
Findings of the Association for Computational Linguistics: ACL 2022, pages 1864 - 1874
May 22-27, 2022 c©2022 Association for Computational Linguistics

Sentence-T5 (ST5): Scalable Sentence Encoders
from Pre-trained Text-to-Text Models

Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant, Ji Ma,
Keith B. Hall, Daniel Cer, Yinfei Yang

Google Research
Mountain View, CA

Abstract

We provide the first exploration of sen-
tence embeddings from text-to-text transform-
ers (T5) including the effects of scaling up
sentence encoders to 11B parameters. Sen-
tence embeddings are broadly useful for lan-
guage processing tasks. While T5 achieves
impressive performance on language tasks, it
is unclear how to produce sentence embed-
dings from encoder-decoder models. We in-
vestigate three methods to construct Sentence-
T5 (ST5) models: two utilize only the T5
encoder and one using the full T5 encoder-
decoder. We establish a new sentence represen-
tation transfer benchmark, SentGLUE, which
extends the SentEval toolkit to nine tasks from
the GLUE benchmark (Wang et al., 2018). Our
encoder-only models outperform the previous
best models on both SentEval and SentGLUE
transfer tasks, including semantic textual simi-
larity (STS). Scaling up ST5 from millions to
billions of parameters shown to consistently
improve performance. Finally, our encoder-
decoder method achieves a new state-of-the-
art on STS when using sentence embeddings.1

1 Introduction

Sentence embeddings providing compact meaning
representations that are broadly useful for a vari-
ety of language processing tasks include classifi-
cation, question-answering, semantic retrieval, bi-
text mining, and semantic similarity tasks. We
explore sentence embeddings from a new fam-
ily of pre-trained models: Text-to-Text Transfer
Transformer (T5) (Raffel et al., 2020). Unlike
encoder-only models, which use a transformer en-
coder to predict random masked tokens, T5 uses
an encoder-decoder architecture and a generative
span corruption pre-training task. T5 models can
be scaled up to hundreds of billions of parameters

1Our models are released at https://tfhub.dev/
google/collections/sentence-t5/1.

Figure 1: Scaling up our ST5 model size improves per-
formance on SentEval (left) and STS (right).

Transfer STS
ST5-EncDec (11B params) 90.46 84.94
ST5-Enc (11B params) 91.63 84.96
SimCSE-RoBERTa (large) (Gao et al., 2021)2 90.23 83.76
SBERT (large) (Reimers and Gurevych, 2019) 87.69 76.55
USE (Cer et al., 2018) 85.10 71.22
InferSent (Conneau et al., 2017) 85.59 65.01

Table 1: ST5 versus notable sentence embedding mod-
els on SentEval tasks. The reported numbers are the
average of transfer tasks (classification accuracy) and
STS tasks (spearman correlation).

(Fedus et al., 2021) and have achieved state-of-the-
art performance on a broad range of NLP tasks
including Generalized Language Understanding
Evaluation (GLUE) (Wang et al., 2018) and Super-
GLUE (Wang et al., 2019). However, it is difficult
to efficiently apply T5 to some tasks such as re-
trieval or clustering. To score retrieval candidates,
T5 would need to perform full inference with cross-
attention on each query-candidate pair. In contrast,
sentence embeddings allow for efficient retrieval
and clustering (Gillick et al., 2018; Reimers and
Gurevych, 2019; Yang et al., 2020).

As shown in Figure 2, we explore three ways
of turning a pre-trained T5 encoder-decoder model
into a sentence embedding model: (i) using the

2SimCSE-RoBERTa achieves its best performance on
transfer tasks by adding an additional masked language model
loss during training, which is not used by ST5 or other models.

1864

https://tfhub.dev/google/collections/sentence-t5/1
https://tfhub.dev/google/collections/sentence-t5/1

x1 x2 x3 x4

E
nc
od
er

D
ec
od
er

y1 y2 y3 ・

(a) T5 Encoder-Decoder

x1 x2 x3 x4

E
nc
od
er

(b) ST5 Encoder-only
(ST5-Enc) first

x1 x2 x3 x4

E
nc
od
er

(c) ST5 Encoder-only
(ST5-Enc) mean

x1 x2 x3 x4

E
nc
od
er

D
ec
od
er

(d) ST5 Encoder-Decoder
(ST5-EncDec) first

Figure 2: Architecture diagrams for T5 and three ST5 variants to extract sentence representations from T5.

first token representation of the encoder; (ii) aver-
aging all token representations from the encoder;
(iii) using the first token representation from the
decoder. We evaluate the quality of the resulting
sentence embeddings on sentence transfer tasks us-
ing the SentEval (Conneau and Kiela, 2018) toolkit
and on our extension of SentEval to GLUE bench-
mark tasks (SentGLUE) in addition to semantic
textual similarity (STS) (Agirre et al., 2012, 2013,
2014, 2015, 2016; Cer et al., 2017). We contrast
raw representations from pre-trained T5 models
with those learned through fine-tuning T5 on natu-
ral language inference (NLI) using dual encoders
and contrastive learning (Conneau et al., 2017; Cer
et al., 2018; Gao et al., 2021). We introduce a
multi-stage contrastive learning recipe involving
fine-tuning first on semi-structured web-mined cor-
pora and then on NLI. Finally, we investigate scal-
ing our T5 sentence embedding model up to 11B
parameters. Illustrated in Figure 1, performance on
transfer tasks and semantic textual similarity (STS)
both improve with increased model capacity.

To our knowledge, we are the first to study using
large-scale pre-trained text-to-text models for sen-
tence representation learning and to scale sentence
embedding models up to 11 billion parameters. We
summarize our contributions as follows: (i) even
without fine-tuning, encoder-only ST5 models per-
form well on sentence transfer tasks, outperform-
ing state-of-the-art fine-tuned models such as Sim-
CSE BERT and SimCSE RoBERTa (Gao et al.,
2021); (ii) encoder-decoder sentence embedding
models achieve strong performance on STS, es-
tablishing a new state-of-the-art on sentence em-
bedding based STS; (iii) contrastive learning is
effective for fine-tuning sentence encoders from
T5-style pre-trained models, particularly using our
proposed two-stage contrastive learning approach;

(iv) training ST5 longer and with more data using a
contrastive loss leads to consistent improvement on
both sentence transfer and STS tasks; (v) creating
a new sentence representation transfer benchmark,
SentGLUE, which extends the SentEval sentence
evaluation toolkit (Conneau and Kiela, 2018) to
nine tasks from the GLUE benchmark (Wang et al.,
2018). We contribute baselines on SentGLUE us-
ing influential sentence embedding models from
prior work and contrast the performance with our
proposed ST5 embedding models.

2 Related work

Sentence embedding models have been trained us-
ing a variety of methods including: supervised
natural language inference pairs (NLI) (Conneau
et al., 2017; Reimers and Gurevych, 2019, 2020;
Gao et al., 2021); conversational input-response
and question-answer pairs (Cer et al., 2018; Yang
et al., 2020); translation pairs (Yang et al., 2020;
Feng et al., 2020); paraphrasing pairs (Wieting
et al., 2016) and adjacent sentence pairs (Kiros
et al., 2015; Logeswaran and Lee, 2018). Gao et al.
(2021) achieved the previous state-of-the-art on
STS with BERT and RoBERTa models by combin-
ing contrastive learning that constructs positive and
negative sentence pairs using NLI data.

In parallel, Text-to-Text transfer transformers
(T5) (Raffel et al., 2020), as shown in Figure 2a,
are gaining popularity due to their competitive per-
formance, effective scaling to larger model sizes,
and ease of use in solving tasks as simple text-to-
text mapping problems. However, extracting high
quality text embeddings from T5 has not been pre-
viously explored. Moreover, while recent work
has shown that scaling up models improves sen-
tence embedding performance (Gao et al., 2021),
the largest model sizes investigated only include

1865

355 million parameters rather than the 11 billion
parameters available in the largest T5 model.

3 Sentence-T5 (ST5)

We explore producing sentence embeddings from
T5 models, ranging in size from 220 million to
11 billion parameters, both as raw sentence em-
beddings extracted from pretrained T5 models and
using fine-tuning to refine the representations.

3.1 Model Architecture

As shown in Figures 2b to 2d, we explore three
strategies to extract T5 sentence representations:

• Encoder-only first (ST5-Enc first): the encoder
output of the first token.
• Encoder-only mean (ST5-Enc mean): the aver-

age encoder output across all input tokens.
• Encoder-Decoder first (ST5-EncDec first): the

first decoder output when the input text is fed
into the encoder and the standard “start” symbol
is fed as the only decoder input.

The first two are pooling strategies widely used
in encoder-only pre-trained models such as BERT.
Unlike BERT models, T5 models do not have a
‘CLS’ token at the beginning of each sentence. For
T5 encoder-decoder models, we assume the de-
coder is aware of the semantics of the entire in-
put sentence when generating its first token predic-
tion; and if so, the first decoder output embeddings
(i.e. input to the softmax layer) might naturally
capture the sentence semantics.

For sentence encoder training, we adopt a dual
encoder architecture (Gillick et al., 2018; Cer et al.,
2018; Reimers and Gurevych, 2019). As shown in
Figure 3, this architecture consists of two shared-
weight transformer modules that encode the inputs.
The transformer module can be either an encoder-
only or encoder-decoder architecture. In our experi-
ments, we initialize the transformer modules from a
pre-trained T5 model. After each module computes
a fixed-length representation for its input sentence,
a projection layer and L2 normalization are applied
to the resulting embeddings. The projection layer
transforms the output to a configurable fixed dimen-
sion sentence embedding. The embeddings from
paired encoding towers can be scored for similarity
tasks using a dot-product3 or provided to additional
layers layers for classification tasks (e.g., NLI).

3Since L2 normalization is applied to the output of each

Transformer Encoder
(optional Decoder)

Transformer Encoder
(optional Decoder)

Sentence 1 Sentence 2

Embedding 1 Embedding 2

Loss

Projection & Norm Projection & Norm

Figure 3: Architecture of the dual encoder model.

3.2 Contrastive Learning

Applying contrastive learning to sentence embed-
dings improves the uniformity of the embedding
space, leading to better performance on down-
stream tasks such as STS (Gao et al., 2021). We
apply contrastive learning to fine-tune the T5 sen-
tence representations.4

3.2.1 Contrastive Loss
Using a contrastive loss to train a sentence encoder
requires paired examplesD = {(vi, v+i)} as a train-
ing set, where vi is an input sentence and v+i is a
related sentence (e.g., that is semantically nearby).
During training, v+i is considered as a positive ex-
ample for vi and all other examples in a batch are
considered as negatives. The model should learn to
pull the positive pairs closer together while push-
ing away the in-batch negatives. We operationalize
our contrastive loss using an in-batch sampled soft-
max (Henderson et al., 2017):

L =
esim(vi,v

+
i)/τ∑

j∈B e
sim(vi,v

+
j)/τ

, (1)

The similarity scoring function is sim. B is a mini-
batch of examples and τ is the softmax temperature.
When additional negatives v−j are provided for the
input example v, the loss can be computed as:

L =
esim(vi,v

+
i)/τ∑

j∈B e
sim(vi,v

+
j)/τ + esim(vi,v

−
j)/τ

. (2)

tower, the dot-product between the embeddings will produce
their cosine similarity.

4In preliminary experiments, we also explored fine-tuning
with the classification loss used in InferSent (Conneau et al.,
2017) and Sentence-BERT (Reimers and Gurevych, 2019).
However, as previously reported in (Gao et al., 2021), our
results confirmed that fine-tuning for classification on an NLI
dataset is inferior to contrastive learning.

1866

3.3 Two-stage Training

We explore two-stage training to refine T5 sentence
embeddings: (i) first training on web mined con-
versational input-response and question-answering
pairs; (ii) then, contrastive training on NLI pairs.

4 Experimental Setup

4.1 Training Corpus

For our fine-tuned sentence embeddings, we follow
prior work showing good sentence embeddings can
be obtained from supervised training on NLI (Con-
neau et al., 2017; Reimers and Gurevych, 2019,
2020; Gao et al., 2021) in combination with train-
ing to match conversational input-response and
question-answer (CQA) pairs (Cer et al., 2018;
Yang et al., 2020). We make use of two-stage train-
ing using two datasets: one is comprised of 2 Bil-
lion conversational input-response and QA (CQA)
pairs drawn from web forums such as Reddit and
StackExchange; the other consists of NLI pairs
from the Stanford Natural Language Inference
(SNLI) (Bowman et al., 2015) and Multi-Genre
Natural Language Inference (MNLI) (Williams
et al., 2017) datasets. For the first stage, we fine-
tune using the CQA pairs under a dot-product re-
trieval loss with batch negatives (Cer et al., 2018;
Yang et al., 2018, 2020). For the second stage, we
use NLI pairs with a contrastive loss (Gao et al.,
2021), where the positives are the ‘entailment’ pairs
while the negatives are the ‘contradict’ pairs.5

4.2 Evaluation

We evaluate using SentEval, which includes 7
transfer and 7 STS tasks (Conneau and Kiela,
2018) and using our extension of SentEval to the
GLUEBenchmark tasks (SentGLUE). For the trans-
fer tasks, sentence embeddings are evaluated by
how well they perform as features for a linear clas-
sification model. For STS, embeddings are evalu-
ated by how well their cosine similarities correlate
with human annotated similiarity scores.6

4.3 Configurations

Our models are implemented using JAX7 and
trained on Cloud TPU-v3. We initialize the dual

5Using only the entailment and contradict pairs results in
275K contrastive NLI pairs being available for training.

6Following SimCSE (Gao et al., 2021), we report Spear-
man’s correlation for the ‘all’ setting for all STS tasks which
aggregates the data across different subsets.

7https://github.com/google/jax

encoder modules from public T5 checkpoints. 8

During training, we use Adafactor (Shazeer and
Stern, 2018) as the optimizer and set the learning
rate to 0.001. Linear decay is applied after 10%
of the total number of training steps, reducing the
learning rate to 0 by the end of training. To fine-
tune on NLI we use a batch size of 512, while for
the Community QA (CQA) dataset the batch size
is 2048. We use a softmax temperature τ of 0.01.

5 Experimental Goals

Our experiments aim to answer the following:

• Q1: What is the best way to extract sentence
representations from T5?
• Q2: How well do raw T5 sentence embeddings

perform on downstream tasks?
• Q3: How much do contrastive sentence embed-

ding tasks (e.g., NLI, QA) improve T5 sentence
embeddings.
• Q4: Can we benefit from scaling up T5 model

capacity for better sentence representations?

With these goals, we study transfer and STS
performance of T5 sentence embeddings using a
variety of model and training configurations, com-
paring ST5 to state-of-the-art methods including
SBERT/SRoBERTa (Reimers and Gurevych, 2019)
and SimCSE (Gao et al., 2021).

6 Results

Table 2 and 3 provide performance on transfer and
STS tasks, respectively. We compare ST5 mod-
els with two types of baselines: (ii) a model that
extracts sentence embeddings from a pre-trained
BERT model, listed in rows 1–2 of each table;
(ii) the current state-of-the-art sentence embedding
models fine-tuned from BERT or RoBERTa, listed
in rows 6–8 of each table.

6.1 Raw T5 Sentence Embeddings
We evaluate T5 sentence embeddings without fine-
tuning using the extraction strategies from section
3.1: (i) Encoder-only first token, (ii) Encoder-only
mean, and (iii) Encoder-decoder start token.

Transfer tasks Results for ST5 models using
raw embeddings on transfer tasks are shown in
rows 3–5 of Table 2. Unlike BERT, T5’s first token
is not reserved as a special placeholder (i.e., CLS)

8https://github.com/google-research/
text-to-text-transfer-transformer

1867

https://github.com/google/jax
https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/google-research/text-to-text-transfer-transformer

Model Fine-tune data MR CR SUBJ MPQA SST TREC MRPC Avg
BERT (CLS-vector) N/A 78.68 84.85 94.21 88.23 84.13 91.4 71.13 84.66
BERT (mean) ♣ N/A 78.66 86.25 94.37 88.66 84.40 92.80 69.45 84.94
ST5-Enc first N/A 76.90 86.38 90.93 88.68 80.01 94.40 66.38 83.38
ST5-Enc mean N/A 86.56 91.31 96.01 90.57 90.77 94.60 72.93 88.96
ST5-EncDec first N/A 79.96 77.93 91.02 84.66 86.27 84.00 68.00 81.69
SBERT-NLI ♣ NLI 83.64 89.43 94.39 89.86 88.96 89.60 76.00 87.41
SimCSE-BERT ♣ NLI 82.69 89.25 94.81 89.59 87.31 88.40 73.51 86.51
SimCSE-RoBERTa ♣ NLI 84.92 92.00 94.11 89.82 91.27 88.80 75.65 88.08
ST5-Enc mean NLI 86.17 91.71 94.70 90.90 90.44 90.00 76.70 88.66
ST5-EncDec first NLI 86.22 91.60 94.05 90.93 90.72 92.60 76.06 88.88
ST5-Enc mean CQA+NLI 85.75 92.08 94.58 90.95 91.76 96.40 75.19 89.53
ST5-Enc-1.1 mean CQA+NLI 86.12 92.50 94.73 90.59 92.15 95.80 76.52 89.77

Table 2: Performance on transfer tasks on the SentEval benchmark. All models are using the Base architecture.
♣ results are from (Gao et al., 2021). For all tasks, a logistic regression classifier is trained using the sentence
embeddings as features and the classification accuracy on test sets are reported.

Model Fine-tune data STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg
BERT (CLS-vector) N/A 20.16 30.01 20.09 36.88 38.08 16.50 42.63 29.19
BERT (mean) ♣ N/A 38.78 57.98 57.98 63.15 61.06 46.35 58.40 54.81
ST5-Enc first N/A 17.50 6.35 -20.70 2.29 21.87 16.71 28.60 10.37
ST5-Enc mean N/A 37.78 56.83 49.37 65.48 64.68 57.51 60.11 55.97
ST5-EncDec first N/A 10.91 29.59 14.90 28.91 30.61 9.45 39.31 23.38
SBERT-NLI ♣ NLI 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
SimCSE-BERT ♣ NLI 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57
SimCSE-RoBERTa ♣ NLI 76.53 85.21 80.95 86.03 82.57 85.83 80.50 82.52
ST5-Enc mean NLI 77.37 83.65 80.41 86.04 81.70 84.49 79.79 81.92
ST5-EncDec first NLI 77.90 85.62 82.24 86.81 82.13 84.98 79.97 82.81
ST5-Enc mean CQA+NLI 78.05 85.84 82.19 87.46 84.03 86.04 79.75 83.34
ST5-Enc-1.1 mean CQA+NLI 77.58 85.12 81.46 87.14 82.89 85.82 80.18 82.88

Table 3: Spearman’s correlation coefficient (×100) on STS tasks on the SentEval benchmark. All models are using
the Base architecture. ♣ results are from (Gao et al., 2021).

and there are no specific pre-training tasks using the
first token’s embeddings. It is unlikely that with-
out additional fine-tuning the first token’s represen-
tation would capture the semantics of the whole
sentence. Indeed, our experiments show the first
token’s representation from encoder or decoder are
much worse on all SentEval tasks compared to the
mean pooling of the encoder-only model.

Mean pooled T5 encoder embeddings greatly
outperform mean pooled BERT embeddings. More-
over, even without fine-tuning, mean pooled T5 en-
coder embeddings outperform the prior best model,
SimCSE-RoBERTa (Gao et al., 2021), on transfer
learning even though SimCSE-RoBERTa benefited
from contrastive fine-tuning on NLI.

The strong performance of ST5 may be due to
the fact that T5 is trained on more data than BERT
or RoBERTa. Additionally, the original T5 models
also include downstream tasks (e.g., GLUE, Su-
perGLUE) during pre-training, and this multi-task
setting may improve transfer performance. How-
ever, we note that there are only two SentEval tasks

(SST and MRPC) included in GLUE while the
other five tasks are not. As shown in Table 2, we
observe significant improvements on the five tasks
that are not included.

STS tasks As shown in rows 3–5 of Table 3
and similar to prior work involving BERT and
RoBERTA (Ethayarajh, 2019; Gao et al., 2021),
mean pooling of T5 embeddings performs poorly
on STS, achieving an average correlation of 55.97.
While slightly better than BERT using mean pool-
ing, this is still worse than sentence embedding
models that have been fine-tuned on supervised
tasks such as Sentence-BERT and SimCSE.

6.2 Fine-Tuning T5 Sentence Embeddings

We next evaluate ST5 models that are fine-tuned
on CQA and NLI tasks using our contrastive loss.

Fine-tuning on NLI Given that mean pooling
performs much better than the first token output
representation from encoder only T5, we opt to
discard the first token T5 model for our fine-tuning

1868

experiments. The last three rows of Table 2 show
that the transfer performance of ST5 models is very
consistent across different embedding extracting
strategies after fine-tuning. The best fine-tuned
model is 0.57 better than the best raw T5 sentence
embeddings. In Table 3, we see that fine-tuning
on NLI data significantly improves the STS task
performance of ST5.

Fine-tuning on CQA + NLI To investigate the
impact of additional training data on contrastive
learning, we experiment with the ST5 models first
trained on CQA and then fine-tuned on NLI. As
shown in Tables 2 and 3, fine-tuning on an addi-
tional dataset brings a large performance boost for
both transfer and STS tasks. This suggests that we
may be able to improve sentence embedding qual-
ity further through the mining of additional semi-
structured data for continued contrastive learning.

To exclude the effect of mixing in downstream
tasks, we also trained a ST5 variant based on the
T5 1.1 model which was only pre-trained on the C4
dataset (Raffel et al., 2020). As shown on the last
row of Table 2 and Table 3, it achieves comparable
performance to the original T5 model, outperform-
ing on most tasks but under-performing on STS.

6.3 Encoder-only vs. Encoder-decoder

In this section, we compare the performance of two
architectures: encoder-only and encoder-decoder.

Better generalizability for T5’s encoder In Ta-
ble 2, we saw that the encoder-only Base model
performs on-par with the encoder-decoder model
on transfer tasks. When we scale the ST5 model up
from Base to Large, 3B and 11B, the encoder-only
models’ performance on transfer tasks consistently
outperforms the encoder-decoder models as shown
in Table 5. This shows that building ST5 on top of
the T5’s encoder gives strong transfer performance.

Recently, Chung et al. (2021) have shown that
larger output embeddings (i.e. larger embedding
size) effectively prevent the encoder from over-
specializing to the pre-training task, thus making
the encoder’s representations more general and
more transferable. We hypothesize that the decoder
in the encoder-decoder architecture can improve
the generalizability of the encoder’s representation
in a similar fashion, as the decoder focuses on opti-
mizing for specific tasks.

Effectiveness of the decoder In the last two
rows of Table 3, we observe that the encoder-

Model
of params Base Large 3B 11B

ST5-Enc 110M 335M 1.24B 4.8B
ST5-EncDec 220M 770M 3B 11B

Table 4: Number of parameters for different models.

decoder architecture outperforms encoder-only
models for all STS tasks. As we scale up the ST5
model, we also observe improvement on STS tasks.
As shown in Table 5, the ST5 encoder-decoder
Large model outperforms the state-of-the-art model
SimCSE-RoBERTa Large, improving the Spear-
man’s correlation score from 83.76 to 84.11.

One explanation is that the additional parame-
ters from the decoder are helpful for improving
performance on textual similarity tasks. Another
possibility is that the decoder architecture itself
helps to improve the sentence embedding quality.
As shown in Figure 2d, the decoder can be consid-
ered as an additional attention pooling layer on top
of the encoder outputs.

7 Scaling up T5

We leverage the existing checkpoints from large T5
models to study the effect of scaling sentence en-
coders. The parameters of the T5 models are listed
in Table 4. Note however that ST5-EncDec doesn’t
fully leverage the model parameters; the decoder’s
learned self-attention is effectively ignored as only
the start token is fed into the decoder.

7.1 Effect on Directly Using T5 Embeddings

As shown in Table 5, the performance on the trans-
fer tasks of directly using T5 embeddings consis-
tently improves as T5 scales up. This corroborates
that large pre-trained models can improve transfer
performance of sentence embeddings.

On the other hand, increasing the model capacity
alone is not enough to achieve good performance.
Even the embeddings from the T5 11B model still
do worse on STS tasks than the fine-tuned models.
We believe that the pre-training corruption task of
T5 does not require models to avoid anisotropy.9

This highlights the importance of choosing fine-
tuning tasks for sentence embedding models that
are aligned to the goal of similarity and/or retrieval
performance.

9Having sentence embeddings smoothly and uniformly dis-
tributed within the learned embedding space, which however
can be be achieved by using a contrastive loss or regulariza-
tion.

1869

Model Fine-tune data MR CR SUBJ MPQA SST TREC MRPC Avg

ST5-Enc mean (Large) N/A 89.13 92.69 97.06 90.70 92.92 93.60 73.74 89.98
ST5-Enc mean (3B) N/A 90.35 92.77 97.43 90.15 93.85 95.60 72.70 90.41
ST5-Enc mean (11B) N/A 91.15 93.33 97.55 90.20 94.07 94.40 74.26 90.71
SBERT-NLI Large ♣ NLI 84.88 90.07 94.52 90.33 90.66 87.40 75.94 87.69
SimCSE-RoBERTa Large ♣ NLI 88.12 92.37 95.11 90.49 92.75 91.80 76.64 89.61
ST5-Enc mean (Large) NLI 88.82 93.43 95.73 91.75 93.08 94.00 76.35 90.45
ST5-EncDec first (Large) NLI 87.63 92.85 94.32 91.37 91.98 93.00 76.99 89.73
ST5-Enc mean (3B) NLI 89.92 93.27 96.19 91.54 94.18 94.20 76.87 90.88
ST5-EncDec first (3B) NLI 87.83 92.85 94.75 91.01 93.14 93.60 78.26 90.21
ST5-Enc mean (11B) NLI 90.13 93.85 96.02 91.39 93.96 95.20 76.99 91.08
ST5-EncDec first (11B) NLI 90.00 93.94 95.01 91.53 93.85 92.20 76.70 90.46
ST5-Enc mean (Large) CQA+NLI 88.89 93.46 95.38 91.50 94.23 96.20 77.10 90.97
ST5-Enc mean (3B) CQA+NLI 89.94 94.09 95.85 91.58 94.84 96.20 77.86 91.48
ST5-Enc mean (11B) CQA+NLI 90.83 94.44 96.33 91.68 94.84 95.40 77.91 91.63

Model Fine-tune data STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg

ST5-Enc mean (Large) N/A 28.01 52.60 41.35 61.28 63.58 56.31 59.48 51.80
ST5-Enc mean (3B) N/A 24.89 51.49 41.09 61.37 64.51 52.57 59.99 50.85
ST5-Enc mean (11B) N/A 34.97 60.19 47.59 66.40 70.62 62.83 63.57 58.02
SBERT-NLI Large ♣ NLI 72.27 78.46 74.90 80.99 76.25 79.23 73.75 76.55
SimCSE-RoBERTa Large ♣ NLI 77.46 87.27 82.36 86.66 83.93 86.70 81.95 83.76
ST5-Enc mean (Large) NLI 76.52 85.75 81.01 87.13 83.26 85.45 79.85 82.71
ST5-EncDec first (Large) NLI 79.15 87.42 83.61 87.64 83.92 86.35 80.64 84.11
ST5-Enc mean (3B) NLI 77.13 86.73 82.53 87.36 84.51 85.71 81.39 83.62
ST5-EncDec first (3B) NLI 79.24 87.80 83.95 87.75 84.60 86.62 80.91 84.41
ST5-Enc mean (11B) NLI 77.42 87.50 82.51 87.47 84.88 85.61 80.77 83.74
ST5-EncDec first (11B) NLI 80.11 88.78 84.33 88.36 85.55 86.82 80.60 84.94
ST5-Enc mean (Large) CQA+NLI 79.10 87.32 83.17 88.27 84.36 86.73 79.84 84.11
ST5-Enc mean (3B) CQA+NLI 79.02 88.80 84.33 88.89 85.31 86.25 79.51 84.59
ST5-Enc mean (11B) CQA+NLI 80.10 88.75 84.70 88.86 85.17 86.77 80.39 84.96

Table 5: Comparison of model performance on the SentEval benchmark when scaling up model size. ♣ results are
from (Gao et al., 2021). The first set of results are for transfer tasks, while the second set are for the similarity task.

7.2 Scaling Up Improves Fine-tuning

As shown in Table 5, we find that scaling up model
capacity leads to consistently better performance
on all downstream tasks. For the ST5 11B model,
the encoder-only model achieves an average score
of 91.08 for transfer tasks which is better than 90.45
from the ST5 Large model; while the encoder-
decoder model pushes the STS score to 84.94 and
also outperforms the ST5 Large model. For STS
tasks, we observe that the gain from increasing
model size from 3B to 11B is smaller than that
from Large to 3B. This might be due to the fact
that the embedding sizes are fixed for all models
in our experiments. One potential exploration is
to increase the sentence embedding size for larger
models to fully leverage the model capacity.

7.2.1 Alignment and Uniformity

We further investigate the quality of the sentence
embeddings by measuring aggregate distance met-
rics in the learned geometric space. In particular,
we compute the alignment loss and uniformity loss

as defined in Wang and Isola (2020):

Lalign = − E
v,v+∼ppos

‖f(v)− f(v+)‖ (3)

Luniform = log E
v,w

i.i.d∼ pdata

e−2‖f(v)−f(w)‖, (4)

Above, ppos is all positive data and pdata is the data
distribution. Lalign denotes the expected distance
between embeddings of the positive pairs, while
Luniform indicates how uniformly the embeddings
are distributed.

For both losses, lower numbers indicate better
performance. Gao et al. (2021) has shown that
models with lower numbers for these two aggre-
gate metrics tend to have better performance on
downstream tasks. As shown in Figure 4, when
models scale up, both the encoder and encoder-
decoder models decrease the uniformity loss by
a large marge meanwhile only slightly increasing
the alignment loss. This indicates that scaling up
might help the sentence embeddings to spread out
more uniformly in the space while keeping seman-
tically similar pairs clustered together. We leave
the further exploration of the connection between

1870

Model Sent. Embed. Fine-tuning Score CoLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm QNLI RTE
InferSent (Wang et al., 2018) NLI 66.71 8.60 83.90 76.50 80.20 81.70 67.80 - 63.50 71.50
SBERT (RoBERTa Base) ♣ NLI 73.40 21.22 90.83 73.34 74.08 80.75 77.21 78.13 73.92 57.76
SBERT (RoBERTa Large) ♣ NLI 75.81 20.69 93.00 73.39 76.26 82.26 79.46 80.18 75.80 60.65
SimCSE (RoBERTa Base) ♣ NLI 77.05 35.87 90.71 76.47 83.93 81.39 70.74 72.05 76.30 60.29
SimCSE (RoBERTa Large) ♣ NLI 76.23 40.11 93.23 70.23 81.45 84.45 73.44 73.56 75.95 60.65

ST5 Enc (Base) CQA+NLI 76.89 22.73 91.40 76.88 86.58 84.55 69.73 70.00 79.54 61.73
ST5 Enc (Large) CQA+NLI 78.52 29.46 93.92 77.26 86.07 85.32 72.20 72.44 79.64 66.43
ST5 Enc (3B) CQA+NLI 79.06 34.78 94.95 78.71 85.84 85.78 72.38 73.10 79.70 66.06
ST5 Enc (11B) CQA+NLI 80.07 43.91 95.30 78.46 86.54 86.21 73.46 74.42 80.12 66.06
ST5 Enc 1.1 (Base) CQA+NLI 76.63 21.59 90.60 76.66 86.34 84.53 70.40 70.76 77.92 61.01

T5 (Base) (Raffel et al., 2020) - 83.40 53.84 92.68 88.92 88.02 91.56 84.24 84.57 90.48 76.28

Table 6: Performance on transfer tasks on the Dev set of the GLUE benchmark. ♣ denotes that the models are
released by HuggingFace. T5 (base) is a cross-attention model and other models are embedding based.

Enc-11B

EncDec-
11B

Enc-3B

Enc-Large
Enc-Base

EncDec-
3B

EncDec-
Large EncDec-

BaseScaling up

Figure 4: Alignment and uniformity losses for different
model sizes. We consider the test split of the STS-B
dataset. Lalign is calculated considering all pairs with
score greater than 4. Luniform is computed using all sen-
tences. The colormap denotes the models’ Spearman’s
correlation score.

model capacity and the geometry characteristics of
resulting sentence embeddings to future work.

8 SentGLUE Evaluation

In this section, we introduce a new sentence repre-
sentation transfer benchmark – SentGLUE – which
extends the sentence evaluation toolkit, SentEval,
to nine tasks from the GLUE benchmark includ-
ing: CoLA, SST-2, MRPC, STS-B, QQP, MNLI-m,
MNLI-mm, QNLI, RTE 10. The GLUE benchmark
has been widely adopted for assessing language un-
derstanding models. GLUE tasks are either single
sentence or sentence pair classification (e.g. NLI)
or similarity (STS) tasks. The best models on the
GLUE leaderboard are fine-tuned cross-attention
models like BERT or T5. Such models change all
the parameters in the underlying model during fine-
tuning and for pairwise tasks they allow for early
fusion of input features from both sentences being

10We found the WNLI task from the GLUE benchmark is
too challenge for existing sentence embedding models, thus
we exclude it in the current version.

compared. For SentGLUE, we introduce the con-
straint that each input needs to be independently
encoded into a fixed embedding space representa-
tion that can then be feed to additional layers in
order to make a prediction. We believe this best
adapts the spirit of the original SentEval benchmark
for sentence embeddings to the GLUE tasks.

From Table 6, ST5-Enc Base outperforms both
SBERT-RoBERTa Base and SimCSE-RoBERTa
Base on all SentGLUE tasks except CoLA and
MNLI. 11 With the model’s increased capacity, ST5
Enc 11B’s sentence embeddings achieve the best
overall performance. Notably, as model size is
scaled up, aggregate performance using sentence
embeddings approaches that of T5 base. This is re-
markable given that T5 base makes use of full cross-
attention between sentence pairs and adjusts all of
the parameters in the model during fine-tuning.

9 Conclusion

We obtaining sentence embeddings from T5, in-
vestigating three architectures and two-stage con-
trastive learning for fine-tuning our representations.
We compare the difference between encoder-only
and encoder-decoder methods and analyze their per-
formance on downstream tasks. Through extensive
experiments on STS, SentEval and GLUE tasks,
we show that encoder-only models have strong
transfer performance while encoder-decoder mod-
els perform better on STS tasks. We demonstrate
the effectiveness of scaling up T5 models, greatly
improving sentence embedding quality. These find-
ings suggest that future improvements in the scale
and quality of pre-trained T5 models may provide
further sentence embeddings improvements.

11SimCSE and ST5 only use the ‘entailment’ and ‘contra-
dict’ pairs from MNLI datasets; while for SBERT, it also uses
the ‘neutral’ pairs. This might explain why SBERT outper-
forms the others on MNLI.

1871

Acknowledgments

We thank the anonymous reviewers for their help-
ful comments. We thank Zora Tung, Daniel An-
dor, Adam Roberts, Hyung Won Chung, Anselm
Levskaya and Livio Baldini Soares for help with
the JAX implementation, and Alexis Conneau and
Chris Tar for feedback and suggestions.

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Iñigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. SemEval-2015 task 2: Semantic tex-
tual similarity, English, Spanish and pilot on inter-
pretability. In SemEval 2015.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. SemEval-2014 task 10: Multilingual
semantic textual similarity. In SemEval 2014.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. SemEval-2016
task 1: Semantic textual similarity, monolingual and
cross-lingual evaluation. In SemEval-2016.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 task 6: A pi-
lot on semantic textual similarity. In *SEM 2012/Se-
mEval 2012.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *SEM 2013 shared
task: Semantic textual similarity. In *SEM.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In EMNLP.

Daniel Matthew Cer, Mona T. Diab, Eneko Agirre,
I. Lopez-Gazpio, and Lucia Specia. 2017. Semeval-
2017 task 1: Semantic textual similarity multilingual
and crosslingual focused evaluation. In SemEval-
2016.

Daniel Matthew Cer, Yinfei Yang, Sheng yi Kong, Nan
Hua, Nicole Limtiaco, Rhomni St. John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan, C. Tar,
Yun-Hsuan Sung, B. Strope, and R. Kurzweil. 2018.
Universal sentence encoder. In EMNLP.

Hyung Won Chung, Thibault Fevry, Henry Tsai,
Melvin Johnson, and Sebastian Ruder. 2021. Re-
thinking embedding coupling in pre-trained lan-
guage models. In ICLR.

Alexis Conneau and Douwe Kiela. 2018. Senteval: An
evaluation toolkit for universal sentence representa-
tions. In LREC.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In EMNLP.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? comparing the geome-
try of bert, elmo, and gpt-2 embeddings. In EMNLP.

W. Fedus, Barret Zoph, and Noam M. Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. ArXiv,
abs/2101.03961.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen
Arivazhagan, and Wei Wang. 2020. Language-
agnostic BERT sentence embedding. CoRR,
abs/2007.01852.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. ArXiv, abs/2104.08821.

D. Gillick, A. Presta, and Gaurav Singh Tomar. 2018.
End-to-end retrieval in continuous space. ArXiv,
abs/1811.08008.

Matthew Henderson, Rami Al-Rfou, B. Strope, Yun-
Hsuan Sung, László Lukács, Ruiqi Guo, Sanjiv Ku-
mar, Balint Miklos, and R. Kurzweil. 2017. Effi-
cient natural language response suggestion for smart
reply. ArXiv, abs/1705.00652.

Ryan Kiros, Yukun Zhu, R. Salakhutdinov, R. Zemel,
R. Urtasun, A. Torralba, and S. Fidler. 2015. Skip-
thought vectors. In NIPS.

Lajanugen Logeswaran and Honglak Lee. 2018. An
efficient framework for learning sentence represen-
tations. In ICLR.

Colin Raffel, Noam M. Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, W. Li, and Peter J. Liu. 2020. Explor-
ing the limits of transfer learning with a unified text-
to-text transformer. JMLR, 21/140.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In EMNLP/IJCNLP.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In EMNLP.

Noam M. Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In ICML.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. In NeurIPS.

1872

https://aclanthology.org/S15-2045
https://aclanthology.org/S15-2045
https://aclanthology.org/S15-2045
https://aclanthology.org/S14-2010
https://aclanthology.org/S14-2010
https://aclanthology.org/S16-1081
https://aclanthology.org/S16-1081
https://aclanthology.org/S16-1081
https://aclanthology.org/S12-1051
https://aclanthology.org/S12-1051
https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
https://openreview.net/forum?id=xpFFI_NtgpW
https://openreview.net/forum?id=xpFFI_NtgpW
https://openreview.net/forum?id=xpFFI_NtgpW
http://arxiv.org/abs/2007.01852
http://arxiv.org/abs/2007.01852
https://openreview.net/forum?id=rJvJXZb0W
https://openreview.net/forum?id=rJvJXZb0W
https://openreview.net/forum?id=rJvJXZb0W

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. In Black-
boxNLP@EMNLP.

Tongzhou Wang and Phillip Isola. 2020. Understand-
ing contrastive representation learning through align-
ment and uniformity on the hypersphere. In ICML.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Towards universal paraphrastic sen-
tence embeddings. CoRR, abs/1511.08198.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Yinfei Yang, Daniel Matthew Cer, Amin Ahmad,
Mandy Guo, Jax Law, Noah Constant, G. Ábrego,
Steve Yuan, C. Tar, Yun-Hsuan Sung, B. Strope, and
R. Kurzweil. 2020. Multilingual universal sentence
encoder for semantic retrieval. In ACL.

Yinfei Yang, Steve Yuan, Daniel Matthew Cer, Sheng
yi Kong, Noah Constant, Petr Pilar, Heming Ge,
Yun-Hsuan Sung, B. Strope, and R. Kurzweil. 2018.
Learning semantic textual similarity from conversa-
tions. In Rep4NLP@ACL.

A Model Inference

We run ST5 encoder-only on different platforms
to investigate the computational cost of inference.
Figure 5 summarizes the inference speed for dif-
ferent model sizes, sequence length, batch size and
platforms. ST5 achieves the fastest inference speed
on Cloud TPU-v3. As we increase the batch size,
the inference speed can be further improved. For
the 11B model, we are able to achieve a speed of
274 examples per second for sequence length 128
and batch size 1024. This shows the feasibility of
deploying such large models on TPU hardware.

We also report the speed on Nvidia Tesla V100
GPU and CPU. The ST5 11B model is able to run
on 4 V100 GPUs with sequence length 128 and
batch size 1024, achieving an inference speed of
27 examples per second. For CPU, with batch size
512, ST5 11B achieves 0.5 examples per second.

Although the speed on GPU and CPU are con-
siderably slower than on TPU, the sentence embed-
ding models are much faster than cross-attention
based models whose computation time increases
quadratically with the number of examples (e.g.,
clustering 1,000 sentences requires inference over
1 million sentence pairs).

1873

(a) TPU inference speed vs. sequence length.

(b) GPU inference speed vs. sequence length.

(c) CPU inference speed vs. sequence length.

Figure 5: Comparison of inference speed for different model sizes on different platforms.

1874

