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Abstract

Transcription is often reported as the bottle-
neck in endangered language documentation,
requiring large efforts from scarce speakers
and transcribers. In general, automatic speech
recognition (ASR) can be accurate enough to
accelerate transcription only if trained on large
amounts of transcribed data. However, when
a single speaker is involved, several studies
have reported encouraging results for phonetic
transcription even with small amounts of train-
ing. Here we expand this body of work on
speaker-dependent transcription by comparing
four ASR approaches, notably recent trans-
former and pretrained multilingual models, on
a common dataset of 11 languages. To au-
tomate data preparation, training and evalua-
tion steps, we also developed a phoneme recog-
nition setup which handles morphologically
complex languages and writing systems for
which no pronunciation dictionary exists. We
find that fine-tuning a multilingual pretrained
model yields an average phoneme error rate
(PER) of 15% for 6 languages with 99 min-
utes or less of transcribed data for training.
For the 5 languages with between 100 and
192 minutes of training, we achieved a PER
of 8.4% or less. These results on a num-
ber of varied languages suggest that ASR can
now significantly reduce transcription efforts
in the speaker-dependent situation common in
endangered language work.

1 Introduction

Recent progress in automatic speech recognition
(ASR) was made by training neural networks on
increasingly large amounts of annotated data. To
significantly reduce the efforts needed to transcribe
endangered languages, ASR must reach sufficient
accuracy when trained on relatively much smaller
amounts of transcribed data. Already several re-
search efforts have been dedicated specifically
to ASR for low-resource languages, such as the

IARPA BABEL program1 and the NIST OpenASR
Challenge2. However, creating an ASR system
for a task like speaker-independent phonetic tran-
scription is still difficult and requires amounts of
transcription that are very large in the context of en-
dangered languages. For example, Shi et al. (2021)
recently concluded that at least 50 hours of training
data are needed for this task, comparing ESPnet
and HMM-based models on two languages.

In language documentation, field recordings are
seldom made with a large number of speakers,
but rather with a few speakers and for long du-
rations (Amith et al., 2021). In these conditions,
small amounts of transcribed data from a single
speaker might be enough to train a phoneme rec-
ognizer with sufficient accuracy to automatically
transcribe the remaining recordings from the same
speaker. Concentrating on the single speaker sce-
nario, Adams et al. (2018) evaluated a CTC-based
LSTM model on Na and Chatino, and showed en-
couraging results for automated phoneme transcrip-
tion as well as the effectiveness of this approach
for linguistic work on endangered languages; they
also created the open-source phonemic transcrip-
tion tool Persephone. Wisniewski et al. (2020) com-
pared Persephone performance on several endan-
gered languages, focussing on data preprocessing
concerns. Gupta and Boulianne (2020) compared
end-to-end Persephone and wav2letter++ with an
HMM-BLSTM hybrid for single speaker phoneme
transcription, but using only one language, Cree.
More recently, Adams et al. (2021) evaluated ES-
Pnet on Na, Chatino and Japhug and integrated it
into Elpis to create a user friendly docker container.

Although these previous studies obtained promis-
ing results, they report on different systems and
languages, making them difficult to compare. In

1https://www.iarpa.gov/index.php/
research-programs/babel

2https://www.nist.gov/itl/iad/mig/
openasr-challenge
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addition, none has yet evaluated fine-tuning recent
large models pretrained on many languages, for
example XLSR (Conneau et al., 2020)3, which are
particularly well suited for low-resource languages.
We think it fair to include such models, as we aim
at a practical solution for the transcription problem
at hand, regardless of the underlying approach.

In this paper we extend the body of work on
single speaker phonetic transcription for endan-
gered or low-resource languages while introduc-
ing distinctive contributions. For a meaningful
comparison, we evaluate 4 systems with different
modeling approaches across a common set of 7
languages, and 3 of those systems across 11 lan-
guages, while previous work was limited to either a
single system on many languages, or many systems
on a single language. In addition to Persephone
and HMM-GMM models, we compare two recent
architectures that have never been evaluated for
single-speaker phoneme recognition: a Conformer
model with a LF-MMI criterion, and a large pre-
trained multilingual model that we fine-tune for this
task. We more firmly establish feasibility of accu-
rate phonemic transcription with 3 hours or less of
transcribed data by reporting on 4 new languages,
including Cree and highly polysynthetic Inuktitut,
in addition to 7 other previously studied in the liter-
ature. Finally, for reproducibility we make publicly
available the curated dataset of public languages
and a platform-independent container which allow
users to reproduce the experiments from this paper4

or train their own phoneme recognizer for a new
endangered language.

2 Datasets

In this section we present the two sources of data
used in the experiments. Although a number of
low-resource language datasets are publicly avail-
able, very few provide enough data per speaker for
speaker-dependent training. For example, the max-
imum duration from a single speaker in BABEL
languages is limited to 20 minutes.

2.1 Public data

The Pangloss collection (Michailovsky et al., 2014)
is an open archive of under-documented and mostly
endangered languages. For our experiments we

3Note that this is different from "universal" multilingual
systems which are not trained at all on the target language,
such as the one from Li et al. (2020)

4Only the HMM-GMM baseline is already public at the
time of this writing.

started from the single speaker subset5 prepared
by Wisniewski et al. (2020), which provides the
audio file for each sentence and the correspond-
ing sequence of labels, organized according to the
format expected by Persephone.

Table 1 gives amounts of training and testing
audio in minutes for each language in this dataset.
The language code is ISO-639-3 (International Or-
ganization for Standardization, 2018). The number
of phonemes depends on the particular rules for
grapheme-to-phoneme conversion (more details in
section 3.2). The IPA column says yes when the
recording was transcribed in IPA phonemes, other-
wise it was in orthographic text.

Language code train test IPA phones
Yongning Na nru 464 51 yes 68
Yongning Na nru33 151 16 yes 68
Yongning Na nru15 68 8.4 yes 68
Limbu lif 99 11 yes 40
Dotyal nep 95 10 no 58
Duoxo ers 29 3.7 yes 33
Nahsta mkd 23 2.9 yes 38
Mwotlap mlv 20 2.5 no 26
Vatlongo tvk 13 1.5 no 20

Table 1: Languages from the Pangloss collection. Train
and test are amounts of speech in minutes. nru33 and
nru15 are random subsets of nru, with respectively 33%
and 15% of the original duration.

2.2 Private data

We also had access to transcribed Inuktitut, Cree
and Tsuut’inai recordings collected and tran-
scribed during the NRC Indigenous language
project (Kuhn et al., 2020). We selected a single
speaker subset from each language. Transcribed
recordings from a single speaker of Kurmanji Kur-
dish were kindly shared with us by Translators
without Borders. All private data was transcribed
as text rather than phonetically, but writing systems
for these four languages are sufficiently close to
phonetic that it was not difficult to draw up their
grapheme-to-phoneme table (section 3.2).

Language code train test IPA phones
Cree crl 192 18 no 24
Kurmanji kmr 175 22 no 31
Inuktitut iku 162 45 no 25
Tsuut’ina srs 153 18 no 47

Table 2: Languages from private datasets. Train and
test amount of speech recording in minutes.

5Available at https://github.com/gw17/sltu_
corpora.
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3 STP test bed

In order to make a fair comparison, all models
are evaluated through the same speech-to-phoneme
recognition test bed. Called STP, it automates the
steps required to train a phoneme recognizer from
scratch i.e., with only a small number of audio files
manually transcribed using a common transcription
tool such as ELAN. Once trained, the recognizer
can be applied to other audio files and yield the
time-aligned phonetic transcription, in text or as
ELAN annotations. The following sections detail
the principles and design choices that were made
to ensure STP could handle all the languages in-
volved in the experiments, making it applicable to
a wide range of features frequently encountered in
endangered languages.

3.1 Training

Figure 1 illustrates the training process: it takes
as input a set of ELAN transcription files in .eaf
format, which point to audio files and contain their
transcription in text or IPA phonemes. Then it: (1)
prepares the input data as a Kaldi-compatible data
directory, (2) splits data into train/validation sets,
(3) converts the text transcript to IPA symbols us-
ing the user-supplied grapheme-to-phoneme table,
(4) converts the IPA sequences to BPE (byte-pair
encoding) sequences, (5) trains a BPE language
model, (6) trains an acoustic model, and (7) applies
the acoustic and language models to transcribe the
test set in order to compute the phoneme error rate.

The Kaldi-compatible data directory is a sim-
ple format supported by several speech recognition
toolkits and represents basically the same informa-
tion as the ELAN file i.e., segments, features and
time-aligned text transcriptions. The pipeline par-
titions the audio files at random, in separate train
and test sets, in a 9:1 ratio. When training is com-
plete, this held-out test set is used to measure the
phoneme error rate as a diagnostic (section 3.5).

3.2 Grapheme-to-phoneme conversion

Some speech recognition models requires a pronun-
ciation lexicon to convert provided transcriptions to
IPA symbols, if they are written in text rather than
IPA. Frequently such a lexicon does not already
exist and would require effort and expertise to cre-
ate. In STP we replace this requirement by a G2P
(grapheme-to-phoneme) table. The table format is
simple and can be quickly created manually from
a description of the writing system. Each line has

two fields: a sequence of UTF-8 text characters
representing a grapheme from the writing system,
and a sequence of IPA symbols for the correspond-
ing pronunciation. An empty IPA symbol can be
specified for graphemes that are to be ignored. The
input text transcription is parsed, matching first the
longest grapheme, to yield an IPA symbol sequence.
This simple scheme is enough for languages which
have a writing system close to phonetic. If the tran-
script is already in IPA, the table can be used to
map several distinct IPA symbols to a single one,
to remove tonal markers, for example. The main
limitation of such a table is that each grapheme can
only have a single IPA mapping, so no variant or
alternative pronunciations are allowed for a given
grapheme.

Figure 2 gives as an example the G2P table for
Inuktitut (iku). All graphemes that appear in the
text transcription must be listed in the table (or
they will be ignored). For this study stress markers
and tone markers were ignored when mapping to
IPA symbols, but other markers (such as palatal-
ization) were kept. The actual tables used for the
public dataset in this paper are publicly available
as well as the rest of the STP setup, as described in
section 3.6.

3.3 Subword units: byte-pair encoding

Word units are not suitable for agglutinative or
polysynthetic languages, since even impractically
large vocabularies cover only a fraction of all pos-
sible words in those languages. The coverage
problem could be solved with subword units such
as morphemes or syllables, but BPE units (byte
pair encoding) (Sennrich et al., 2015) are more
commonly used and require no extra linguistic
knowledge. We use BPE to encode commonly co-
occurring groups of phonemes as single character.
We capture phonotactic constraints with a N -gram
language model of BPE units, which allows the
N -gram model to capture contexts larger than the
preceding N -1 phonemes.

To easily map between BPE units in language
modeling and IPA symbols in acoustic model-
ing, we use an intermediate code (that we call
"nxsampa") which unambiguously represents any
IPA symbol with a single character symbol. With
nxsampa, mapping from BPE to IPA is simple and
invertible. BPE sequences are created by encoding
nxsampa sequences with a BPE encoder, which is
estimated on the training nxsampa sequences.
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Figure 1: STP training pipeline.

Figure 2: Grapheme-to-phoneme table for Inuktitut
(iku) roman writing. Graphemes are enclosed in < >,
phonemes in [ ]. This format is for illustration and dif-
fers from the actual format.

In preliminary experiments with Inuktitut (iku),
we compared character-based perplexity6 for lan-
guage models based on BPE-encoded IPA se-
quences rather than roman character sequences.
We found that perplexity was smaller (better) for
IPA symbols, and was relatively independent of
the BPE vocabulary size; we selected a value of
160 that we kept for all the following experiments.
BPE training and extraction are implemented with
SentencePiece (Kudo and Richardson, 2018).

Looking at the 160 BPE units extracted for Inuk-
titut, we find that they partially capture morpholog-
ical information. 15% of the BPE units are single
IPA symbols, 41% are syllables with 2 phonemes,
and the remaining 44% of length 3 or more are
morphemes7 at least 76% of the time.

3.4 Transcription
Figure 3 details the transcription process, which
takes an untranscribed audio file as input and re-
turns an ELAN file containing a transcription tier
with time-aligned IPA phonemes. The transcrip-
tion steps are: (1) apply voice-activity detection
(VAD) and group together adjacent voice segments

6Counting roman characters rather than words, as it is
directly related to the bits-per-character measure and is less
dependent on the subword inventory (Cotterell et al., 2018).

7More exactly, are in the set of morphemes produced by the
Uqailaut analyzer (Farley, 2012) from the Nunavut Hansards.

that belong to the same speaker to define speech
segments to be processed (diarization), (2) apply
the trained phoneme recognizer to produce BPE
sequences, (3) convert BPE sequences to IPA, (4)
produce an ELAN file containing an annotation tier
of time-aligned IPA phonemes. Note that the first
step of segmenting the raw audio into short seg-
ments of speech can by itself significantly reduce
transcription efforts, as it automates the first step
of manual transcription.

3.5 Error rate computation

The training pipeline includes a diagnostic mea-
surement of phoneme error rate on the held-out test
set. It follows the transcription process of Figure 3
except that segments are defined by the reference
transcription rather than VAD output. The recog-
nizer output sequences are compared to the refer-
ence sequences obtained by applying the G2P table
to the EAF transcription. The phoneme error rate is
computed as usual as the ratio of the total number
of insertions, deletions and substitutions over the
number of phonemes in the reference.

3.6 Reproducibility

We make STP publicly available for research pur-
poses8, as a docker container which can be run on
many operating systems. Already prepared datasets
in ELAN format and their G2P tables for the 7 Pan-
Gloss languages are also made available in a github
repository9. HMM-GMM baseline results found in
this paper can be easily reproduced by running the
container on the provided datasets.

8https://hub.docker.com/r/crimca/
speech_to_phonemes

9https://github.com/crim-ca/speech_to_
phonemes
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Figure 3: STP transcription pipeline.

4 Experiments

We evaluated models from four main classes:
a conventional hidden Markov models with
Gaussian mixture models (HMM-GMM),
an end-to-end recurrent neural network, a
convolutional/transformer-based neural network,
and a large pretrained transformer neural network.
We compare time required for training, hardware
and software requirements, and accuracy of
transcription. For a fair comparison, all models are
trained and evaluated using the same STP test bed
and languages. Only the training pipeline needs to
be run since it includes computation of phoneme
error rate on the held-out part of the dataset. For
a given model, the same hyperparameters were
used across all languages, and are taken from
the reference published paper (except where
differences are noted in following sections). The
test set is used only for measuring phoneme error
rate and is not involved in any tuning.

4.1 Baseline (HMM-GMM)

Good results were previously obtained with HMM-
GMM for single speaker phoneme recognition, in
low-resource conditions for Cree (Gupta and Bou-
lianne, 2020). To extend those results to other lan-
guages, we implemented a general HMM-GMM
baseline with the Kaldi toolkit (Povey et al., 2011),
modified for phoneme recognition with BPE units.
The HMM-GMM acoustic model training follows
the usual steps of the Kaldi "wsj" recipe10, start-
ing with monophone models (larger than usual
beamwidth) and building up to LDA+MLLT+SAT
triphone models (tri4), with 1000 model states and
a total of 20,000 Gaussian means, amounting to
about 800K free parameters. Input features are
MFCC "hires" features with 40 coefficients com-
puted from audio sampled at 16 kHz. The language
model is a 4-gram backoff trained using srilm (Stol-
cke, 2002) with Witten-Bell discounting (Witten
and Bell, 1991).

10https://github.com/kaldi-asr/kaldi/
tree/master/egs/wsj/s5

4.2 Persephone (Wisn20)

For reference we also include results published
by Wisniewski et al. (2020). This end-to-end sys-
tem is a long short-term memory neural recur-
rent network (LSTM) trained using the Persephone
toolkit, with a connectionist temporal classification
(CTC) loss criterion. It has no explicit language
model, relying only on the implicit modeling of
the LSTM. The dataset on which Wisniewski et al.
(2020) reported their results was the same as de-
scribed here in Section 2.1, except that due to lim-
itations of Persephone, they had to exclude audio
chunks longer than 10 seconds. This only made a
significant difference for Dotyal (nep), which was
limited to 44 minutes in Wisniewski et al. (2020),
while here we are able to use 95 minutes.

4.3 Pretrained multilingual model (XLSR-53)

XLSR-5311 is a large version of the wav2vec2.0
model (Conneau et al., 2020), pretrained on 56,000
hours from 53 languages from Multilingual Lib-
riSpeech, CommonVoice and BABEL datasets.
The encoder is transformer-based with a convo-
lutional front-end and is shared across languages,
similar to the approach of Dalmia et al. (2018).

We fine-tune XLSR-53 on each language using
the audio segments from the STP prepared data.
The feature extraction layers are frozen and only
decoder layers are trained, using nxsampa labels
with a CTC loss. We use nxsampa rather than BPE
since XLSR-53 model words as sequences of single
characters. We rely on decoder attention heads for
the language model and do not use an external one.

SpecAugment (Park et al., 2019) was applied
with the default parameters. Batch size and learn-
ing rate are optimized separately for each language
to obtain stable learning on the training set. For
all languages, training is stopped after a fixed num-
ber of epochs that represents approximately 16,000

11https://github.com/pytorch/fairseq/
tree/main/examples/wav2vec, model revision
38ae400ce326d5c29d1c66ec6140e4b50a9b34dd from March
10, 2021.
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steps; warmup is set at 10% of total steps. The total
number of parameters in the model is 315M, but
fine-tuning updates only the language model head
layers, which amount to 76K trainable parameters.

4.4 Conformer with LF-MMI (k2-conf)

The Conformer model (Gulati et al., 2020) is a
transformer-based architecture augmented with
convolutional input layers. We based our im-
plementation on the snowfall k2-fsa12 version.
As for HMM-GMM, we trained the model with
the same audio segments and BPE labels pre-
pared by the STP test bed. The training crite-
rion was LF-MMI (Povey et al., 2016). All lan-
guages were trained for 160 epochs. The lan-
guage model is the same 4-gram model used by the
HMM-GMM baseline. Data augmentation was per-
formed using speed perturbation with five values
[0.8, 0.9, 1.0, 1.1, 1.2]. Other data augmentation
like SpecAugment and noise/reverberation were
not used. The number of trainable parameters in
this model is 32M.

5 Results

The four architectures are compared in terms of
phoneme error rate, and elapsed time for training,
in Table 3 for the public dataset and Table 4 for the
private dataset. HMM-GMM refers to the baseline
HMM-GMM from section 4.1, Wisn20 to Perse-
phone from section 4.2, XLSR-53 to the pretrained
multilingual model of section 4.3, and k2-conf to the
Conformer model of section 4.4.

In each table, languages appear in descending
order of total audio duration available for training.
Note that the nru33 subset is used here rather than
the full nru, to make it more comparable with other
languages. True in the IPA column indicates that
transcriptions are IPA symbols, false means that
transcriptions are orthographic.

Phoneme error rates (PER) reported are obtained
using the speaker turn segmentation from the tran-
script. In an actual transcription pipeline, VAD
would be used and might introduce errors that
could slightly degrade the actual PER. Also note
that the reference is the phoneme string generated
by the G2P table, so tone or stress errors are not
counted if tone or stress is not represented by dis-
tinct phonemes in the table.

12https://github.com/k2-fsa/snowfall

5.1 Discussion
In (Gupta and Boulianne, 2020) we observed that
pretraining an HMM-BLSTM on several languages,
rather than Cree only, did not help. Here, phoneme
error rate (PER) columns in Table 3 show that pre-
trained XLSR-53 outperforms other models for all
languages in public datasets. In one case (mlv), it
obtains 8.6% PER with only 20 minutes of train-
ing. Similarly in the private dataset, Table 4 shows
XLSR-53 outperforming the other models for all
languages. Note that the HMM-GMM result for
Cree (crl) is 13.0% PER, slightly better than for
the HMM-BLSTM model without LM result from
(Gupta and Boulianne, 2020).

It was feasible to train HMM-GMM with 10 dif-
ferent random train/test partitions13 and compute
the Student’s t 95% uncertainty intervals shown
in the PER column. The uncertainty remains rel-
atively small even for the smallest datasets which
contain only a few minutes of test speech.

We find a significant degradation of performance
for all models when audio training duration drops
to 99 minutes or less. This can be seen in Table 5,
where we summarized results from Tables 3 and
4 by grouping languages in two classes based on
amounts of audio available for training. Languages
with more than 99 minutes are nru33, crl, kmr, iku,
srs, and those with 99 minutes or less are lif, nep,
ers, mkd, mlv and tvk. The average weights each
language equally.

Group %PER
HMM-GMM

%PER
XLSR-53

%PER
k2-conf

> 99min 13.8 ±1.2 5.9 11.0
<= 99min 46.0 ±3.5 15.3 53.5

Table 5: Average phoneme error rate when public and
private datasets are grouped by audio training duration.

Table 5 shows that with over 99 minutes, HMM-
GMM, XLSR and k2-conf have a PER of 13.8% or
less. When training falls to 99 minutes or less, PER
increases considerably for k2-conf, moderately for
HMM-GMM and less dramatically for XLSR-53.
To confirm this, in Table 6 we compare various
amounts of training for the same language, Yongn-
ing Na (nru). From 464 to 151 minutes, error rates
increase much less for HMM-GMM and XLSR,
than from 151 to 68 minutes, so there seems to be a
divide around 90 minutes, or 1.5 hours. The result
for the full nru set from Wisniewski et al. (2020) is
included for completeness.

13Except 6 for iku, which had only 6 different recordings.
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Language
code

IPA Audio
(minutes)

%PER
HMM-GMM

%PER
Wisn20

%PER
XLSR-53

%PER
k2-conf

Time (h)
HMM-GMM

Time (h)
XLSR-53

Time (h)
k2-conf

nru33 True 151 19.3 ±1.1 - 7.1 11.4 0.43 23.2 4.4
lif True 99 30.2 ±0.9 36.8 14.0 30.4 0.72 13.5 2.60
nep False 95 62.0 ±1.7 96.5 22.3 66.0 0.68 16.3 2.86
ers True 29 45.8 ±1.7 38.3 14.5 69.6 0.27 10.9 0.92
mkd True 23 53.1 ±3.0 92.6 17.3 27.3 0.35 10.1 0.84
mlv False 20 28.8 ±2.6 93.2 8.6 69.1 0.25 10.5 1.00
tvk False 13 57.2 ±3.6 81.8 15.0 58.7 0.17 9.1 0.35
Average 61.4 42.1 ±3.7 73.2 13.6 47.5 0.4 13.4 1.9

Table 3: Percent phoneme error rate (%PER) for languages in the public dataset, ordered by decreasing amount of
audio used in training (Audio). Elapsed hours for training are in the Time columns. Average gives equal weight to
every language.

Language
code

IPA Audio
(minutes)

%PER
HMM-GMM

%PER
XLSR-53

%PER
k2-conf

Time (h)
HMM-GMM

Time (h)
XLSR-53

Time (h)
k2-conf

crl False 192 13.0 ±0.7 6.6 10.4 0.82 22.4 5.37
kmr False 175 14.4 ±0.8 4.4 15.9 0.85 15.4 4.52
iku False 162 13.8 ±3.3 8.4 12.2 0.65 21.2 4.15
srs False 153 8.4 ±0.3 3.1 5.1 0.48 14.7 3.89
Average 170.5 12.3 ±1.0 5.6 10.9 0.7 18.4 4.5

Table 4: Percent phoneme error rate (%PER) for languages in the private dataset, ordered by decreasing amount
of audio used in training (Audio). Elapsed hours of training time are in the Time columns. Average gives equal
weight to every language.

Code Audio
(minutes)

%PER
HMM-GMM

%PER
XLSR-53

%PER
Wisn20

nru 464 13.1 6.5 18.6
nru33 151 17.0 7.1 -
nru15 68 25.6 13.6 -

Table 6: Percent phoneme error rate (%PER) for
Yongning Na (nru) when random subsets of various du-
ration are used in training. nru=full set, nru33 = 33%
of full set, nru15 = 15% of full set.

Are these error rates low enough to facilitate lan-
guage documentation? Amith et al. (2021) found
that character error rates around 6 to 10% could
reduce the effort of accurate transcription by 75%.
Here a PER below 9% was obtained for all the lan-
guages in Tables 3 and 4 which had more than 99
minutes for training, so it looks like useful error
rates are feasible with 1.7 hours of transcribed data.

Regarding the elapsed time required for training,
the last three columns in Tables 3 and 4 show ma-
jor differences between the models14. The HMM-
GMM system is not only much faster, but is also the
only one which does not use a GPU. So although
it does not yield the best PER, it could still be a
useful model for field work, since it can run on lim-
ited hardware, and makes it possible to test many
different hypothesis in a short time, for example
about the phoneme inventory.

14Times measured on a single Intel (R) Core(TM) i5-
7500 CPU running at 3.40 GHz, or equivalent, and a single
GTX1080Ti GPU, or equivalent, when applicable

These results are obtained with only one speaker
per language. While generalization is possible
when looking at several languages, interpretation
for one language in particular must be done care-
fully. This is a true limitation but also reflects the
challenge of working with endangered languages.

6 Conclusion

Fine-tuning a large pretrained multilingual model
clearly outperformed the other approaches. For
the 6 languages with 99 minutes or less of training
data, the pretrained model was able to average a
phoneme error rate of 15.3%. We obtained 8.4% or
less PER for the 5 languages which had between
100 and 192 minutes. At this level of performance,
we expect ASR to significantly reduce the effort
required for transcription of endangered languages.
Further work is needed to explore handling of tone
and stress markers, and enlarge the curated speaker-
dependent dataset with other publicly available lan-
guages.
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