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Abstract
Neural constituency parsers have reached prac-
tical performance on news-domain benchmarks.
However, their generalization ability to other
domains remains weak. Existing findings on
cross-domain constituency parsing are only
made on a limited number of domains. Track-
ing this, we manually annotate a high-quality
constituency treebank containing five domains.
We analyze challenges to open-domain con-
stituency parsing using a set of linguistic fea-
tures on various strong constituency parsers.
Primarily, we find that 1) BERT significantly in-
creases parsers’ cross-domain performance by
reducing their sensitivity on the domain-variant
features. 2) Compared with single metrics such
as unigram distribution and OOV rate, chal-
lenges to open-domain constituency parsing
arise from combinations of factors, including
cross-domain lexical and constituent structure
variations.

1 Introduction

Constituency parsing is a fundamental task in NLP
that has received constant research attention (Cross
and Huang, 2016; Liu and Zhang, 2017; Stern
et al., 2017; Kitaev and Klein, 2018). As shown
in Figure 1, given a sentence, the task is to iden-
tify hierarchical phrase structures that reflect its
syntax, such as prepositional phrases (PP; e.g., “in
late 1991”), noun phrases (NP; e.g., “late 1991”)
and verb phrases (VP; e.g., “scheduled for deliv-
ery in late 1991”). Constituent structures have
been shown useful for downstream tasks including
machine translation (Wang et al., 2018), natural
language inference (Chen et al., 2017), text sum-
marization (Xu and Durrett, 2019). In addition,
they can be transformed into dependency tree struc-
tures (Zhang and Clark, 2008), which have been
shown to be useful for a wide range of NLP tasks.

The dominant approach to constituency parsing
employs a neural model with pre-trained token rep-
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Figure 1: An example of constituency parse tree.

resentation (Kitaev et al., 2019), training the net-
work parameters over manually labeled constituent
structures from the Penn Treebank (PTB) (Marcus
et al., 1993). As labeled constituent trees can be
costly to obtain, most work makes use of the PTB
data for training, which is financial news. The cur-
rent state-of-the-art F-scores reach over 95% on
the training domain (i.e., newswire) and are around
88% for biomedical and web test data (Tateisi et al.,
2005; Silveira et al., 2014). Compared with parser
performance decades ago, accuracies around 90%
nowadays is much more useful for downstream
applications. Fried et al. (2019) showed that pre-
training is a key factor that brings consistent cross-
domain performance improvements by using BERT
(Devlin et al., 2019).

Ideally, a constituency parser should give ro-
bust performance in the open domain, so that both
domain-specific applications (Zhang et al., 2021)
and open-domain NLP tasks (Hu et al., 2019) can
benefit from syntactic structures. The above ob-
servations, however, are made on a rather limited
(i.e., 3) number of domains. In addition, there has
been relatively little study on the key factors to the
performance gap between financial news test and
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test on other domains, when the model is trained
on financial news. It remains an interesting re-
search question to understand the performance of
constituency parsing with regard to a wider range
of domains and text genres in order to understand
the boundaries and existing techniques and identify
the main challenges for robust open-domain con-
stituent parsing. Such knowledge can be informa-
tive for guiding the design of robust open-domain
parsers.

To this end, we evaluate three strong con-
stituency parsers on these domains, as well as the
existing news, biomedical and web domains. The
parsers include the non-neural BLLIP parser (Char-
niak and Johnson, 2005), the in-order transition-
based parser (Liu and Zhang, 2017) and the Berke-
ley neural chart-based parser (Kitaev and Klein,
2018). For the test domains, we include the vast
majority of existing cross-domain test data in the
literature, which cover the biomedical, web text,
literature fiction and telephone conversations. In ad-
dition, given much research interest in NLP for di-
alogue (Budzianowski et al., 2018), law (Chalkidis
et al., 2019) and review (Oved and Levy, 2021)
domains, we manually label constituent structures
for five typical domains (i.e., dialogue, forum, law,
literature, review), resulting in a test set of 1,000
sentences for each domain. Empirically, we aim to
answer the following research questions.

First, what are the parser performances in the
open domain, and which domains are the most chal-
lenging for constituent parsing? We find that the
parser performance varies from 83% to 93% under
different domains, and the most challenging text
genres are review, dialogue and literature. The low
results on these domains mean that open-domain
constituency parsing is still a challenge.

Second, what are the relative strengths of dif-
ferent parser models, and does BERT give simi-
lar improvements for all domains? We find that
the parsers that give stronger results on PTB do
not necessarily give stronger results on various
other domains, which reflects limitations of evalu-
ating parser performances only on PTB data. Be-
sides, we show that BERT benefits parsers on cross-
domain performance by reducing their sensitivity
on domain-variant features.

Third, what are the main challenges for cross-
domain parsing? By analyzing a set of linguistic
features, we find that compared with single met-
rics such as unigram distribution and OOV rate,

challenges to cross-domain constituency parsing
arise from combinations of factors, including cross-
domain lexical and constituent structure variations.

To our knowledge, we are the first to
construct constituency parsing test data for
the forum and law domains and the first to
analyze the factors that make open-domain
parsing challenging by extensive empirical
evaluation. We release our dataset and
results at https://github.com/RingoS/
multi-domain-parsing-analysis.

2 Related Work

2.1 Cross-domain Treebanks

Penn Treebank (Marcus et al., 1993) was the very
first large-scale dataset that enables researchers
to implement statistical constituency parsers that
achieve high accuracy on phrase structure predic-
tion (Charniak, 1997; Klein and Manning, 2003).
Encouraged by the success of PTB, treebanks on
other domains have been developed. Brown cor-
pus (Marcus et al., 1993) was created to assess
the cross-domain generalization ability of parsers
trained on the newswire data of PTB. Switchboard
contains transcripts from telephone conversations.
BNC (Foster and van Genabith, 2008) consists of
1,000 hand-corrected British National Corpus parse
trees. English Web Treebank (EWT) (Silveira
et al., 2014) contains phrase structure annotations
from five genres of web media: weblogs, news-
groups, emails, reviews, and Yahoo! answers. Ge-
nia (Tateisi et al., 2005) is based on biomedical
literatures and was created to support the develop-
ment of NLP for the domain of molecular biology.
Our MCTB is constructed to cover a variety of do-
mains for test interest. Some MCTB test domains
turn out to be more challenging, as shown in Ta-
bles 1 and 3.

2.2 Cross-domain Syntactic Parsing

There has been work considering cross-domain
constituent parsing with parser combinations. Mc-
Closky et al. (2010) investigated multiple source
parser adaptation, which trains several parsers on
many different domains. A linear regression model
is adopted to predict the combination of these
parsers. Their work is different from ours in that:
1) they make use of both PTB and cross-domain
training data; In contrast, we consider PTB train-
ing to study domain difference in more isolation;
2) Our goal is to systemically compare parser per-
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Dataset # Instance
Avg

# token
per sent

Avg
# cons

per sent

Avg
# token
per cons

# Total
tokens

# Total
cons

Max
# token
of sent

Min
# token
of sent

Avg
# token
of NP

Avg
# token
of VP

Avg
# token
of PP

PTB-train (News) 39,832 23.85 18.62 7.44 950,028 741,833 141 1 4.13 10.56 5.96
PTB-dev (News) 1,700 23.60 18.02 7.30 40,117 30,633 118 1 4.11 10.38 5.69
PTB-test (News) 2,416 23.46 18.33 7.43 56,684 44,276 67 1 4.11 10.54 5.81
Genia-test (Biomedical) 1,360 26.21 21.77 7.46 35,639 29,602 164 2 4.36 11.94 6.38
Brown-test (Mixed) 2,425 18.95 15.83 6.37 45,950 38,380 128 1 3.20 8.62 4.92
Brown-all (Mixed) 24,243 18.94 16.84 7.07 459,148 408,198 172 1 3.20 8.49 5.05
Brown-cf (Lore) 3,164 23.42 20.22 7.82 74,114 63,984 122 1 3.70 9.95 5.53
Brown-cg (Biography) 3,279 25.55 22.18 8.12 83,769 72,728 142 1 3.94 10.38 5.80
Brown-ck (GeneralFic) 3,881 17.24 15.50 6.74 66,890 60,166 112 1 2.95 7.89 4.74
Brown-cl (MysteryFic) 3,714 15.71 14.40 6.33 58,362 53,489 172 1 2.63 7.47 4.37
Brown-cm (ScienceFic) 881 16.59 14.68 6.67 14,613 12,934 144 1 3.06 7.67 4.54
Brown-cn (AdventureFic) 4,415 16.00 14.41 6.30 70,654 63,607 144 1 2.69 7.29 4.43
Brown-cp (RomanceStory) 3,942 17.45 15.79 6.67 68,771 62,242 124 1 2.75 7.75 4.51
Brown-cr (Humor) 967 22.72 19.70 7.90 21,975 19,048 130 1 3.56 9.81 5.75
EWT-all-test (WebText) 8,309 15.24 13.25 6.09 126,593 110,086 135 1 3.05 8.30 4.87
EWT-answers-test 1,709 16.70 15.12 5.64 28,542 25,846 135 1 2.63 7.25 4.14
EWT-email-test 2,450 11.70 10.12 5.91 28,676 24,784 91 1 2.89 8.43 4.80
EWT-newsgroup-test 1,195 17.28 14.49 6.77 20,651 17,318 104 1 3.54 9.64 5.38
EWT-reviews-test 1,906 14.74 12.98 5.57 28,086 24,733 85 1 2.71 7.39 4.36
EWT-weblog-test 1,014 20.07 16.91 7.06 20,356 17,146 95 1 3.73 10.07 5.72
BNC (British English) 1,000 28.31 23.55 7.83 28,311 23,547 130 2 3.94 11.04 6.09
Switchboard (Spoken) 110,503 9.41 9.33 5.31 1,040,013 1,031,528 114 1 2.25 6.88 4.16
Dialogue 1,000 13.51 12.49 5.19 13,509 12,490 89 2 2.65 6.56 4.17
Forum 1,000 22.01 20.39 6.14 22,012 20,386 95 2 2.71 7.56 4.75
Law 1,000 25.59 20.24 7.50 25,585 20,241 66 5 4.10 10.52 5.66
Literature 1,000 23.24 18.59 6.71 23,238 18,585 184 2 3.21 8.20 4.93
Review 1,000 13.30 11.68 5.21 13,297 11,677 106 2 2.96 6.23 4.62

Table 1: Dataset statistics. “# Instance” — the number of sentences in the corresponding dataset. “Avg” — to
average. “# token” and “# cons” — the numbers of tokens and constituents, respectively. “Sent” — sentence. “Fic”
in Brown dataset means fiction.

formance for understanding the challenges, and
thus we consider more parsers and domains, but
no innovative models. Joshi et al. (2018) empir-
ically found that contextualized word representa-
tions improves domain adaptation when the target
domain is syntactically similar to the source do-
main. They also proposed to make use of a dozen
partial annotations to improve cross-domain per-
formance on syntactically-distant domains. Fried
et al. (2019) conducted a systematic analysis on
cross-domain parsing. They found that: 1) neu-
ral models and non-neural models generalize sim-
ilarly to new domains; 2) large-scale pretraining
improves domain adaptation; 3) structured models
(e.g., in-order parser) generalizes better to new do-
mains. Our analysis differs from previous work on
the follows: 1) we empirically analysis what factors
make cross-domain constituency parsing challeng-
ing; 2) we conduct experiments on more domains
and datasets, which provide more comprehensive
understanding for the open-domain setting.

Cross-domain parsing has also been investigated
on other grammar formalisms, in particular de-
pendency syntax. Blodgett et al. (2018) broad-
ened English dependency parsing to handle social
media English, especially social media African-
American English (AAE). They released a dataset
which contains 500 tweets along with their depen-
dency annotations. Li et al. (2019) investigated a

semi-supervised approach for domain adaptation
in dependency parsing. They combined data from
source and target domains using a domain embed-
ding approach. Rotman and Reichart (2019) pro-
posed Deep Contextualized Self-training (DCST),
which utilizes representation models trained on se-
quence labeling tasks that are derived from the
parser’s output when applied to unlabeled data,
and integrates these models with the base parser
through a gating mechanism.

3 Methods and Settings

3.1 Models

We experiment with a strong non-neural parser and
recent SOTA neural parsers. The neural parsers are
additionally augmented with pretrained BERT (De-
vlin et al., 2019).

BLLIP Parser. The BLLIP parser (Charniak and
Johnson, 2005) is a statistical parser that includes
a generative parser (first-stage) and a maximum
entropy based re-ranker (second-stage). It first cal-
culates the n-best (typically n = 50) parses, and
then re-ranks all produced parses with weighted-
averaged scores that are produced by a set of
manually-designed features.

In-order Parser. The in-order parser (Liu and
Zhang, 2017) is a transition-based parser that tra-
verses the parse tree in an in-order sequence. As
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Softmax

A stack-LSTM that explicitly 
encodes stack (i.e., partially 
constructed phrase structures)

A stack-LSTM that encodes 
buffer (i.e., input tokens)
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encodes action 
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Next action

(a) In-order parser.

Self-
attentive
encoder

Chart 
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Input

Output tree

(b) Berkeley neural parser.

Figure 2: Structures of the two adopted neural parsers.

shown in Figure 2a, it adopts a stack-LSTM to en-
code partially constructed tree structures, a stack
LSTM to encode input buffer and an LSTM to
encode action sequence. In this way, it explicitly
models the output phrase structures.

Berkeley Neural Parser. As shown in Figure 2b,
Berkeley Neural Parser (Kitaev and Klein, 2018)
is a chart-based parser that adopts a self-attentive
encoder and a chart-based decoder. Different from
in-order parser, it predicts the span labels solely
based on local span representations and does not
explicitly model the output tree structure.

3.2 Experimental Settings
For BLLIP1, we adopt their released parser “WSJ-
PTB3”. For in-order2, we use their released code,
model checkpoints and word embeddings. The
embeddings are pretrained on the AFP portion of
English Gigaword. The in-order parser requires
part-of-speech (POS) tags, for which we adopt
a transformer-based tagger trained on the PTB
training set. As for the BERT-augmented in-order
parser, we adopt the open-sourced code and model
checkpoints from Fried et al. (2019)3. We train

1https://github.com/BLLIP/bllip-parser
2https://github.com/LeonCrashCode/

InOrderParser
3https://github.com/dpfried/rnng-bert

the Berkeley neural parser without and with BERT,
respectively, using their released code4. The non-
BERT Berkeley parser uses randomly initialized
embeddings, which differs from the in-order parser.
All parsers are trained on standard PTB training
set and validated on PTB development set (Marcus
et al., 1993).

We evaluate the parsers on 25 test sets, including
PTB, Brown (Marcus et al., 1993), Genia (Tateisi
et al., 2005), EWT (Silveira et al., 2014), BNC (Fos-
ter and van Genabith, 2008), Switchboard and our
newly annotated test set. Some of these datasets
have multiple subdomains (i.e., Brown and EWT).
The domains are shown in Table 1. We call our test
set MCTB (Multi-domain constituent Treebank)
and provide detailed descriptions in Section 4.

4 Dataset

4.1 Annotation

Our new MCTB testset is composed of texts from
5 genres, including dialogue, forum, law, litera-
ture and review. For the dialogue domain, we
randomly sample dialogue utterances from Wiz-
ard of Wikipedia (Dinan et al., 2019), which is a
chit-chat dialogue benchmark produced by humans.
For the forum domain, we use users’ communi-
cation records from Reddit, crawled and released
by Völske et al. (2017). For the law domain, we
sample text from European Court of Human Rights
Database (Stiansen and Voeten, 2019), which in-
cludes detailing judicial decision patterns. For the
literature domain, we download literary fictions
from Project Gutenberg5. For the review domain,
we use plain text across a variety of product genres,
released by SNAP Amazon Review Dataset (He
and McAuley, 2016).

We follow PTB’s annotation guideline and
paradigm (Marcus et al., 1993) to design our anno-
tation guideline, hiring a group of senior undergrad-
uate and master students whose majors are linguis-
tics as our annotators. The annotators are asked to
read the guideline, practice and correct the errors
of the predicted parse tree, which is produced by a
SOTA chart-based parser that is developed based
on Berkeley Neural Parser. For annotation clarity,
we develop a web-based visualization annotation
toolkit, which accepts bracketed format lines and
visualizes parse tree structures. The annotation tool

4https://github.com/nikitakit/
self-attentive-parser

5https://www.gutenberg.org/
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allows adding/deleting constituents in the tree struc-
ture. We release our annotation toolkit at https:
//github.com/Nealcly/AnnoCons.

Annotators are first required to annotate 100 in-
stances from the PTB test set repeatedly, until their
labeling is sufficiently accurate to provide useful
annotation. To further control annotation quality,
the annotators are assigned workloads in batches,
with the batch size being 100. For each batch, we
randomly select 10 instances (10%), and the main
authors check the sampled instances with a side-
by-side annotation. If the F-1 scores between the
annotator annotated and the inspector annotated
for these 10 instance is less than 95%, the corre-
sponding batch will be rejected and assigned to a
new annotator. The annotators get their salaries no
matter their annotations are rejected or not.

4.2 Data Statistics

We report dataset statistics in Table 1, including the
total numbers of instances, of tokens and of con-
stituents, the averaged numbers of tokens within
sentences and within constituents and the maxi-
mum and minimum numbers of tokens among all
sentences. We also report the averaged number of
tokens in NP, VP and PP, because they are the most
prevalent across all datasets.

From the table, we can see that the dialogue, re-
view and Switchboard domains have the smallest
averaged numbers of tokens per sentence, about
half of that of PTB. The dialogue, review and
Switchboard domains also have the smallest av-
eraged constituent lengths, around 30% shorter
than that of PTB. Though the averaged lengths
of sentences and of constituents of the literature
domain are rather close to those of PTB, the aver-
aged lengths of labeled constituents (especially for
NP and PP) are smaller. Among all domains, law
shares the most similarities of averaged constituent
lengths (both unlabeled and labeled) with PTB. All
datasets have similar lengths for shortest sentences,
while the literature domain has the largest number
of tokens within one sentence.

4.3 Comparison between Features

We report the differences between the PTB train-
ing set and various test sets6 in Table 2, by adopt-
ing a list of linguistic features from previous

6For simplicity, we regard Brown and EWT as two whole
test sets, respectively. The feature correlations and parser
performances including all 25 test sets and subsets are shown
in Appendix A.1.

work (Collins and Koo, 2005; Charniak and John-
son, 2005). Each cell in the table represents the
Jensen-Shannon divergence between the distribu-
tion of a specific feature of the PTB training set and
that distribution of a specific test set. Given the dis-
tributions P and Q, the Jensen-Shannon divergence
is calculated as:

JS(P ||Q) =
1

2
(KL(P ||M) +KL(Q||M)) (1)

where KL(P ||Q) =
∑

x∈χ P (x) log(P (x)
Q(x)) is the

Kullback-Leibler divergence, and M = 1
2(P +Q).

Each value ranges from 0 ∼ 1 and a higher value
reflects less correlation on that feature between the
PTB training set and the corresponding test set.

In the table, the columns Uni, Bi and Tri denotes
unigram, bigram, trigram and fourgram tokens and
constituent labels, respectively; GR, HGT and GP
denotes grammar rule, headed grammar rule and a
chain of (grandparent, parent, child) constituents,
respectively. We do not calculate token fourgrams
because they are sparse and the OOV rate is over
95% on each domain. Constituent n-grams are
calculated within each grammar rule. Grammar
rules are unbinarized rules, and examples of headed
lexicalized grammar rules include VP [eat] –> VB

NP and NP [tomato] –> DT ADJ NN. The OOV rates
of token ngrams are also shown in Table 2.

From the table, we can see that the biomedical
and review domains have the largest token ngram
differences from the PTB training data, while the
English Web Treebank is lexically the most sim-
ilar to PTB-train. Compared to lexical patterns,
(unlexicalized) grammatical patterns are relatively
more consistent across different domains. Among
the different domains, switchboard, dialogues and
review have the largest difference in grammar rule
patterns as compared to PTB, and the Brown-test,
EWT-test and law test sets are relatively the clos-
est to the PTB data. Genia-test, forum, law and
literature have a similar level of grammar-feature
difference from PTB-train, with brown-test being
the closest among the four. From the table, we can
see that individual statistics vary across domains,
which reflects large domain differences.

5 Experiments

5.1 Overall Results

The performances of the parsers on each domain
are shown in Table 3. On PTB-test, all the BERT-
based parsers achieve labeled bracket F-scores
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Dataset N-gram Token (OOV Rate) GR HGR GP N-gram Constituent
Uni Bi Tri Uni Bi Tri Four

PTB-test 0.09 (0.03) 0.41 (0.33) 0.61 (0.72) 0.03 0.19 0.04 0.00 0.01 0.04 0.11
Genia-test 0.38 (0.26) 0.61 (0.71) 0.68 (0.94) 0.16 0.41 0.20 0.05 0.11 0.24 0.37
Brown-test 0.21 (0.06) 0.52 (0.48) 0.67 (0.87) 0.09 0.28 0.11 0.02 0.06 0.16 0.31
Brown-all 0.18 (0.07) 0.45 (0.48) 0.63 (0.87) 0.07 0.24 0.09 0.02 0.05 0.13 0.26
EWT-All-test 0.19 (0.09) 0.49 (0.49) 0.65 (0.86) 0.10 0.29 0.13 0.02 0.06 0.15 0.28
BNC 0.22 (0.11) 0.54 (0.54) 0.67 (0.89) 0.08 0.30 0.10 0.02 0.05 0.12 0.25
Switchboard 0.26 (0.04) 0.49 (0.35) 0.63 (0.78) 0.20 0.39 0.24 0.09 0.16 0.31 0.47
Dialogue 0.28 (0.06) 0.58 (0.46) 0.68 (0.86) 0.16 0.39 0.21 0.03 0.09 0.23 0.41
Forum 0.25 (0.06) 0.55 (0.44) 0.67 (0.84) 0.14 0.36 0.18 0.03 0.09 0.23 0.41
Law 0.27 (0.07) 0.57 (0.51) 0.68 (0.86) 0.12 0.33 0.16 0.01 0.08 0.19 0.34
Literature 0.28 (0.11) 0.57 (0.53) 0.68 (0.90) 0.15 0.36 0.19 0.03 0.09 0.23 0.38
Review 0.30 (0.07) 0.59 (0.51) 0.68 (0.88) 0.16 0.39 0.21 0.03 0.10 0.26 0.45

Table 2: Dataset difference statistics between PTB training set and various test sets. We report
Jensen–Shannon divergence of features. Out-of-vocabulary rate (OOV) are also shown for unigram/bi-
gram/trigram tokens. GR, HGR and GP refer to grammar rules, headed lexicalized grammar rules and
grandparent rules.

Dataset
Model BLLIP In-Order Berkeley With BERT (∆ Err.)

In-Order Berkeley
PTB-test 91.48 91.53 93.05 95.65 (-48.6%) 95.73 (-38.6%)
Genia-test 78.42 81.06 81.39 86.33 (-27.8%) 86.61 (-28.0%)
Brown-test 85.78 85.74 87.72 93.68 (-55.7%) 93.38 (-46.1%)
Brown-all 85.89 86.55 87.37 93.55 (-52.0%) 93.31 (-47.0%)
EWT-All-test 78.78 81.19 81.98 89.39 (-43.6%) 89.09 (-39.5%)
BNC 84.15 84.55 85.30 92.16 (-49.3%) 91.92 (-45.0%)
Switchboard 77.56 77.44 76.12 84.42 (-30.9%) 84.49 (-35.1%)
Dialogue 77.68 78.40 79.14 85.56 (-33.1%) 86.30 (-34.3%)
Forum 75.25 77.29 78.63 86.33 (-39.8%) 87.04 (-39.4%)
Law 80.67 82.83 84.06 91.50 (-50.5%) 92.06 (-50.2%)
Literature 70.32 76.44 75.98 84.96 (-36.2%) 86.26 (-42.8%)
Review 74.18 75.91 76.15 83.89 (-33.1%) 84.34 (-34.3%)

Table 3: Results (F1 scores) on various test sets. ∆ Err. means error reduction rates when using BERT.

above 95%. In comparison, the performances on
Genia, BNC, Brown, Switchboard and EWT fall
to a range between 84.42% and 93.68%, with rela-
tive error increases of 45% to 258%. According to
Table 2, these cross-domain test data are relatively
close to the PTB data in the distribution of lexical
and syntactic patterns. In contrast, on Switchboard,
dialogue, forum, literature and review, the results
can drop to 83%, with a relative error increase of
over 370% (i.e., 95.65% versus 83.89% F-score).
This shows that open-domain constituent parsing
is still a challenging task to solve.

Among the domains, we find that the review and
switchboard domains are the most difficult, with F-
scores of around 84% by the BERT-based parsers.
The dialogue, forum and literature domains are rel-
atively easier, with F-scores of around 86%. The
law domain is the easiest, where the parsers give
F-scores of over 90%. Intuitively, the parser perfor-
mance differences arise from the differences in the
text genre between the test domain and PTB: while
the review and switchboard domains can contain

a fraction of oral and informal English, the law
domain is the closest to the newswire domain in
style. We give more detailed feature statistics in
Section 5.3.

5.2 Comparison between Different Parsers

Among parsers without making use of BERT, the
performance drop of In-order parser is relatively
the smallest when comparing PTB-test with the
domains. As observed by Fried et al. (2019), the
relatively larger cross-domain robustness as com-
pared with Berkeley parser may be attributed to the
modeling of output structural dependencies by the
shift-reduce parser. BLLIP gives a similar cross-
domain performance drop as compared with Berke-
ley parser, which shows that a discrete parser does
not necessarily show weaker cross-domain robust-
ness than a neural parser, which again is consistent
with findings of Fried et al. (2019).

BERT improves the performances of all neural
parser models, with 48.6% and 38.6% error reduc-
tion rates for the In-order and Berkeley parsers on
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Figure 3: Pearson correlation between feature divergence and parser performance. Because all values are smaller
than 0, we simply multiply all values with -1 to make them easier to understand. A higher value represents more
reliance on that feature. “Non-BERT Average” refers to the averaged F1 scores of In-order and Berkeley, while
“BERT Average” refers to the BERT-augmented version. UW / BW / TW — input token uni- / bi- / tri-gram. GR /
HGR / GP — grammar rule / headed grammar rule / grandparent rule. UC / BC / TC / FC — constituent uni- / bi- /
tri- / four-gram .

Figure 4: Pearson correlation between OOV rates and
parser performance, following the caption of Figure 3.
UO / BO / TO — uni- / bi- /tri-gram token OOV.

PTB-test, respectively. For cross-domain test sets,
the error reduction rates are 34.3%, 39.4%, 50.2%,
42.8% and 34.3%, respectively for the dialogue,
forum, law, literature and review domains with
Berkeley neural parser. The reason that a relatively
larger error reduction rate is found for the law and
literature domains is likely that BERT is trained
on Wikipedia and Brown Corpus (i.e., encyclope-
dia and literature), which has largely similar text
genres compared to these datasets. In contrast, the
styles of the biomedical (Genia), dialogue and re-
view domains are relatively different from BERT’s
training data.

5.3 Key Factors to Cross-domain Challenge

Figure 3 shows the Pearson correlation between
parser performances (in Table 3) and feature JS

divergences (in Table 2) for all five parsers7. In
particular, we take the performances of each parser
over all the domains in Table 3 (i.e., each column
in the table) as a vector, and the JS-divergence
values for each feature in Table 2 (i.e. each column
in the table) as a vector, calculating the statistical
correlation between the two vectors, which reflects
the influence of domain shift in each feature on
the parser performance. In the figure, each column
shows the Pearson correlation of a specific parser
with a specific feature, where a longer bar reflects
more reliance on the feature.

From Figure 3, we make the following observa-
tions. First, overall all the parsers are more influ-
enced by larger grammatical structures such as the
whole grammar rule (GR), the grandparent chain
(GP) and n-gram sub constituents (BC, TC and FC),
while being less influenced by word-level ngram
features (BW and TW) and simple constituent label
features (UC). This shows that the cross-domain
challenge arises mostly from more complex struc-
tural variations, instead of cross-domain word and
ngram distribution differences.

Second, the traditional BLLIP parser is about
as sensitive to word and ngram variations as neu-
ral parsers, but less sensitive to syntactic pattern
variations such as GR and UC. This shows that the
strong representation power of neural models al-
lows them to learn more abstract syntactic structure
patterns more accurately. Third, after BERT is used,

7In practice, we use Tables 4 and 5, because the domain
differences among the sub-genres of Brown or EWT would
be eliminated by only using Tables 2 and 3.
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(a) Clause attachment.

(b) PP attachment.

Figure 5: Average number of bracket errors per sentence
on each dataset using the parser of Liu and Zhang
(2017). The errors are classified with Kummerfeld et al.
(2012)’s method. Blue bars with slash “/” are without
BERT, while orange bars with backslash “\” are with
BERT. “SWB”, “Dial. ”, “Lit. ” and “Rev. ” are in
short for Switchboard, dialogue, literature and review,
respectively.

neural parsers show stronger dependence to UC and
BC, and weaker dependence to BW, TW, TC and
FC features, compared with randomly initialized
versions. In fact, as Table 2 shows, the former
features are relatively more stable across domains,
with less JS-divergence scores between domain test
data and PTB training data. This shows that BERT
effectively improves parser domain robustness by
providing a level of cross-domain knowledge.

Figure 4 shows the Pearson correlation between
OOV rates and cross-domain results. Interestingly,
the influence of OOV on all parsers are in the range
of 16.0% to 30.3%, which is saliently smaller than
that of ngram distributions. This shows that the
cross-domain challenge arises not simply from un-
known tokens, but is more distribution-sensitive.
With regard to different parsers performances, the
BLLIP parser shows stronger subjectivity to the
influence of OOV as compared with the neural
parsers, especially for tri-gram OOV, which demon-

strates the advantage of dense word representations
over sparse one-hot encoding (Bengio et al., 2013).
Finally, by further adding BERT, the relative sen-
sitivity of the neural parsers to OOV uni-grams
and bi-grams sees increases, while that to OOV
tri-grams decreases. This shows that the effect of
BERT on cross-domain parsing is more contextual-
ized, in the sense that simply addressing unknown
unigram token representations does not necessar-
ily lead to stronger results, but BERT gives the
parsers stronger power in representing context dis-
tributions.

5.4 Error Characteristics
Figure 5 shows the error distributions of the in-
order parser with and without BERT according
to the classification of Kummerfeld et al. (2012).
In particular, two error types, clause attachment
and PP attachment, are shown in the figure, and
the charts for more error types are shown in Ap-
pendix A.2. As can be seen from Figure 5, the
parser makes different types of error across differ-
ent domains, which reflects different challenges.
In the following, we give an example of MCTB-
literature. Due to page limitation, figures of the
full parse trees and more case studies are shown in
Appendix A.2.

It can be seen from Figures 5a and 5b that the
literature domain suffers from clause attachment
and PP attachment errors, which may result from
the fact that sentence structures of the literature
domain are more complicated than the stereotype
writing style of the newswire domain and there are
many rare words in literary works. For example,
given a sentence in literature test set: “The bulldog
growls , his scruff standing , a gobbet of pig ’s
knuckle between his molars through which rabid
scumspittle dribbles .”, the gold bracketed-format
annotation is
. . . ( NP

(NP (NP (DT a ) (NN g obb e t ) )
( PP

( IN of )
(NP

(NP (NN p i g ) ( POS ’ s ) )
(NN k n u c k l e ) ) ) )

( PP ( IN between )
(NP

(NP ( PRP$ h i s ) (NNS m o la r s ) )
(SBAR

(WHPP ( IN t h r o u g h ) (WHNP (WDT which ) ) )
( S

(NP ( J J r a b i d ) (RB s c u m s p i t t l e ) )
(VP (NNS d r i b b l e s ) ) ) ) ) ) ) . . .

and the predicted bracketed-format tree is
. . . ( NP

(NP (DT a ) (NN g o b b e t ) )
( PP

119



( IN of )
(NP

(NP (NN p i g ) (POS ’ s ) ) (NN k n u c k l e ) ) )
( PP

( IN between )
(NP ( PRP$ h i s ) (NNS m ola r s ) ) )

(SBAR
(WHPP ( IN t h r o u g h ) (WHNP (WDT which ) ) )
( S
(NP ( J J r a b i d ) (RB s c u m s p i t t l e ) )
(VP (NNS d r i b b l e s ) ) ) ) ) . . .

The clause phrase “through which rabid scumspit-
tle dribbles” is supposed to attach to the noun
phrase“his molars”. However, a clause attachment
error is produced by the in-order parser, which
assigns the clause phrase to the noun phrase “a
gobbet”. In addition, in the predicted tree structure,
the PP phrase “between his molars ...... dribbles”
shares the same parent node with the noun phrase
“a gobbet” and with the PP phrase “pig ’s knuckle”,
which is incorrect. Instead, the PP phrase “between
his molars ...... dribbles” should be attached to a
higher level. This results in a PP attachment error.

6 Conclusion

We investigated the challenges of cross-domain
constituent parsing by making use of a large num-
ber of test domains, which include newswire,
biomedicine, prose, web-text, conversational
speeches, as well as give new test domains includ-
ing dialogue, forum, law, literature and review, for
each of which we construct a test set of 1,000 sen-
tences. Results show that the dominant parsers can
achieve 83% to 93% accuracies for different do-
mains, and cross-domain parsing is still a challenge,
where different domains exhibit varying types of
difficulty. We further find that the difficulty for
cross-domain parsing lies more in comprehensive
distribution differences involving multiple factors
such as grammar rules and patterns, as compared
to single factors such as OOV rate and token ngram
distribution variations. In addition, BERT helps
neural parsers improve cross-domain performance
by reducing their sensitivity to domain-variant fea-
tures. Our results show that toward robust open-
domain constituent parsing, more work should be
done on addressing out-of-distribution generaliza-
tion in representation learning.
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A Appendix

A.1 Detailed Feature Correlation and Parser
Results

Feature correlations and parser performances with
all 25 datasets are shown in Tables 4 and 5.

A.2 Error Characteristics
Figure 6 shows nine types of errors made by In-
order parser on all test sets. The errors are classified
using the method of Kummerfeld et al. (2012). Fig-
ures 7 and 8 show the tree structures of the case
study in Section 5.4. The tree figures are produced
using an open-source visualization toolkit8.

In Figure 6c, the number of NP internal struc-
ture errors of Genia is saliently larger compared
to the other domains, which can be because the
biomedical domain has a relatively larger amount
of special nominal terminologies, which cannot be
easily identified using newswire knowledge. Take
an instance from Genia test set for example, the
gold annotation is
. . . ( NP

(DT a )
( ADJP

(NN HLA)
(NN c l a s s )
(CD I I )
( J J DR11− r e s t r i c t e d ) )

(NN f a s h i o n ) ) . . .

where “HLA class II DR11-restricted” is an adjec-
tive phrase modifying the noun “fashion”. How-
ever, the in-order parser prediction is
. . . ( NP

(DT a )
(NN HLA)
(NN c l a s s )
(CD I I )
( J J DR11− r e s t r i c t e d )
(NN f a s h i o n ) ) . . .

which does not recognize the sub-structures under
the noun phrase “a HLA class II DR11-restricted
fashion”.

8https://github.com/brendano/parseviz
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Dataset N-gram Token (OOV Rate) GR HGR GP N-gram Constituent
Uni Bi Tri Uni Bi Tri Four

PTB-test 0.09 (0.03) 0.41 (0.33) 0.61 (0.72) 0.03 0.19 0.04 0.00 0.01 0.04 0.11
Genia-test 0.38 (0.26) 0.61 (0.71) 0.68 (0.94) 0.16 0.41 0.20 0.05 0.11 0.24 0.37
Brown-test 0.21 (0.06) 0.52 (0.48) 0.67 (0.87) 0.09 0.28 0.11 0.02 0.06 0.16 0.31
Brown-all 0.18 (0.07) 0.45 (0.48) 0.63 (0.87) 0.07 0.24 0.09 0.02 0.05 0.13 0.26
Brown-cf 0.18 (0.07) 0.49 (0.49) 0.66 (0.87) 0.06 0.24 0.08 0.01 0.03 0.11 0.24
Brown-cg 0.19 (0.06) 0.50 (0.48) 0.66 (0.87) 0.07 0.25 0.09 0.01 0.04 0.13 0.27
Brown-ck 0.24 (0.07) 0.53 (0.49) 0.67 (0.87) 0.10 0.30 0.13 0.03 0.07 0.17 0.33
Brown-cl 0.24 (0.06) 0.53 (0.45) 0.66 (0.85) 0.10 0.31 0.14 0.03 0.08 0.19 0.35
Brown-cm 0.27 (0.08) 0.57 (0.49) 0.68 (0.87) 0.11 0.33 0.14 0.03 0.08 0.20 0.37
Brown-cn 0.25 (0.07) 0.54 (0.50) 0.67 (0.88) 0.10 0.31 0.13 0.03 0.08 0.19 0.34
Brown-cp 0.24 (0.06) 0.53 (0.46) 0.66 (0.86) 0.10 0.31 0.13 0.03 0.08 0.18 0.34
Brown-cr 0.24 (0.08) 0.55 (0.49) 0.67 (0.87) 0.09 0.30 0.12 0.02 0.06 0.17 0.33
EWT-All-test 0.19 (0.09) 0.49 (0.49) 0.65 (0.86) 0.10 0.29 0.13 0.02 0.06 0.15 0.28
EWT-answers-test 0.27 (0.07) 0.56 (0.47) 0.67 (0.86) 0.13 0.36 0.17 0.04 0.10 0.22 0.39
EWT-email-test 0.27 (0.11) 0.56 (0.51) 0.67 (0.86) 0.12 0.37 0.17 0.03 0.08 0.22 0.39
EWT-newsgroup-test 0.22 (0.08) 0.55 (0.49) 0.67 (0.85) 0.09 0.32 0.12 0.02 0.05 0.15 0.28
EWT-reviews-test 0.27 (0.08) 0.56 (0.47) 0.67 (0.86) 0.12 0.36 0.16 0.03 0.09 0.21 0.37
EWT-weblog-test 0.23 (0.09) 0.55 (0.49) 0.67 (0.85) 0.09 0.31 0.11 0.02 0.05 0.15 0.30
BNC 0.22 (0.11) 0.54 (0.54) 0.67 (0.89) 0.08 0.30 0.10 0.02 0.05 0.12 0.25
Switchboard 0.26 (0.04) 0.49 (0.35) 0.63 (0.78) 0.20 0.39 0.24 0.09 0.16 0.31 0.47
Dialogue 0.28 (0.06) 0.58 (0.46) 0.68 (0.86) 0.16 0.39 0.21 0.03 0.09 0.23 0.41
Forum 0.25 (0.06) 0.55 (0.44) 0.67 (0.84) 0.14 0.36 0.18 0.03 0.09 0.23 0.41
Law 0.27 (0.07) 0.57 (0.51) 0.68 (0.86) 0.12 0.33 0.16 0.01 0.08 0.19 0.34
Literature 0.28 (0.11) 0.57 (0.53) 0.68 (0.90) 0.15 0.36 0.19 0.03 0.09 0.23 0.38
Review 0.30 (0.07) 0.59 (0.51) 0.68 (0.88) 0.16 0.39 0.21 0.03 0.10 0.26 0.45

Table 4: Dataset difference statistics between PTB training set and various test sets. We report Jensen–Shannon
divergence of a list of linguistic features’ distributions. These features are adopted from previous work (Collins
and Koo, 2005; Charniak and Johnson, 2005). We report both divergence and out-of-vocabulary rate (OOV) for
unigram/bigram/trigram input tokens. GR, HGR and GP refer to grammar rules, headed lexicalized grammar rules
and grandparent rules.

Dataset
Model BLLIP In-Order Berkeley With BERT (∆ Err.)

In-Order Berkeley
PTB-test 91.48 91.53 93.05 95.65 (-48.6%) 95.73 (-38.6%)
Genia-test 78.42 81.06 81.39 86.33 (-27.8%) 86.61 (-28.0%)
Brown-test 85.78 85.74 87.72 93.68 (-55.7%) 93.38 (-46.1%)
Brown-all 85.89 86.55 87.37 93.55 (-52.0%) 93.31 (-47.0%)
Brown-cf 87.03 87.15 89.06 94.38 (-56.3%) 94.21 (-47.1%)
Brown-cg 85.41 85.86 87.79 93.48 (-53.9%) 93.33 (-45.4%)
Brown-ck 85.49 85.57 86.95 93.17 (-52.7%) 92.26 (-40.7%)
Brown-cl 85.51 85.78 87.15 92.76 (-49.1%) 92.49 (-41.6%)
Brown-cm 87.27 86.33 87.72 93.99 (-56.0%) 93.64 (-48.2%)
Brown-cn 86.85 86.59 88.24 94.19 (-56.7%) 93.88 (-48.0%)
Brown-cp 85.23 85.36 87.18 93.08 (-52.7%) 92.87 (-44.4%)
Brown-cr 84.34 85.23 87.23 93.44 (-55.6%) 92.98 (-45.0%)
EWT-All-test 78.78 81.19 81.98 89.39 (-43.6%) 89.09 (-39.5%)
EWT-answers-test 80.68 80.95 80.83 88.78 (-41.1%) 88.36 (-39.3%)
EWT-email-test 79.86 79.52 80.75 87.69 (-39.9%) 87.42 (-34.6%)
EWT-newsgroup-test 84.58 84.33 83.84 90.22 (-37.6%) 89.99 (-38.1%)
EWT-reviews-test 82.13 81.64 81.96 89.40 (-42.3%) 89.32 (-40.8%)
EWT-weblog-test 85.48 85.28 83.65 90.84 (-37.8%) 91.18 (-46.1%)
BNC 84.15 84.55 85.30 92.16 (-49.3%) 91.92 (-45.0%)
Switchboard 77.56 77.44 76.12 84.42 (-30.9%) 84.49 (-35.1%)
Dialogue 77.68 78.40 79.14 85.56 (-33.1%) 86.30 (-34.3%)
Forum 75.25 77.29 78.63 86.33 (-39.8%) 87.04 (-39.4%)
Law 80.67 82.83 84.06 91.50 (-50.5%) 92.06 (-50.2%)
Literature 70.32 76.44 75.98 84.96 (-36.2%) 86.26 (-42.8%)
Review 74.18 75.91 76.15 83.89 (-33.1%) 84.34 (-34.3%)

Table 5: Results (F1 scores) on various test sets. ∆ Err. means error reduction rates when using BERT.
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(a) Different label. (b) Clause attachment. (c) NP internal structure.

(d) Unary. (e) PP attachment. (f) Modifier attachment.

(g) NP attachment. (h) VP attachment. (i) Coordination.

Figure 6: Average number of bracket errors per sentence on each dataset using the parser of Liu and Zhang (2017).
The errors are classified with Kummerfeld et al. (2012)’s method. Blue bars with slash “/” are without BERT, while
orange bars with backslash “\” are with BERT. “Dial. ”, “Lit. ” and “Rev. ” are in short for dialogue, literature and
review, respectively.
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(a) Gold.
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.

(b) Predicted by in-order parser with BERT.

Figure 7: Genia NP internal structure error within the noun phrase “a HLA class II DR11-restricted fashion”. The
in-order parser uses POS-tag information. We adopt a SOTA POS-tagger to predict POS-tags for the in-order parser.
But the tagger is not able to generalize well to Genia, so that DR11-restricted is mistaken as NNP, which results in
the in-order parser to make a wrong prediction (not identify the adjective phrase “HLA class II DR11-restricted”).
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(b) Predicted by in-order parser with BERT.

Figure 8: An example from literature domain, including 2 Clause Attachment errors, 1 PP Attachment error and
several other errors.
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