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Abstract

Relational triple extraction is a critical task
for constructing knowledge graphs. Exist-
ing methods focused on learning text pat-
terns from explicit relational mentions. How-
ever, they usually suffered from ignoring re-
lational reasoning patterns, thus failed to ex-
tract the implicitly implied triples. Fortunately,
the graph structure of a sentence’s relational
triples can help find multi-hop reasoning paths.
Moreover, the type inference logic through the
paths can be captured with the sentence’s sup-
plementary relational expressions that repre-
sent the real-world conceptual meanings of the
paths’ composite relations. In this paper, we
propose a unified framework to learn the rela-
tional reasoning patterns for this task. To iden-
tify multi-hop reasoning paths, we construct
a relational graph from the sentence (text-to-
graph generation) and apply multi-layer graph
convolutions to it. To capture the relation type
inference logic of the paths, we propose to
understand the unlabeled conceptual expres-
sions by reconstructing the sentence from the
relational graph (graph-to-text generation) in a
self-supervised manner. Experimental results
on several benchmark datasets demonstrate the
effectiveness of our method.

1 Introduction

Relational triple extraction is defined as automat-
ically recognizing semantic relations with triple
structures (subject, relation, object) among multi-
ple entities in a sentence. It is a critical task for
natural language processing, especially for Knowl-
edge Graph (KG) construction from unlabeled cor-
pus (Dong et al., 2014).

Recent work proposed several neural network
methods to extract relational triples. For example,
Zheng et al. (2017) proposed a sequence tagging
scheme for this task but failed to extract overlap-
ping triples. Wei et al. (2020) proposed to solve the

∗Equal contribution.

George is Judy’s father and 
David’s grandfather.
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father(father(⋅))

Relational GraphSentence

grandfather(⋅) ⟺ father(father(⋅))
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Figure 1: An example of the relational graph and the
relational reasoning pattern. Solid arrows of the rela-
tional graph are golden relational triples. The dashed
arrow is a two-hop reasoning path.

overlapping triple problem with a binary tagging
framework. Zeng et al. (2018) proposed to address
this issue by generating triple element sequences
with copy mechanism.

Existing methods achieved considerable success
in learning text patterns of relational triples from
explicit mentions. However, they usually suffered
from the failure of extracting the relational triples
which are implicitly implied in the text (Zhu et al.,
2019). This is because they ignored relational rea-
soning patterns in natural language, which usually
consist of finding multi-hop paths and inferring re-
lation types along these paths. For example, in Fig-
ure 1, the triple (“David”, “father”, “Judy”) is not
explicitly expressed in the sentence and requires
relational reasoning to be extracted. Unfortunately,
the ignorance of relational reasoning patterns in ex-
isting methods will cause serious incompleteness
of the constructed KGs and performance degrada-
tion of downstream tasks (Angeli and Manning,
2013; Jia et al., 2020).

Our work is motivated by several observations.
First, the relational triples of a sentence usually
have a graph structure, which is useful for finding
multi-hop reasoning paths. For example, in Figure
1, the relational graph provides a two-hop reason-
ing path between “David” and “George”. Second,
the sentence usually contains supplementary re-
lational expressions that represent the real-world
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conceptual meanings of the paths’ composite re-
lations, which can help capture the relation type
inference logic through the paths. For example, in
Figure 1, the phrase “’s grandfather” helps capture
the equivalence between the composite relation
“father(father(·))” and the real-world relational con-
cept “grandfather”, which reflects the relation type
inference logic of the two-hop path.

In this paper, we propose a unified framework to
learn reasoning patterns for the relational triple ex-
traction task. First, we construct a relational graph
from the sentence, i.e. text-to-graph generation, to
identify potential multi-hop reasoning paths. Then
we utilize a multi-layer Relational Graph Convolu-
tion Network (R-GCN) (Schlichtkrull et al., 2018)
to propagate node information along these paths.
Next, to capture the relation type inference logic of
the reasoning paths, we aim to exploit and under-
stand the conceptual expressions in the sentence,
but the absence of human annotations for these ex-
pressions poses a huge challenge. To tackle this
challenge, we propose a self-supervised reconstruc-
tion of the sentence from the relational graph, i.e.
graph-to-text generation. Our model captures the
relation type inference logic by learning to recover
the conceptual expressions from the symbolic rela-
tion composition, such as the recovery of “’s grand-
father” from “father(father(·))” in Figure 1. Finally,
we use the reasoning pattern enhanced model to
extract relational triples from the sentence.

The main contributions of this paper are:
• We propose a mutual generation framework

of text and graph to learn relational reasoning
patterns for relational triple extraction.

• To identify multi-hop reasoning paths, we con-
struct a relational graph from the sentence and
apply a multi-layer R-GCN to the graph.

• To capture the relation type inference logic of
the paths, we propose to exploit the unlabeled
conceptual expressions with a self-supervised
sentence reconstruction task from the graph.

• Experimental results on several datasets indi-
cate the effectiveness of our method.

2 Related Work

Early work extracted relational triples with pipeline
systems (Zelenko et al., 2003; Zhou et al., 2005;
Chan and Roth, 2011; Gormley et al., 2015), but
they usually suffered from error propagation prob-
lems. Also, they failed to capture the interac-
tions between entities and relations. To address

these issues, jointly extracting entities and rela-
tions with an end-to-end model has become the
main paradigm of this task. Previous work pro-
posed several feature-based models (Yu and Lam,
2010; Li and Ji, 2014; Ren et al., 2017). For ex-
ample, Ren et al. (2017) proposed a joint embed-
ding framework to map entities, relations, text fea-
tures and type labels into unified low-dimensional
spaces. Afterward, several neural network-based
methods were proposed to eliminate hand-crafted
features (Gupta et al., 2016; Miwa and Bansal,
2016; Zheng et al., 2017). For example, Zheng
et al. (2017) proposed to extract relational triples
directly with a sequence tagging model, whose tags
contain the information of entities and the relations
they hold. However, they assigned only one label
to each word and failed to extract multiple triples
whose entities overlap with each other.

Recent work proposed several mechanisms to
address the overlapping triple problem, such as se-
quence tagging variations (Wei et al., 2020; Wang
et al., 2020; Zheng et al., 2021) and triple element
generation (Zeng et al., 2018, 2019, 2020; Sui et al.,
2020; Huguet Cabot and Navigli, 2021). For exam-
ple, Wei et al. (2020) proposed a cascade binary tag-
ging framework and modeled relations as functions
that map subjects to objects. Zheng et al. (2021)
proposed to decompose the task into three subtasks:
relation judgment, entity extraction and subject-
object alignment. Zeng et al. (2018) proposed to
generate the element sequence of triples with a
copy-based seq2seq model, while Sui et al. (2020)
proposed to generate the set of triples with a set pre-
diction network. However, these methods mainly
focused on learning text patterns of the explicitly
mentioned triples. They usually ignored the rela-
tional reasoning patterns thus failed to extract the
implicitly implied triples (Zhu et al., 2019). Al-
though Chen et al. (2021) proposed a reasoning
pattern enhanced model, they utilized entity type
information, which requires extra supervision.

Different from previous work, we propose a mu-
tual generation framework of text and graph to
capture relational reasoning patterns. We identify
multi-hop reasoning paths by generating a rela-
tional graph from the sentence. We propose to
capture the relation type inference logic by incorpo-
rating supplementary conceptual expressions with
self-supervised sentence generation from the graph.
Experimental results on several datasets demon-
strate the effectiveness of our method.
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Figure 2: The overall framework of our approach. When recovering the sentence, we use the left-to-right Language
Model (LM) objective, which is controlled by the lower triangular attention mask of the Transformer decoder.

3 Our Approach

The overall framework of our approach is illus-
trated in Figure 2. We introduce the text-to-graph
and the graph-to-text generation methods in Sec-
tion 3.1 and 3.2, respectively. Then we introduce
the triple extractor in Section 3.3 and the details of
training and inference in Section 3.4.

3.1 Text-to-Graph Generation

Relational reasoning in natural language is chal-
lenging because it usually requires reasoning for
multiple hops. We observe that the graph structure
of a sentence’s relational triples can help identify
multi-hop reasoning paths. Therefore, we construct
a relational graph from the sentence to find multi-
hop paths and apply multi-layer graph convolutions
to propagate information along the paths.

First, we encode the words in the sentence
into dense vector representations. Given the sen-
tence [x1, . . . , xn], we employ a bi-directional Pre-
trained Language Model (PLM) based on Trans-
formers (Vaswani et al., 2017) as the encoder to
capture the context of the sentence. We use the
last hidden states [hE

1 , . . . ,h
E
n ] of the PLM as the

contextual representations of the words.
Next, we use the word representations and the

ground truth of relational triples to obtain the re-
lational graph. We denote the graph as G =

(V, E ,R), where V = {v1, . . . ,v|V|} are the nodes
with feature vectors, R = {r1, . . . , r|R|} are the
relation types and E = {(vi, rk,vj), . . . } are the
edges of the graph. We first utilize the text spans
of the golden triples’ entities to find the positions
of all entity mentions in the sentence by perfect
matching. We consider each entity mention m =
[xsm , . . . , xem ] as a graph node, where sm and em
are the mention’s start and end positions, respec-
tively. We average the contextual word representa-
tions of the corresponding positions to obtain the
feature vector v = Average([hE

sm , . . . ,h
E
em ]) ∈ V.

Then we add three kinds of edges to E , as shown
in Figure 3: (1) Golden edges, which connect all
nodes (mentions) of the subject s and the object
o with relation r for each golden triple (s, r, o).
These edges provide the basic relation information
of the golden triples. (2) Reversed golden edges,
which are the reverse of the golden edges with
new reverse relation types. These edges are added
to allow sufficient bidirectional flow of node in-
formation to prevent some special graph structures
from cutting off the information flow paths between
nodes, such as siblings1. (3) Co-reference edges,

1For example, consider the graph B← A→ C. If reversed
edges are not added, B and C will only be updated by A (and
of course themselves) but A will never be updated by B or C.
This will cut off the information flow path between B and C.
If reversed edges are added, then each node can be updated by
the other two, making the information flow more sufficient.
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Figure 3: An example of the relational graph edges.

which connect all mentions pairs of the same en-
tity with an equivalence relation. These edges are
added to enhance entity representations (Wadden
et al., 2019) because they propagate the rich in-
formation included in multiple mentions and their
surrounding contexts. Therefore, the relation type
setR contains the equivalence relation, the original
relations of the dataset, and their reverse relations.

Finally, we employ an R-GCN (Schlichtkrull
et al., 2018) with multiple layers to incorporate re-
lation type information and propagate information
along multi-hop paths. Following Guo et al. (2019),
we add dense connections to the R-GCN. Formally,
the convolution of the l-th layer is formulated as:

gl+1
i = ρ

(
Wl

sk
l
i +

∑
r∈R

∑
j∈N r

i

1

|N r
i |
Wl

rk
l
j

)
(1)

where ρ is an activation function (e.g. ReLU) and
Wl

r and Wl
s are the transformation matrices of

relation r and self-loops. N r
i denotes neighbors

of the i-th node under the relation r, and kl
i =

[g1
i , . . . ,g

l
i] where g1

i = vi. Then we feed the
nodes’ initial features and the R-GCN’s output into
a Multi-Layer Perceptron (MLP) and average the
output to obtain the final graph representation: g =
Average

(
MLP([v;gL])

)
.

3.2 Graph-to-Text Generation
Given a multi-hop reasoning path, inferring the re-
lation type along the path is difficult because the in-
ference logic usually reflects complicated common-
sense facts. Fortunately, we observe that the sen-
tence usually contains supplementary expressions
that represent the real-world concepts of the paths’
composite relations. These relational expressions
can help capture the relation type inference logic.

For example, in Figure 1, the symbolic composition
of the two-hop relational path is “father(father(·))”.
The phrase “’s grandfather” in the sentence helps
connect the composite relation and the real-world
relational concept “grandfather”, which reflects the
fact that “father’s father is grandfather”.

Based on this observation, we propose to exploit
and understand the conceptual expressions in the
sentence. However, the absence of human anno-
tations for these concepts poses a great challenge.
Inspired by self-supervised pre-training techniques
of various PLMs (Devlin et al., 2019; Raffel et al.,
2020; Lewis et al., 2020), we propose to reconstruct
the sentence from the relational graph in a self-
supervised manner to tackle this challenge. Our
model learns the type inference logic by recover-
ing the conceptual expressions from the symbolic
relation compositions. For example, generating
“grandfather” from “father(father(·))” represents
the ability of understanding the logical equivalence
between “father’s father” and “grandfather” (Rad-
ford et al., 2018; Tseng et al., 2020).

To reconstruct the sentence, we utilize an auto-
regressive PLM as the decoder with the left-to-
right LM objective. Given the sentence’s encoder
hidden states [hE

1:n] and the graph representation
g, the standard graph-to-text decoder takes g and
the right-shifted sentence [<s>, x1, . . . , xn−1] as
input. However, we discover that the sentence
may have relational irrelevant contents (e.g. “is
not familiar with” in Figure 2), which may bring
corruption to the reconstruction. To address this
issue, we borrow part of the contextual informa-
tion by feeding the average of [hE

1:n] and g instead
of g into the decoder. We denote the decoder’s
last hidden states as [hD

1:n]. Finally, we use a soft-
max classifier to predict the reconstructed tokens:
pLM
i = softmax

(
Wdh

D
i + bd

)
.We choose the

state-of-the-art T5 (Raffel et al., 2020) model as our
backbone PLM because it has the same encoder-
decoder structure as ours.

3.3 Triple Extractor

We employ CASREL (Wei et al., 2020) to extract
relational triples. It consists of a subject tagger and
relation-specific object taggers. The subject tag-
ger first recognizes all possible subjects with two
identical binary classifiers. It assigns each token a
binary tag that indicates whether the current token
corresponds to a subject’s start or end position:

pss/se = σ
(
Wss/seh+ bss/se

)
, (2)
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where σ is the sigmoid function, h are the input
representations, pss/se are the probabilities of iden-
tifying all the tokens as the subject start/end posi-
tions, and (Wss,bss), (Wse,bse) are parameters
of the two classifiers, respectively.

Then the relation-specific object taggers identify
the objects and the involved relations w.r.t. the rec-
ognized subjects. Each object tagger corresponds
to a relation type and has the same structure with
the subject tagger. To incorporate the subject infor-
mation, the object taggers take the averaged repre-
sentation of the k-th subject’s start and end tokens
as sk and predict the objects’ start and end tags:

p
os/oe
rk = σ

(
Wr

os/oe(h+ sk) + br
os/oe

)
, (3)

where p
os/oe
rk denotes the position probabilities un-

der relation r w.r.t. the k-th subject, (Wr
os,b

r
os)

and (Wr
oe,b

r
oe) are the classifiers’ parameters of

relation r. If the probabilities exceed some thresh-
old, we set the corresponding tags to 1 otherwise
0. We heuristically set the threshold to 0.5 in our
model. Then we match the nearest start-end po-
sition pair to identify subjects and objects. If an
object o is identified under relation r w.r.t. a sub-
ject s, then (s, r, o) is extracted as a relational triple.
We refer readers to (Wei et al., 2020) for more com-
prehensive descriptions of the extractor.

3.4 Training and Inference
We calculate a binary cross-entropy f(y,p) =
− 1

n

∑n
i=1 yi log pi + (1 − yi) log(1 − pi) as the

loss of a triple extractor’s predictions:

Lt =
∑
∗∈{s,e}

(f(ys∗,ps∗)+
∑
r,k

f(yo∗
rk,p

o∗
rk)), (4)

where y are the labels corresponding to the position
probabilities p. We apply a triple extractor to the
encoder hidden states hE to extract triples and ob-
tain the encoder’s triple loss, denoted asLEnc. Then
we formulate the sentence reconstruction loss as
a cross-entropy: LLM = − 1

n

∑n
i=1 log p

LM(x̂i =
xi),where x̂i is the i-th reconstructed token. How-
ever, we observe that training the decoder only
using LLM causes serious overfitting and hurts the
performance. To reduce overfitting, we apply an-
other extractor to the decoder hidden states hD and
compute the decoder’s loss LDec, which is equiva-
lent to adding an auxiliary task for decoder train-
ing. Finally, we train our model with the joint loss
L = LEnc + LLM + LDec. During inference, we
only use the encoder’s extracted triples because the
decoder requires ground truth as its input.

4 Experiments

4.1 Datasets and Evaluation Metrics
We conduct our experiments on two widely used
benchmark datasets: NYT (Riedel et al., 2010)
and WebNLG (Gardent et al., 2017). NYT con-
sists of sentences from the New York Times corpus
and contains 24 relation types. WebNLG was pro-
posed for natural language generation and used
by Zeng et al. (2018) for relational triple extrac-
tion, which contains 171 relation types. Following
Zeng et al. (2018), we split the sentences into three
categories: Normal, EntitypairOverlap (EPO) and
SingleEntityOverlap (SEO) according to different
overlapping patterns of triples, as shown in Table
1. For a fair comparison, we employ the same par-
tial match setting as various previous work (Wei
et al., 2020; Chen et al., 2021) for evaluation. An
extracted triple is regarded as correct only if the re-
lation and the heads of both subject and object are
all correct. We report the standard micro precision,
recall, and F1 scores on both datasets.

Dataset
NYT WebNLG

Train Test Train Test

Normal 37013 3266 1596 246
SEO 9782 1297 227 457
EPO 14735 978 3406 26

ALL 56195 5000 5019 703

Table 1: Statistics of NYT and WebNLG datasets.

4.2 Experimental Settings
We tune the hyper-parameters on the validation
sets. We choose pre-trained checkpoints2 of two
T5 variants: T5BASE and T5LARGE, whose hidden
dimensions are 768 and 1024, respectively. We
adopt a 3-layer R-GCN and the hidden dimensions
are 256. We apply the basis decomposition to regu-
larize the R-GCN layers and the number of basis
functions is 10. The MLP of R-GCN contains 2
layers and the hidden dimension is 128. We train
our model using the Adam optimizer (Kingma and
Ba, 2014) with the learning rate of 5e−4. We add
50% dropout (Srivastava et al., 2014) to all hidden
layers of the R-GCN and the MLP. Following previ-
ous work (Chen et al., 2021), we set the max length
of input sentences to 100. We train our model with

2https://huggingface.co/transformers/
model_doc/t5v1.1.html
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Method
# PLM
Param.

NYT WebNLG

Prec. Rec. F1 Prec. Rec. F1

NovelTagging (Zheng et al., 2017) - 62.4 31.7 42.0 52.5 19.3 28.3
CopyRE (Zeng et al., 2018) - 72.8 69.4 71.1 60.9 61.1 61.0
CASRELBERT (Wei et al., 2020) 110M 89.7 89.5 89.6 93.4 90.1 91.7
TPLinkerBERT (Wang et al., 2020) 110M 91.3 92.5 91.9 91.8 92.0 91.9
SPNBERT (Sui et al., 2020) 110M 93.3 91.7 92.5 93.1 93.6 93.4
CGTUniLM (Ye et al., 2021) 110M 94.7 84.2 89.1 92.9 75.6 83.4
PFNBERT (Yan et al., 2021) 110M - - 92.4 - - 93.6
TDEERBERT (Li et al., 2021) 110M 93.0 92.1 92.5 93.8 92.4 93.1
PRGCBERT (Zheng et al., 2021) 110M 93.3 91.9 92.6 94.0 92.1 93.0
‡R-BPtrNetBERT (Chen et al., 2021) 110M 92.7 92.5 92.6 93.7 92.8 93.3
‡R-BPtrNetRoBERTa (Chen et al., 2021) 355M 94.0 92.9 93.5 94.3 93.3 93.8
‡REBELBART (Huguet et al., 2021) 406M - - 93.4 - - -
†CASRELBERT 110M 89.3 90.1 89.7 92.8 90.9 91.8
†CASRELT5-BASE-Encoder 110M 90.7 89.3 90.0 91.4 92.4 91.9
†CASRELT5-BASE 220M 91.1 89.5 90.3 91.4 92.9 92.1
†MTGT5-BASE 220M 94.9 92.4 93.7 94.6 93.3 93.9
†MTGT5-LARGE 770M 95.6 93.1 94.3 94.8 95.1 94.9

Table 2: Performance of our MTG model and previous state-of-the-art models on the NYT and WebNLG test
sets. The best scores are in bold and the second-best scores are underlined. † marks scores produced by our
implementation of the CASREL extractor. ‡ marks models using entity type information.

the batch size of 40 on both datasets. To prevent
overfitting, we stop the training process when the
validation performance gains no improvement for
5 consecutive epochs. Then we load the parame-
ters with the best validation performance, divide
the learning rate by ten, and continue training for
20 epochs. Finally, we choose the best validation
model and report scores on the test set.

4.3 Performance Evaluation

We report the evaluation results on the NYT
and WebNLG test sets in Table 2. We com-
pare our MuTual Generation model of Text and
Graph (MTG) with several state-of-the-art mod-
els: (1) NovelTagging (Zheng et al., 2017) pro-
posed a novel sequence tagging scheme but ig-
nored the overlapping triples. (2) CopyRE (Zeng
et al., 2018) proposed to generate triple sequences
with an end-to-end seq2seq model based on the
copy mechanism. (3) CASREL (Wei et al., 2020)
proposed a cascade binary tagging framework.
(4) TPLinker (Wang et al., 2020) proposed a
one-stage token pair linking model with a novel
handshaking tagging scheme. (5) SPN (Sui et al.,
2020) proposed to predict triple sets with a non-

autoregressive decoder. (6) CGT (Ye et al., 2021)
proposed a novel triple contrastive training object.
(7) PFN (Yan et al., 2021) proposed a partition
filter network to capture the interactions between
entity and relation representations. (8) TDEER (Li
et al., 2021) proposed a decoding schema that re-
gards the relation as a translating operation from
subject to objects. (9) PRGC (Zheng et al., 2021)
proposed a potential relation and global corre-
spondence model. (10) R-BPtrNet (Chen et al.,
2021) proposed a reasoning pattern enhanced bi-
nary pointer network to extract implicit relational
triples. (11) REBEL (Huguet Cabot and Navigli,
2021) proposed to generate linearized triples with
an encoder-decoder language model.

From Table 2 we have several observations.
First, our MTGT5-BASE model outperforms previ-
ous BERT-based models with similar amounts of
PLM parameters for inference3. Also, it produces
competitive performance to the models that incor-
porate entity type information and larger PLMs
than T5BASE. It indicates that our model effectively
captures the relational reasoning patterns through

3During inference, we only use the MTG encoder’s predic-
tions involving half of the T5BASE’s 220M parameters, which
is similar to BERTBASE’s 110M parameters.
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Method
NYT WebNLG

Nor. SEO EPO N=1 N=2 N=3 N=4 N≥5 Nor. SEO EPO N=1 N=2 N=3 N=4 N≥5

CopyRE 66.0 48.6 55.0 67.1 58.6 52.0 53.6 30.0 59.2 33.0 36.6 59.2 42.5 31.7 24.2 30.0
GraphRel 69.6 51.2 58.2 71.0 61.5 57.4 55.1 41.1 65.8 38.3 40.6 66.0 48.3 37.0 32.1 32.1
CASRELBERT 87.3 91.4 92.0 88.2 90.3 91.9 94.2 83.7 89.4 92.2 94.7 89.3 90.8 94.2 92.4 90.9
TPLinkerBERT 90.1 93.4 94.0 90.0 92.9 93.1 96.1 90.0 87.9 92.5 95.3 88.0 90.1 94.6 93.3 91.6
SPNBERT 90.8 94.0 94.1 90.9 93.4 94.2 95.5 90.6 - - - - - - - -
PRGCBERT 91.0 94.0 94.5 91.1 93.0 93.5 95.5 93.0 90.4 93.6 95.9 89.9 91.6 95.0 94.8 92.8
R-BPtrNetBERT 90.4 94.4 95.2 89.5 93.1 93.5 96.7 91.3 89.5 93.9 96.1 88.5 91.4 96.2 94.9 94.2
R-BPtrNetRoBERTa 91.2 95.3 96.1 90.5 93.6 94.2 97.7 92.1 89.9 94.4 97.4 89.3 91.7 96.5 95.8 94.8

MTGT5-BASE 91.1 95.7 96.7 90.6 93.6 94.4 97.8 92.4 90.0 94.5 98.0 89.2 92.0 96.5 95.9 95.4
MTGT5-LARGE 91.3 96.2 97.9 90.8 94.7 96.4 98.4 93.2 90.7 95.6 98.7 89.8 92.4 97.8 97.3 96.5

Table 3: F1 scores on sentences with different overlapping patterns and different triple numbers. The best scores
are in bold and the second-best scores are underlined. N stands for the number of triples in the sentence.

the mutual generation of text and graph and im-
proves the performance. Second, MTGT5-BASE sig-
nificantly outperforms CASRELT5-BASE and CAS-
RELT5-BASE-Encoder. We also notice that the two T5-
based CASREL models perform only slightly better
than CASRELBERT . These results show that the im-
provements of our model come not primarily from
the employment of T5, but from the mutual genera-
tion method we proposed. Finally, MTGT5-LARGE

further outperforms MTGT5-BASE and other base-
line methods. It indicates that the more powerful
PLM brings more common-sense knowledge and
conceptual facts to our model and helps capture the
relation type inference logic more accurately.

4.4 Performance on Different Sentence Types
Following previous work (Wang et al., 2020; Chen
et al., 2021), we split the test sets of the two datasets
with the number of triples and the overlapping
patterns to verify the ability of our model in han-
dling complex sentences, as shown in Table 3. We
observe that the MTG models bring significant
improvements to the sentences with overlapping
triples and with more than one triple. We argue that

Method Prec. Rec. F1

MTGT5-BASE 94.9 92.4 93.7

w/o R-GCN 93.4 91.5 92.5
w/o LLM 94.0 91.3 92.7
w/o LDec 93.6 90.3 91.9
w/o All 90.7 89.3 90.0

Table 4: An ablation study of the MTGT5-BASE model.

Graph Edges Prec. Rec. F1

Full 94.9 92.4 93.7

Golden + Co-ref. 94.3 92.1 93.2
Golden + Reversed 94.5 92.1 93.3
Golden 93.8 91.9 92.8
None 93.4 91.5 92.5

Table 5: An ablation study of the graph edges.

this is because these sentences have complicated
interactions among their relational triples, which
are more likely to require reasoning patterns to be
extracted. Therefore, these sentences gain more
improvements from our mutual generation model.
In contrast, we observe that sentences without over-
lapping triples (and of course with only one triple)
usually contain simple text patterns, thus receive

Figure 4: An ablation study on a manually selected sub-
set with triples that require relational reasoning.
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Sentence

Constructed with … on the 
shoals north of Yerba Buena 
Island … , Treasure Island 
was intended to become San 
Francisco's airport when the 
exposition closed .

Relational Expressions CASRELT5-BASE-Encoder MTGT5-BASE

… of Mr. Ford 's ancestors , 
like his great-grandfather 
Henry Ford , his grandfather 
Edsel Ford and his father, 
William Clay Ford Sr.

Born and raised in Ithaca , 
N.Y., Wolfowitz , 61 , is the 
son of a Cornell University 
mathematician who left …

Yerba Buena Island

Treasure Island 

San Francisco

Yerba Buena Island

Treasure Island 

San Francisco

contains

Yerba Buena Island

Treasure Island 

San Francisco

contains

contains

Edsel Ford

Henry Ford

Ford

Wolfowitz

Cornell University

Ithaca

Wolfowitz

Cornell University

Ithaca

Wolfowitz

Cornell University

Ithaca

William Clay Ford Sr.

contains

born in

contains

Edsel Ford

Henry Ford

Ford

William Clay Ford Sr.

child

Edsel Ford

Henry Ford

Ford

child

William Clay Ford Sr.

childchild

born in

become airpot

constructed on

great-grandf.

grandf.

father

born & raised

is the son of
a person of

Figure 5: Examples of sentences with triples that require reasoning and the corresponding predictions from the
MTGT5-BASE and CASRELT5-BASE-Encoder models. We distinguish different entities with different colors. Deep red
dashed arrows indicate relational expressions of the sentence that helps extract and reason the triples.

limited benefit. Our model effectively learns rela-
tional reasoning patterns and improves the perfor-
mance on complicated overlapping triples.

4.5 Ablation Study
To study the contribution of each component of our
model, we run an ablation study on the NYT test
set, as shown in Table 4. Note that when remov-
ing R-GCN, we average all node features and feed
it into a fully-connected layer to obtain the graph
representation g. From Table 4 we observe that
the R-GCN module and the sentence reconstruc-
tion task both have significant contributions to the
model performance. The decoder’s auxiliary loss
also brings significant improvements because it
prevents the model from overfitting to the sentence
reconstruction task. Finally, the model without all
three components (actually CASRELT5-BASE-Encoder)
produces the worst performance, which proves the
effectiveness of our mutual generation method.

We also study the influence of three kinds of
graph edges (Section 3.1), as shown in Table 5.
We can observe that simply using the basic golden
edges does not yield significant effects. Adding
reversed golden edges and co-reference edges each
bring more improvements to model performance
because the flow of node information and the explo-
ration of contextual information are more sufficient.
Finally, the full graph yields the best performance,
which demonstrates the effectiveness of our graph

construction method.
To investigate the influence of each component

of our model on relational reasoning, following
Chen et al. (2021), we manually select 120 sen-
tences with triples that need to be derived by rela-
tional reasoning and run the same ablation study on
them. We illustrate the performance on the triples,
entity pairs, and relation types in Figure 4. We can
first observe that the R-GCN mainly contributes to
the entity pair performance. It indicates the effec-
tiveness of the text-to-graph generation in identify-
ing potential multi-hop paths between the entities.
Then, we observe that the sentence reconstruction
mainly contributes to the performance of relation
types, which shows the validity of the graph-to-text
generation on capturing the type inference logic.
The above observations demonstrate the effective-
ness of our mutual generation method in learning
relational reasoning patterns.

4.6 Case Study
Figure 5 shows the comparison of the MTGT5-BASE

and CASRELT5-BASE-Encoder models on three exam-
ple sentences. They have exactly the same model
structures for inference and the only difference is
that MTGT5-BASE is trained with our mutual gen-
eration method. In the first example, the includ-
ing relation between “San Francisco” and “Yerba
Buena Island” needs to be reasoned by understand-
ing the geographical relationship of the three lo-
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cations. The second example contains relational
concepts “great-grandfather” and “grandfather”,
which indicate the parent-child relation chain of
the persons. The third example implies that “Cor-
nell University” is in “Ithaca” because a person of
the university gives birth to a child in that place.
We can observe that the CASREL model mainly
concentrates on local text patterns, so it only ex-
tracts the superficial triples and even gets an error
in the second example. Our MTG model effectively
extracts the latent triples by capturing multi-hop
interactions between entities and learning type in-
ference logic from the relational expressions.

5 Conclusion

In this paper, we propose to learn relational rea-
soning patterns for relational triple extraction with
mutual generation of text and graph. We construct a
relational graph from the sentence and apply graph
convolutions to identify multi-hop reasoning paths.
We propose a sentence reconstruction task to ex-
plore the unlabeled conceptual expressions of the
sentence for capturing the relation type inference
logic along the paths. We conduct experiments on
two benchmark datasets, and the results demon-
strate the effectiveness of our method.
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