representa-
tion, e(x), which we obtain from the special token
[CLS] prepended to the statement. In the single-
label case, the classifier c(e(x)) predicts a single
label using softmax activation (cf. Section 4). In
the multi-label case, it predicts a set of labels using
sigmoid activation (cf. Section 5). The objective
function Lmain is standard cross entropy loss.

3.2 Introducing Hierarchical Information

As mentioned in Section 2, we focus on lightweight
methods that introduce a minimal number of ad-
ditional parameters and are therefore compatible
with fine-tuning as part of the final classification
layer of a transformer-based architecture. The suit-
able methods are summarized in the taxonomy in
Figure 1. We distinguish, from top to bottom: (1)
Methods that post-process the output of a statement
classifier to enforce hard constraints vs. methods
that incorporate soft constraints into the end-to-end
learning process; (2) among the latter, methods that
decompose the parameters for the more specific
classes vs. regularization methods; (3) among the
regularization methods, we compare those which
target the representation of the class vs. of the en-
coded instance. We now describe the application
of these methods and assess their characteristics.

1In earlier work (Dayanik et al., 2021), we experimented
with other state-of-the-art architectures, including BiLSTMs
with and without attention, but obtained worse performance.

2The appendix gives details on the BERT models we use.

Figure 1: Encoding hierarchical information

3.2.1 Post-processing: ILP
Integer Linear Programming (ILP) is a sub-type of
Linear Programming, a family of constrained opti-
mization problems over linear objective functions.
ILP introduces the additional constraint that vari-
ables can take only integer values. ILP models have
been used in NLP tasks such as dependency parsing
(Riedel and Clarke, 2006) or semantic role labeling
(Punyakanok et al., 2004) to enforce linguistically
motivated constraints on predicted structures.

In our application, where a classifier might pre-
dict a subcategory with a mismatching supercate-
gory, ILP can select the most likely legal output
from the classifier probabilities so that (1) for each
predicted subcategory, the matching supercategory
is predicted, and (2) for each predicted supercate-
gory, at least one matching subcategory is predicted.
For each category we introduce a binary variable vi
indicating if the category is predicted. The objec-
tive function is the log likelihood of the model out-
put (including predicted and non-predicted classes),
using the estimates of the neural classifiers PNC:

φi = PNC(vi = 1) (1)

L =
∑
i

log φivi + log[1− φi](1− vi) (2)

Let sup(i) denote the supercategory for the sub-
category i. Then we formalize constraint (1) as:

for each subcat. vi : vi − vsup(i) ≤ 0 (3)

Correspondingly, let subs(i) denote the set of sub-
categories for supercategory i. Then the second
constraint from above is formalized as:

for each supercat. vi : vi −
∑

j∈subs(i)

vj ≤ 0 (4)

Assessment: In contrast to the other methods intro-
duced in this Section, ILP imposes hard constraints
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on the output. It does not introduce additional
parameters. It is only applicable to multi-label clas-
sification. As a post processing step, it does not
propagate the errors back into the representations.

3.2.2 Parameter Decomposition: HLE
Hierarchical Label Encoding (HLE), introduced
by Shimaoka et al. (2017) for fine-grained named
entity recognition, decomposes the representation
of each subcategory into a sum of vectors, one for
the subcategory itself and one for each of its su-
percategories. Formally, it creates a binary square
matrix, B ∈ {0, 1}l×l, where l is the total number
of sub- and supercategories. Each cell in the matrix
is filled with 1 either if the column class is a sub-
class of or the same as the row class, and filled with
0 otherwise. The matrix B is not updated during
training and integrated into models by multiplying
it by the weight matrix Wc of the classifier:

W
′
c = (W>c B) (5)

where Wc ∈ Rl×hs, hs is the size of the hidden
state of the encoder and W ′c is the modified param-
eters of the classifier.
Assessment: HLE imposes soft constraints and
does not introduce any parameters. Similar to ILP,
HLE can only be used in multi-label classification.

3.2.3 Class Representation Regularization
Class representation regularization (CRR) falls un-
der the umbrella of regularization methods which
have been used to encode prior knowledge for dif-
ferent NLP tasks (Eisenstein et al., 2011; Sattigeri
and J. Thiagarajan, 2016) and has been shown to
improve classification performance on a diverse
set of hierarchical datasets under both supervised
(Naik and Rangwala, 2015) and semi-supervised
learning scenarios (Bui et al., 2018; Stretcu et al.,
2019). In our case, the goal is to increase the sim-
ilarity between the weight vectors of the subcate-
gories belonging to the same supercategory while
keeping the weight vectors of subcategories across
supercategories dissimilar.

Formally, the classification layer (cf. Sec-
tion 3.1) is a weight matrix Wc ∈ Rl×hs, where l is
the number of classes and hs is the output size of
the encoder. We use S for the set of supercategories
and Si to denote the i-th supercategory, the set of
its subcategories, and their weight vectors, depend-
ing on context. Then we define the centroid µ(Si)
of a supercategory, the average distance between

two supercategories, davg, and the global intra- and
inter-supercategory distances dinter/dintra as:

µ(Si) =
1

|Si|
∑
w∈Si

w (6)

davg (Si, Sj) =
1

|Si||Sj |
∑
w∈Si,
w′∈Sj

dist(w,w′) (7)

dinter =
∑

0≤i<j≤|S|

davg (Si, Sj) (8)

dintra =

|S|∑
i=1

1

|Si|
∑
w∈Si

dist(µ(Si), w) (9)

Finally, we regularize the learning objective
(Lmain , cf. Section 3.1) as follows:

L = Lmain + αdintra − βdinter (10)

where the hyperparameters α, β ≥ 0 control regu-
larization strength.
Assessment: CRR imposes soft constraints, adds
two hyper parameters, and is applicable to both
single and multi label classification.

3.2.4 Instance Representation Regularization
Instance representation regularization (IRR) ap-
plies the same intuition as above, but at the level
of the instance representations produced e(x) by
the encoder. The model is penalized whenever the
encoder generates more similar representations for
input pairs with different supercategories than for
pairs with the same supercategories. A similar ap-
proach was proposed by Choi and Rhee (2019) for
non-hierarchical classification to simply keep class
representations distinct from one another.

Formally, let X be the set of instances, and s(x)
be the supercategory of instance x. We consider the
set of instance triplets where the first and second
member share a supercategory and the third has
a separate one, and measure the extent to which
the distance across supercategories exceeds the dis-
tance within the supercategory:

ddiff =
∑

x,y,z∈X
s(x)=s(y)
s(x)6=s(z)

max(0,dist(e(x), e(y))

− dist(e(y), e(z)))

(11)

We then regularize the learning objective as:

L = Lmain + α · ddiff (12)
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ID Label f #sub mean f.sub
1xx Controlling

Migration
998 16 62 ± 46.2

2xx Residency 726 18 40 ± 41.2
3xx Integration 475 15 31 ± 35.5
4xx Domestic Se-

curity
230 9 25 ± 17.9

5xx Foreign Policy 689 9 76 ± 17.8
6xx Economy 194 12 16 ± 13.1
7xx Society 749 19 39 ± 37.9
8xx Procedures 676 20 33 ± 37.7

Overall 4737 118

Table 1: Subcategory distribution by supercategories in
DebateNet dataset: ID; Label; frequency (f ); number
of subcategories (#sub); mean subcategory frequency
with standard deviation (mean f.sub).

where α ≥ 0 controls the regularization strength.
Since using the complete set of triples is computa-
tionally demanding, it may be necessary to sample
instead. In this paper, we create triples from each
mini-batch by combining its instances, which is
an approximation to uniform sampling (cf. Sec-
tions 4.2 and 5.2).
Assessment: IRR also imposes soft constraints,
adding one hyperparameter. IRR requires each
instance to belong to a single supercategory.

4 Experiment 1: Newspapers

4.1 Dataset
Our first experiment adopts a monolingual multi-
label statement classification task. We work with
an extended version of DebateNet-mig15 (Lapesa
et al., 2020), a German corpus of migration-related
claims, statements targeting a specific action to
be taken in a policy field.3 The corpus comprises
1361 articles from the 2015 issues of the German
quality newspaper taz. The corpus, referred to in
what follows as DebateNet,is annotated manually
according to a two-level ontology (Table 1) for the
migration domain, comprising 8 supercategories
with 118 subcategories. There is a total of 3827
annotated textual spans that can be assigned sub-
categories if the statements touch on several pol-
icy issues. For example, the following sentence:

Eine weitere massive Verfahrensbeschleunigung ist bei
vorübergehenden Grenzkontrollen vor der Einreise vorgesehen

(A further massive acceleration of procedures is envisaged for
temporary border controls prior to entry)

3The corpus is available at mardy-spp.github.io.

is assigned to the subcategories Border Controls
(supercategory Controlling Migration) as well as
Accelerated Procedure (supercategory Procedures).

4.2 Experimental Setup
Given these properties, we model statement classi-
fication on DebateNet as multi-label classification.
Furthermore, we remove 46 extremely infrequent
subcategories with less than 20 instances each. For
each supercategory, we merge these infrequent sub-
categorie into the pre-existing ’catch-all’ subcat-
egory x99. We acknowledge that that makes the
catch-all subcategories are presumably challenging
to learn, given their inhomogeneous nature, but we
believe that this strategy is reasonable, since no
instances are discarded in this manner, and they
still retain the supercategory signal that we are
interested in. This results in a final count of 72
subcategories.

We experiment with eight model variations:
Base; ILP, HLE and CRR; and the combi-
nations HLE+ILP, HLE+CRR,CRR+ILP and
HLE+CRR+ILP. Recall that IRR is not applica-
ble to multi-label classification. We use Euclidean
distance as dist in CRR.

We adopt the 90/10 train/test split of Dayanik
et al. (2021) and perform grid search by cross-
validation on the training set to optimize hyper-
parameters, including mini-batch size. We report
weighted-averaged Precision, Recall and F1 scores
on the whole dataset and three equal-sized fre-
quency bands of categories. Details on the bands
and the training method are given in Appendix A.

4.3 Results
Does hierarchical information improve overall
performance? Table 2 summarizes the results,
with the Overall results in the first row. The Base
model achieves the lowest overall F1 score among
the others (47 points), indicating the general effi-
cacy of integrating hierarchical information into
the classifier. However, different extensions of the
base model show different effects in terms of Preci-
sion vs. Recall: ILP (2nd column) improves Recall
only (+8) while both Precision and Recall benefit
from HLE (+14/+10) and CRR (+9/+7). The com-
bination HLE+ILP yields the best Recall (+17),
and the combination of HLE and CRR is the best
overall model (F1=61: +14 F1, +15 Pr, +14 R). We
slightly outperform the results of the best model
from our previous study (Dayanik et al., 2021),
namely, HLE-only, by 1% overall F1 and on two of
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Freq band Base ILP HLE CRR HLE+ILP HLE+CRR CRR+ILP HLE+CRR+ILP
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Overall 61.2 41.9 47.0 56.0 49.7 50.4 75.2 52.2 59.0 70.4 49.0 55.2 65.8 59.0 60.5 76.5 54.3 60.8 66.0 55.4 57.8 64.3 57.3 58.6

Low 10.2 9.7 9.6 18.3 14.5 14.8 58.3 30.6 37.4 31.2 16.1 18.7 48.1 30.6 34.8 54.8 29.0 35.8 35.5 19.4 21.9 52.2 33.9 38.3
Mid 58.0 36.0 41.8 65.0 47.4 50.4 77.4 55.3 62.2 75.8 49.1 55.8 71.5 63.2 65.1 85.1 58.8 66.2 74.3 58.8 61.5 71.9 62.3 64.0
High 73.1 50.8 56.7 60.5 57.9 57.9 77.8 55.6 62.3 76.4 55.9 62.6 67.3 63.3 64.0 77.7 57.9 64.0 69.1 61.6 63.8 63.9 60.3 60.8

Table 2: Experiment 1 (multi-label statement classification): Precision, Recall, F-Scores for the DebateNet Dataset
(Overall and broken down by category frequency bands).

Supercategory Fi De Hu Tr En
f #sub mean f.sub f #sub mean f.sub f #sub mean f.sub f #sub mean f.sub f #sub mean f.sub

External Relations 1599 10 159 ± 159 5727 10 572 ± 665 2288 9 254 ± 268 3721 10 372 ± 435 3071 10 307 ± 302
Freedom, Democracy 758 4 189 ± 209 5672 4 1418 ± 1547 3553 4 888 ± 705 5211 4 1302 ± 1443 2091 4 522 ± 509
Political System 1129 5 225 ± 226 5661 5 1132 ± 1012 4040 5 808 ± 423 3299 5 659 ± 405 2530 5 506 ± 553
Economy 4556 15 303 ± 395 15185 16 949 ± 1082 10380 16 648 ± 773 17899 16 1118 ± 1557 6753 15 450 ± 499
Welfare, Quality of Life 7787 7 1112 ± 927 16592 7 2370 ± 1965 15121 7 2160 ± 1567 11120 7 1588 ± 1414 10246 7 1463 ± 1431
Fabric of Society 2677 8 334 ± 203 6095 8 761 ± 452 5500 8 687 ± 582 5555 8 694 ± 721 3328 8 416 ± 448
Social Groups 2113 6 352 ± 523 5865 6 977 ± 1102 3625 6 604 ± 635 5157 5 1031 ± 988 2075 6 345 ± 422

Overall 20619 60797 44507 51962 30094

Table 3: Subcategory distribution by supercategories in the complete (100%) Manifesto dataset: frequency (f );
number of subcategories (#sub); mean subcategory frequency with SD (mean f.sub). Total: instances per language.

the three frequency bands (low, mid +1% F1), with
a tie on the third one (high), which we attribute to
the addition of class level regularization through
the CRR component. We obtain the best results for
α ∈ [0.005, 0.01] and β = 0.01: thus, a very mild
regularization already has a substantial effect.

How do hierarchical structure and category
frequency interact? The results by frequency
band enable us to analyze classification perfor-
mance depending on frequency. We observe
that the Base model fails badly in the low fre-
quency band (F1=10) while doing a fair job in the
mid-frequency and high-frequency bands (F1=42
and 57). The inclusion of hierarchical infor-
mation leads to the most substantial improve-
ments for the low-frequency band (+28 F1 for
HLE+CRR+ILP). Improvements are generally cor-
related with (in)frequency: the best overall model,
HLE+CRR, improves the mid-frequency band by
20 points F1 and the high-frequency band by 7
points F1. Figure 2 shows the subcategories with
the highest improvement: four belong to the mid-
frequency and three to the low-frequency band.

5 Experiment 2: Party Manifestos

5.1 Dataset
Our second (single-label classification) experiment
targets political statements in party manifestos, of-
ficial documents issued by parties to summarize
their political program. We build on the Com-
parative Manifesto Project (Volkens et al., 2019)

Figure 2: Experiment 1: Seven subcategories with high-
est F1 increase for best model compared to base model.
I.O:Integration Offers, R.B:Reducing Bureaucracy

which collected and manually coded manifestos
from multiple countries and languages. Consider-
ing the availability of language specific transformer
based models and large annotated data, we focus
on 5 countries with one language each: Finland
(Fi), Germany (De), Hungary (Hu), Turkey (Tr)
and United Kingdom (En).Note that this is not a
parallel corpus, and the amount of annotated data
available for each language varies greatly (cf. Table
3). Coding uses a two-level ontology of 7 policy ar-
eas as supercategories “designed to be comparable
between parties, countries, elections, and across
time”, and 56 subcategories (Table 3).4 Sentences
are split into segments if they discuss unrelated top-
ics or different aspects of a larger policy, so each
segment is assigned a single subcategory.

4https://manifesto-project.wzb.eu/
coding_schemes/mp_v5
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Lang Plain CRR IRR CRR + IRR
P R F1 P R F1 P R F1 P R F1

Fi 39.0 38.4 37.4 40.6 40.0 39.3 41.5 39.2 38.6 42.2 40.8 40.1
De 33.3 31.3 31.4 35.4 34.1 34.2 34.6 34.7 34.3 36.8 34.8 34.9
Hu 41.1 38.8 38.7 41.7 39.8 39.7 42.2 39.0 39.2 43.7 39.3 39.8
Tr 45.6 42.5 42.4 47.9 41.7 43.0 48.9 42.4 43.3 49.0 42.5 43.6
En 31.5 30.8 30.5 34.6 32.5 32.3 32.7 32.7 32.1 34.4 32.5 32.8

Table 4: Experiment 2 (single-label statement classification): Macro-averaged Precision, Recall, F1 scores for the
Manifesto dataset (Overall, trained on 25% of the data).

Lang Freq band Base CRR IRR CRR + IRR
P R F1 P R F1 P R F1 P R F1

Low 18.4 15.2 13.7 20.7 17.7 16.7 22.6 16.6 15.4 25.5 19.6 19.5
Fi Mid 42.1 42.2 41.5 42.5 42.6 41.9 44.4 42.7 42.7 43.9 43.9 43.0

High 56.6 57.8 57.0 58.7 59.8 59.2 57.4 58.4 57.7 57.3 58.9 57.9
Low 16.1 9.0 10.6 19.7 14.7 16.4 18.6 17.7 17.8 23.1 16.2 18.0

De Mid 36.9 38.3 37.4 38.3 40.3 38.7 37.3 40.8 38.5 38.7 40.5 38.9
High 48.7 48.9 48.5 49.9 49.4 49.3 49.6 47.6 48.4 50.1 49.7 49.7
Low 24.5 15.4 17.3 26.4 18.4 19.9 28.4 16.9 19.1 33.6 17.5 21.1

Hu Mid 41.5 43.7 41.7 41.5 43.8 42.1 41.0 43.5 41.6 40.1 42.7 40.9
High 57.3 57.2 57.0 57.2 57.2 57.0 57.3 56.7 56.7 57.3 57.7 57.4
Low 29.2 19.6 20.2 37.4 20.8 24.2 40.4 22.2 24.9 38.0 21.0 23.8

Tr Mid 46.4 47.3 46.6 45.8 43.2 44.1 46.0 44.1 44.8 48.8 44.9 46.4
High 61.1 60.6 60.7 60.4 61.0 60.6 60.1 60.8 60.1 60.3 61.5 60.7
Low 13.3 8.3 9.7 20.1 10.8 12.9 14.6 10.7 11.9 17.2 11.3 13.3

En Mid 30.5 31.7 30.6 32.1 34.7 32.5 32.0 34.9 32.8 33.7 33.1 32.9
High 50.7 52.4 51.3 51.7 52.0 51.6 51.6 52.3 51.6 52.3 53.2 52.2

Table 5: Experiment 2 (single-label statement classification): Macro-averaged Precision, Recall, F1 scores for the
Manifesto dataset (by category frequency band, trained on 25% of the data).

5.2 Experimental Setup

We model statement classification in the Manifesto
corpus at the segment level as a single-label clas-
sification task. Unlike in Section 4.1, we do not
apply any pre-processing to merge very infrequent
subcategories, since all categories in the Manifesto
corpus are frequent enough. For example, there is
only one subcategory with less instances than the
threshold (20) in the DE portion.

Since HLE and ILP are only useful for multi-
label classification, we experiment with the fol-
lowing model variations: Base; CRR, IRR; and
CRR+IRR. As distance metric, we use L1 distance
in CRR and Cosine distance in IRR. (Other choices
led to worse results.)

We split the dataset into train (65%), validation
(15%), and test (20%) portions. With several hun-

dred thousand sentences after years of annotation,
the Manifesto corpus is one of the largest CSS
datasets available and its size is arguably larger
than typical for CSS projects (annotation of the 4k
DebateNet instances took more than a year). For
this reason, we introduce a further experimental
variable, namely the amount of the training data.
This allows us to simulate the application of these
methods to scenarios in which smaller amounts of
training are available. Specifically, we use random
draws of percentages (25%, 50% and 100%) of the
full training set, keeping the test set constant. Due
to space constraints, we will discuss only the 25%
case in detail and provide an overview of the 50%
and 100% cases, whose details can be found in
the appendix. We perform hyperparameter search
for each language separately and adopt the same
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evaluation setup as in Experiment 1 (Section 4.2).

5.3 Results
Does hierarchical information improve perfor-
mance? Table 4 shows the results for 25% train-
ing data of each language. The results are surpris-
ingly similar across all languages, despite the typo-
logical differences and varying amounts of training
data. The Base model consistently yields the worst
results, in line with the findings of Experiment 1.

The use of hierarchical structure, both through
CRR and IRR, leads to improvements for all lan-
guages, with no clear winner between the two.
However, as was the case in Experiment 1 for
CRR+HLE, the two methods can be beneficially
combined: CRR+IRR yields the highest F-Score
for each language: the gains over Base are be-
tween 1.1 points (Hu) and 2.3 points (En). The
improvements are substantially smaller than in Ex-
periment 1, which we attribute to the larger amount
of data available, both overall and per subcate-
gory. We obtained the best results for α = 0.1
and β ∈ [0.1, 0.2] indicating that the CMP data
profits from a bit more but still mild regularization.
Our setup is not exactly comparable to previous
work, but our 100% condition (cf. Appendix A)
matches or exceeds the results of the closest study
by Subramanian et al. (2018).

How do hierarchical structure and category fre-
quency interact? As in Experiment 1, we ana-
lyze the impact of hierarchical structure on three
equal-sized subcategory frequency bands, shown
in Table 5, for the 25% condition. Similar to Ex-
periment 1, the Plain model fails badly on the low
frequency band with F1 between 9.7 (En) and 20.2
(Tr). The combination CRR+IRR yields the high-
est improvements for this frequency band, between
3 and 7 points F1. (Turkish is an exception with
the highest F1 for IRR without CRR.) CRR and
IRR also generally improve the results for the two
other bands, but (again in line with Experiment 1)
the gains are more modest, up to 2.5% F1 for the
mid-frequency and 1.0% F1 for the high-frequency
abdn. Indeed, a correlation analysis shows a signifi-
cant negative correlation between subcategory size
and the F1 improvement of CRR+IRR over Base,
r = −0.19. In the higher frequency bands, the
variance is also higher, with some wins for CRR
(Fi, Hu), IRR (Tr), or the Base model (Tr).

Corpus size and hierarchical structure. As
stated above, our main results use the 25% con-

Figure 3: Experiment 2: F1 difference between the
CRR+IRR and Base models across training data sizes.

Figure 4: Experiment 2: Seven subcategories with high-
est F1 increase for best model compared to base model.
Peace, E.C and Protectionism belong to mid frequency
class. The other four subcategory belong to low band.
K.D.M: Keynesian Demand Management, E.C: Euro-
pean Community/Union.

dition. To assess the behavior for larger datasets,
Figure 3 summarizes the mean improvement in F1
between Base and IRR+CRR for the 25%, 50%
and 100% conditions. The improvement is largest
for the 25% setting, further supporting our obser-
vations that incorporating hierarchical information
into the models is especially important in a low
data regime. That being said, we still obtain con-
sistent improvements for the 50% condition. For
100%, we still gain 1-2 points F1 for De, En, and
Fi. In contrast, Tr and Hu lose slightly on the full
dataset (100%). Further analysis (Appendix B.3)
shows that in Tr and Hu, the high-frequency band
– where we see the least improvement – account
for 76% and 79% of the data, respectively, while it
only makes up, e.g., 73% of the German data.

Qualitative Analysis. Table 6 shows some En-
glish examples which were classified incorrectly
by the Base model and correctly by the IRR+CRR
model. All involve arguably related subcategories,
illustrating the benefit of hierarchical modeling
to counteract the substitution, among related cat-
egories, of the more frequent by the less frequent
one. This pattern is bolstered by Figure 4, which
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Input Base Pred. (incorrect) CRR+IRR Pred. (correct)

Our long-term economic plan is turning
around Britain’s economy.

Economic growth (Mid) Economic planning (Low)

Face coverings such as these are barriers
to integration.

National way of life (Mid) Multiculturalism (Low)

Fairer corporate governance, built on new
rules for takeovers executive pay and
worker representation on company boards.

Market regulation (High) Corporatism (Low)

This sent out terrible signals: if you did
the right thing, you were penalised — and
if you did the wrong thing, you were re-
warded, with the unfairness of it all infuri-
ating hardworking people.

Equality (High) Welfare limitation (Low)

Table 6: Examples from Manifesto dataset correctly classified only by CRR+IRR. Mid, Low, High indicates
frequency band of predicted subcategories.

shows the 7 subcategories with the largest improve-
ment in F1: Three of them belong to the mid-
frequency band, four to the low-frequency band,
and none to the high-frequency band.

6 Conclusion

This paper addresses the task of political statement
classification focussing on the challenge of class
imbalance. We have argued that the hierarchically
structured codebooks developed by political sci-
ence projects are a source of domain knowledge
that can be integrated in classification models. We
extend state-of-the-art transformer models with
lightweight modules that implement this intuition
in different ways. We evaluate on two datasets,
covering two codebooks, single-label and multi-
label classification, and various languages. Our
main findings are robust across the different setups:
inclusion of hierarchical information virtually al-
ways improves classification, and the methods we
consider are sufficiently complementary that their
benefits combine. We obtain improvements even
for fairly large datasets, with diminishing bene-
fits for very large datasets – which is plausible,
given that performance improves particularly for
low-frequency categories.

The latter finding – strong improvements for
low-frequency categories – is arguably important
with regard to algorithmic fairness (Dayanik and
Padó, 2020; Jacobs and Wallach, 2021), since in the
case of rare categories, a small number of predic-
tion errors is sufficient to substantially impact the
reliability of downstream analyses. Indeed, multi-

ple causes of low frequency categories exist. As
one example, in analyses over time, statement fre-
quencies co-vary naturally with topic prominence,
and analyses like the (semi-)automatic extraction
of network representations to assess dynamics of
political debates (Haunss et al., 2020) may mis-
represent the contribution of infrequent categories.
As another example, work on the framing of im-
migration discourse on Twitter (Mendelsohn et al.,
2021) has shown that employing issue-specific cate-
gories (e.g., "victim:war", "victim: discrimination",
"threat:jobs", "threat:public order") reveal ideolog-
ical and regional patterns which would be missed
by the commonly employed generic frames such
"economy" or "morality" (Card et al., 2015) – but
at the cost of introducing many fine-grained cate-
gories which are sparse and attested with widely
different frequencies. Our work demonstrates that
a well designed hierarchical codebook, combined
with the right computational devices, can go a long
way towards redressing the challenges that arise
from this situation. An more detailed assessment
of the impact of our methods on downstream tasks
remains future work.
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A Details on Experiment 1

A.1 Dataset Details
We split the fine-grained categories into three equal-
sized frequency bands using following thresh-
old values: high-frequency (265≥f≥ 67), mid-
frequency (65≥f≥ 40) and low-frequency (20≥f≥
39). Table 7 shows the category frequency band
assignments in the DebateNet dataset.

Band Label

111 199 201 209 213 214
Low-frequency 406 408 499 502 505 508

602 603 605 701 706 707
708 801 802 807 811 814

106 107 109 204 211 212
Mid-frequency 215 301 302 303 307 401

402 405 503 509 601 699
702 711 715 803 804 808

101 102 104 105 108 110
High-frequency 190 202 203 207 299 309

399 501 504 507 703 705
709 712 799 805 812 899

Table 7: Lists of the categories in the frequency bands

A.2 Training Details
We use use a cased BERT variant that was trained
specifically for the target language. We split De-
bateNet into to a train set (90%) and a test set
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(10%) and perform grid search by cross validation
on the training set to optimize hyperparameters.
All models are trained using cross entropy loss
with the sigmoid activation function and AdamW
(Loshchilov and Hutter, 2019) optimizer. We per-
form grid search for hyperparameter optimization
and use the hyperparameters leading highest aver-
age F1 score during 5-Fold cross validation. Fol-
lowing lower and upper bounds have been applied
during search for each hyperparameter: learning
rate: [1e-5, 5e-2], epoch: [5, 25], mini-batch size:
[16, 32], dropout: [0.2,0.8], α: [0.005,0.6], β:
[0.01,0.6]. The best hyperparameters for the best
model (HLE+IRR+ILP) are shown in Table 8.

Lang Train lr αCRR β αIRR dp

DebateNet 5e-5 0.01 0.01 - 0.3

25% 3e-5 0.1 0.1 0.1 0.4
Fi 50% 2e-5 0.05 0.05 0.1 0.2

100% 2e-5 0.05 0.05 0.1 0.2

25% 2e-5 0.2 0.2 0.4 0.2
De 50% 2e-5 0.05 0.01 0.2 0.2

100% 2e-5 0.1 0.2 0.1 0.1

25% 2e-5 0.4 0.05 0.1 0.2
Hu 50% 2e-5 0.1 0.1 0.1 0.2

100% 2e-5 0.01 0.01 0.05 0.2

25% 2e-5 0.2 0.2 0.4 0.2
Tr 50% 2e-5 0.2 0.4 0.05 0.2

100% 2e-5 0.01 0.01 0.1 0.2

25% 3e-5 0.05 -0.05 0.1 0.4
En 50% 3e-5 0.2 0.2 0.4 0.4

100% 3e-5 0.05 0.05 0.4 0.4

Table 8: Hyperparameters of HLE+IRR+ILP (Exper-
iment 1, DebateNet) and CRR+IRR (Experiment 2,
remaining rows) models. αCRR/IRR: α parameter of
CRR/IRR method.

B Details on Experiment 2

B.1 Dataset Details

Similar to Experiment 1, we split the categories into
three equal-sized frequency bands. Table 9 shows
threshold values for each band in the Manifesto
dataset and category-frequency band assigments
for Experiment 2 can be found at https://github.
com/repo4supp/data_splits.

B.2 Training Details

In our experiments, for each language (Fi5, De6,
Hu7, Tr8 and En9), we use a cased BERT variant
that was trained specifically for the target language.
We split the dataset into train (65%), validation
(15%), and test (20%) sets and perform hyperpa-
rameter search on the development set for Exper-
iment 2. We again use AdamW as the optimizer
and cross-entropy as the loss function. We per-
form grid search for hyperparameter optimization
and use the hyperparameters leading highest aver-
age F1 score on the development set. Following
lower and upper bounds have been applied during
search for each hyperparameter: learning rate:[1e-
5, 5e-2], epoch:[5, 30], mini-batch size:[16, 32],
dropout:[0.1,0.6], αCRR:[0.01,0.6], αIRR:[0.01,0.6]
β:[0.01,0.6]. The hyperparameters for the best
model (CRR+IRR), for each language and training
set, are listed in Table 8.

B.3 Results Details

As the Manifesto corpus is one of the largest CSS
datasets available and its size is arguably beyond
the scope of typical CSS projects, we train each
model variant multiple times using incrementally
larger percentages (25%, 50% and 100% of the full
training set) of the training data, keeping the test
set constant.

Table 10 and Table 11 show the results for the
50% condition. We observe similar patterns as in
25% case: While the gap between performance of
the Base model and the CRR+IRR model becomes
less pronounced, CRR+IRR always yields better
F1-Scores than the Plain model under 50% train-
ing data case. Furthermore, a comparison of the
columns CRR and IRR with the column Base in
Table 10 reveals that in most of the languages we
considered, these extensions still able to outper-
form plain model when they are used stand-alone.
Next, we investigate impact of hierarchical struc-
ture on three equal sized category frequency bands
for the 50% case. Table 11 shows the results. We
find that stand-alone CRR and stand-alone IRR
yields the highest improvements for low frequency
band in Hu and Tr and CRR+IRR achieves best
results in Fi, De and En. Results in Mid and High
rows of Table 11 also indicate that the extension

5https://github.com/TurkuNLP/FinBERT
6https://deepset.ai/german-bert
7https://hlt.bme.hu/en/resources/hubert
8https://github.com/dbmdz/berts
9https://huggingface.co/bert-base-cased
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Lang Freq. 25% 50% 100%
Threshold Threshold Threshold

Low 1 ≥f≥ 12 1 ≥f≥ 23 2≥f≥ 52
Fi Mid 14≥f≥ 55 24≥f≥ 110 53≥f≥ 215

High 57≥f≥ 417 111≥f≥ 867 221≥f≥ 1666

Low 3 ≥f≥ 56 5 ≥f≥ 98 6≥f≥ 201
De Mid 59≥f≥ 196 99≥f≥ 391 202≥f≥ 764

High 204≥f≥ 951 401 ≥f≥ 1866 785 ≥f≥ 3655

Low 1 ≥f≥ 31 1 ≥f≥ 63 2≥f≥ 124
Hu Mid 37≥f≥ 147 69≥f≥ 276 133 ≥f≥ 560

High 168 ≥f≥ 772 357 ≥f≥ 1541 697 ≥f≥ 3046

Low 1 ≥f≥ 33 1 ≥f≥ 67 1≥f≥ 130
Tr Mid 34≥f≥ 166 68≥f≥ 316 137≥f≥ 628

High 187 ≥f≥ 937 380 ≥f≥ 1862 739 ≥f≥ 3720

Low 2 ≥f≥ 22 4 ≥f≥ 42 4≥f≥ 91
En Mid 23≥f≥ 84 49≥f≥ 180 97≥f≥ 356

High 101 ≥f≥ 536 188 ≥f≥ 1122 368≥f≥ 2315

Table 9: Experiment 2 (single-label statement classification): Threshold values for frequency bands.

Lang Base CRR IRR CRR + IRR
P R F1 P R F1 P R F1 P R F1

Fi 43.8 43.4 42.5 44.3 42.7 42.5 43.7 42.5 42.2 45.8 43.8 43.9
De 37.7 37.8 37.1 39.4 37.9 38.1 38.6 37.7 37.7 40.0 38.0 38.5
Hu 42.1 40.0 40.1 43.4 40.8 41.1 43.0 39.4 39.9 44.9 40.7 41.2
Tr 50.9 46.5 47.1 49.9 46.9 47.2 52.9 48.6 49.2 51.8 47.7 48.0
En 33.4 31.9 32.0 34.9 33.8 33.8 33.0 32.6 32.1 35.4 34.9 34.2

Table 10: Experiment 2 (single-label statement classification): Macro-averaged Precision, Recall, F1 scores for the
Manifesto dataset (Overall, trained on 50% of the data)

methods boost the performance of the Base model
on mid and high frequency bands as well.

Finally, Table 12 and Table 13 present results
for the 100% condition. Unlike in the 25% and
50% cases, we see that all of the extended models
are outperformed by the Base model in terms of
overall F1-Score for Hungarian and Turkish, which
indicates that incorporating hierarchical informa-
tion into the models does not always lead to better
results in a high data regime. When we look at
per frequency band performance, however, we see
that it is still useful to include hierarchical informa-
tion into the models: the CRR+IRR model yields
the best F-score for low frequency band in four
languages out of five.
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Lang Freq band Base CRR IRR CRR + IRR
P R F1 P R F1 P R F1 P R F1

Low 26.6 28.8 25.8 27.9 23.5 23.9 22.8 24.0 21.8 29.6 28.4 27.1
Fi Mid 44.4 39.6 41.2 44.7 43.7 43.6 45.9 42.7 43.7 48.4 42.5 44.9

High 61.3 62.6 61.5 61.1 61.9 61.2 63.5 62.0 62.4 60.4 61.4 60.7
Low 23.1 22.8 21.8 26.3 22.4 23.4 25.1 22.6 23.0 28.1 24.1 25.4

De Mid 39.9 42.0 40.5 42.4 41.1 41.3 41.1 42.1 41.2 43.1 39.6 40.9
High 51.5 50.2 50.7 51.0 52.0 51.2 51.0 50.2 50.4 50.3 51.6 50.7
Low 25.7 19.4 20.2 27.9 21.8 22.4 28.6 18.5 20.9 30.5 19.6 21.0

Hu Mid 43.8 43.9 43.4 46.0 42.8 44.1 42.7 43.6 42.6 45.9 44.5 44.8
High 57.9 57.9 57.8 57.0 59.1 57.7 58.5 57.3 57.3 59.0 59.2 58.8
Low 37.9 24.9 27.0 34.0 24.9 26.4 41.9 28.8 31.2 41.0 27.1 29.2

Tr Mid 51.7 49.2 50.1 52.3 50.7 51.2 52.2 51.1 51.4 50.7 51.3 50.6
High 63.2 65.4 64.1 63.4 65.2 64.1 64.4 65.9 65.1 63.7 64.8 64.1
Low 15.0 10.0 11.5 17.3 13.4 14.4 13.1 8.8 9.9 19.2 16.1 16.8

En Mid 33.8 33.6 33.1 35.0 34.3 34.2 35.3 34.8 34.3 33.9 34.3 32.4
High 51.4 52.2 51.5 52.5 53.6 52.8 50.7 54.2 52.1 53.0 54.4 53.3

Table 11: Experiment 2 (single-label statement classification): Macro-averaged Precision, Recall, F1 scores for the
Manifesto dataset (by frequency band, trained on 50% of the data)

Lang Base CRR IRR CRR + IRR
P R F1 P R F1 P R F1 P R F1

Fi 47.0 48.1 46.7 48.1 48.7 47.8 47.1 48.3 46.9 47.6 51.2 48.1
De 40.4 40.9 40.2 41.3 41.2 40.9 41.8 40.0 40.2 42.4 40.8 41.2
Hu 47.8 43.9 44.6 45.0 41.4 42.3 47.1 42.8 43.8 43.4 45.0 43.6
Tr 56.7 55.7 55.5 56.4 54.2 54.3 55.6 53.9 53.6 55.9 54.6 54.5
En 38.5 35.7 35.9 40.2 36.3 37.2 37.8 36.1 36.5 38.4 38.2 37.8

Table 12: Experiment 2 (single-label statement classification): Macro-averaged Precision, Recall, F1 scores for the
Manifesto dataset (Overall,trained on 100% of the data)
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Lang Freq band Base CRR IRR CRR + IRR
P R F1 P R F1 P R F1 P R F1

Low 29.1 34.8 30.3 31.6 34.2 31.6 27.8 31.5 28.2 30.0 39.3 31.7
Fi Mid 49.4 46.7 47.4 50.5 48.8 49.3 50.6 49.3 49.2 49.7 50.3 49.6

High 63.4 63.6 63.2 63.0 63.8 63.3 63.9 65.0 64.2 64.0 64.7 64.0
Low 24.1 26.0 24.2 28.4 26.8 27.1 29.2 25.2 24.9 30.6 27.7 28.3

De Mid 44.9 45.4 44.8 43.8 45.5 44.4 44.4 43.8 43.3 44.4 43.0 43.4
High 54.0 53.1 53.5 53.1 53.0 52.9 53.3 52.8 52.9 53.5 53.3 53.2
Low 35.6 24.8 27.6 30.4 20.5 23.6 33.2 23.4 26.3 27.2 31.2 28.4

Hu Mid 47.6 47.2 46.9 47.0 45.4 45.5 48.6 45.8 46.3 42.9 46.2 43.8
High 60.8 60.8 60.2 58.4 59.6 58.7 60.1 60.1 59.9 61.0 58.3 59.5
Low 41.3 40.9 39.7 41.8 37.6 37.6 38.9 35.1 34.3 41.5 37.9 37.9

Tr Mid 59.0 55.9 57.1 58.2 55.5 56.2 58.0 56.2 56.6 57.1 56.7 56.5
High 70.5 71.1 70.7 70.0 70.3 69.9 70.8 71.5 71.0 70.0 70.2 69.9
Low 23.2 13.3 15.7 25.2 16.7 19.2 17.7 15.6 16.1 22.4 21.5 21.2

En Mid 38.0 39.3 37.9 40.8 36.9 37.9 41.6 36.6 38.5 38.4 36.6 37.0
High 55.0 55.6 55.1 55.5 56.6 55.7 55.3 57.4 56.1 55.2 57.5 56.1

Table 13: Experiment 2 (single-label statement classification): Macro-averaged Precision, Recall, F1 scores for the
Manifesto dataset (by frequency band, trained on 100% of the data)
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