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Abstract

NLP technologies can cause unintended harms
if learned representations encode sensitive at-
tributes of the author, or predictions systemat-
ically vary in quality across groups. Popular
debiasing approaches, like adversarial training,
remove sensitive information from representa-
tions in order to reduce disparate performance,
however the relation between representational
fairness and empirical (performance) fairness
has not been systematically studied. This paper
fills this gap, and proposes a novel debiasing
method building on contrastive learning to en-
courage a latent space that separates instances
based on target label, while mixing instances
that share protected attributes. Our results show
the effectiveness of our new method and, more
importantly, show across a set of diverse de-
biasing methods that representational fairness
does not imply empirical fairness. This work
highlights the importance of aligning and under-
standing the relation of the optimization objec-
tive and final fairness target. Our code is avail-
able at: https://github.com/AiliAili/
contrastive_learning_repo.

1 Introduction

Neural methods have achieved great success for
text classification tasks. However, they have been
trained on datasets which embody cultural and so-
cietal stereotypes from the real world, captured
in spurious correlations between target labels and
protected attributes. This can result in biased pre-
dictions violating empirical fairness, i.e., models
perform unequally for different sub-groups. A re-
lated, but different problem occurs if representa-
tional fairness is violated which means that learned
representations encode potentially sensitive author
information (such as demographic information),
which can be recovered by an adversarial attacker.
Addressing and reducing such cases of model bias
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Figure 1: Illustration of our proposed method in the
context of sentiment classification, where inputs (x) are
mapped to hidden representations, which will then be
used to make predictions ŷ. The points represent the
instances in the latent space learned by a given model,
marked with respect to sentiment and demographic la-
bels. On the top and bottom of the gray line are hidden
representations from our proposed method and a naively
trained model. Representational fairness is measured
based on the extent to which an attacker (f ) can re-
construct protected attributes (a) from hidden represen-
tations (h). Empirical fairness measures performance
disparities, and measures whether model predictions are
independent of protected attributes.

has attracted substantial research interest across
tasks including Twitter sentiment analysis (Blod-
gett et al., 2016; Han et al., 2021b), part-of-speech
tagging (Hovy and Søgaard, 2015; Li et al., 2018),
and image activity recognition (Wang et al., 2019;
Zhao et al., 2017).

One line of work attempts to achieve empirical
fairness through learning fair representations – re-
moving authorship-related sensitive information
from learned representations – under the assump-
tion that fair representations will naturally lead to
fairer models (Li et al., 2018; Ravfogel et al., 2020;
Han et al., 2021a). For example, adversarial train-
ing is a popular method which directly aims to
prevent a discriminator from reverse-engineering
protected attribute information from learned rep-
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resentations (Elazar and Goldberg, 2018; Resheff
et al., 2019; Han et al., 2021b,a; Li et al., 2018).
Similarly, null-space projection approaches remove
protected information from hidden representations
by projecting learned text representations to the
null-space of linear protected attribute discrimina-
tors (Ravfogel et al., 2020, 2022).

In this paper, we systematically explore the in-
teraction between fair representations and empiri-
cal fairness, both via three classes of existing ap-
proaches, as well as in considering the applica-
tion of contrastive learning (Oord et al., 2018; Li
et al., 2021a; Tian et al., 2020; Henaff, 2020; Bui
et al., 2021; Li et al., 2021b; Chen et al., 2020b)
to fairness. Contrastive learning is a natural and
flexible choice of approach for representational fair-
ness, in explicitly differentiating representations be-
tween different classes. Representational fairness is
achieved by learning a space which simultaneously
separates instances according to their labels, while
mixing instances with different protected attributes
(like gender or race), either globally (Section 3.2)
or per class (Section 3.3).

Our contributions in this work are:
1. We present two debiasing methods based on

contrastive learning, with loss components
that capture different fairness criteria;

2. Based on experimental results over Twitter
sentiment analysis and profession classifi-
cation, we show that our proposed method
achieves the best representational fairness,
where most baseline methods fail;

3. We show that there is no correlation between
representational and empirical fairness, de-
bunking previous assumptions about the em-
pirical value of fair representations.

2 Related Work

We review relevant research on fairness criteria,
debiasing methods, and contrastive learning.

2.1 Fairness Criteria

Various types of fairness have been proposed,
such as group fairness (Hardt et al., 2016; Zafar
et al., 2017a; Cho et al., 2020), individual fairness
(Sharifi-Malvajerdi et al., 2019; Yurochkin et al.,
2020; Dwork et al., 2012), and causality-based fair-
ness (Garg et al., 2019; Wu et al., 2019; Zhang
et al., 2018; Zhang and Bareinboim, 2018). In this
work, we focus on group fairness relative to the
demographic variables available in our datasets.

To quantify how the performance of models
varies across different demographic subgroups,
there are three widely used fairness criteria. Demo-
graphic parity (Feldman et al., 2015; Zafar et al.,
2017b; Cho et al., 2020) measures whether the
model achieves equal positive prediction rates to-
wards each demographic subgroup, without tak-
ing the main task label into consideration. Equal
opportunity (Hardt et al., 2016; Madras et al.,
2018a) (Cho et al., 2020; Hardt et al., 2016; Madras
et al., 2018a) requires equal true positive rates
for instances from each subgroup conditioned on
the main task label, while equalised odds requires
equal true positive and false positive rates for in-
stances from each subgroup and with the same
main task label. The definition of these three crite-
ria is limited to binary classification, whereas we
extend the measurement of fairness to each main
task label, such that bias is measurable in multi-
class classification settings.

2.2 Achieving Empirical Fairness

To optimize towards group fairness, prior debiasing
methods fall into three categories. Pre-processing
manipulates the training data e.g., by balancing the
input, followed by re-training the model on a fairer
dataset (Badjatiya et al., 2019; Elazar and Goldberg,
2018) but is computationally prohibitive for large
datasets and models, and insufficient to ensure fair-
ness (De-Arteaga et al., 2019; Wang et al., 2019).
Post-processing methods “bleach” sensitive infor-
mation from learned representations after main task
training (Ravfogel et al., 2020). In-processing ap-
proaches augment the original training objective,
to encourage the model to learn representations
that are oblivious to protected attributes, aiming to
achieve empirical fairness through representational
fairness. For example, adversarial models (Beutel
et al., 2017; Li et al., 2018; Barrett et al., 2019; Han
et al., 2021b) encourage the main model to learn
representations that are indistinguishable wrt the
protected attributes by a jointly trained discrimina-
tor. Our contrastive learning methods also intro-
duce an augmented objective, but unlike adversarial
methods, do not require modification of the model
architecture, and hence do not add model parame-
ters. Tsai et al. (2021) proposed a similar approach
in a self-supervised learning setting.

Other methods directly optimize fairness mea-
sures during training (Madras et al., 2018b; Zhao
et al., 2020a; Cho et al., 2020). For exam-
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ple, Cho et al. (2020) use kernel density estima-
tion to approximate equalised odds during train-
ing, but tailored to binary classification, leading
to poor performance–fairness tradeoffs in high-
dimensional settings. We introduce two variants of
the contrastive losses which directly optimize fair-
ness for demographic parity or equal opportunity,
respectively.

Various recent studies (Ravfogel et al., 2020;
Han et al., 2021b; Chi et al., 2022; Zhao et al.,
2020b; Chowdhury et al., 2021; Tsai et al., 2021;
Zhao and Gordon, 2019) claimed to generate fair
representations, while exclusively evaluating their
methods in terms of empirical fairness. Other work
has used metrics like representation leakage to
quantify how much protected attribute information
can be recovered from learned representations (Han
et al., 2021b; Elazar and Goldberg, 2018; Li et al.,
2018; Wang et al., 2019). However, it has not been
systematically studied whether fair representations
lead to fair predictions, which is one contribution
of this paper.

2.3 Contrastive Learning

Contrastive learning aims to pull similar instances
together and push dissimilar instances apart by
maximizing the similarities of similar instances
and minimizing those of dissimilar pairs within the
unit feature space (Oord et al., 2018; Tian et al.,
2020; Li et al., 2021a; Grill et al., 2020; Chen
et al., 2020a; Henaff, 2020). Its success hinges
on an appropriate definition of similarity. Origi-
nating in computer vision, in vanilla contrastive
learning positive (similar) instance image pairs are
generated via data augmentation (i.e., meaning-
invariant manipulation of an input image such as
cropping or blurring (Chen et al., 2020a; Fang et al.,
2020; Cubuk et al., 2019)), and negative (dissimi-
lar) instance pairs correspond to distinct items in
the original data. More recently, supervised con-
trastive learning (SCL) was proposed in the context
of classification, where positive instances belong
to the same class, and negative instances belong
to different classes (Khosla et al., 2020). When
combined with a cross entropy loss, it has been
shown to improve model robustness to noise and
data sparsity (Gunel et al., 2021), as well as adver-
sarial attacks (Bui et al., 2021). We leverage the
ability of SCL to explicitly constrain class-based
positioning of instances in feature space, to enforce
representational fairness. We present evidence of

its effectiveness, and use it to systematically study
the relationship between representational and em-
pirical fairness.

The most relevant work to our proposed method
is Gupta et al. (2021), whose training objective con-
sists of three parts: (1) cross-entropy loss, which
is identical to vanilla training; (2) upper bound for
the mutual information between inputs and hidden
representations, which relies on a manually-defined
prior over the hidden representations to calculate a
KL divergence loss; and (3) lower bound estimator
for the conditional mutual information, similar to
Coneo in our paper (see Equation (3)). Although
Gupta et al. (2021) have the same cross-entropy
objective and lower-bound estimation as the equal
opportunity variant of our proposed method, its sec-
ond objective (upper bound estimator) focuses on
learning task-agnostic representations while ours
learns task-specific representations. Moreover, in
this paper, we also show that the demographic par-
ity variant consistently outperforms the equal op-
portunity variant.

2.4 Intrinsic Fairness

Intrinsic bias refers to biases in the geometry of text
representations in upstream pre-trained language
models (prior to any task-specific fine-tuning).
Such representations are agnostic to downstream
tasks, and common metrics for intrinsic biases rely
on predefined templates, e.g., gendered word pairs
for word embedding association test (Caliskan
et al., 2017) and masked sentences (Kurita et al.,
2019).

There is a broad range of studies on the correla-
tion between intrinsic and extrinsic bias (Goldfarb-
Tarrant et al., 2021; Cao et al., 2022). Jin et al.
(2020) show that debiasing the intrinsic bias leads
to less extrinsic bias, but conversely, Steed et al.
(2022) argue that extrinsic bias is better explained
by bias in downstream datasets rather than intrinsic
bias in upstream text representations. Similar to
this paper, Orgad et al. (2022) examine the influ-
ence of downstream task debiasing on represen-
tations. However, it also focuses exclusively on
intrinsic bias rather than representational fairness.
In summary, most previous work is aimed at mea-
suring and mitigating task-agnostic intrinsic bias.

In contrast, the leakage metric for representa-
tional fairness in this paper is task-specific, and
measures the predictability of protected informa-
tion from the task-specific representations that are
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learned as part of fine-tuning. Given that both leak-
age (intrinsic) and empirical fairness (extrinsic) are
defined in a task-specific way, we expect a stronger
correlation between the two. This expectation is at
the core of common debiasing approaches, such as
adversarial methods. To the best of our knowledge,
this paper is the first to explore this correlation.

3 Fair & Supervised Contrastive
Learning

Our method augments the objective of supervised
contrastive learning to simultaneously encourage
data separation in terms of the main class labels,
and discourage the differentiation of data points
on the basis of their protected attributes. While
the method is compatible with different classifier
architectures, here we use the following setup:

1. An embedding module, e = Embed(x), which
maps an input instance x (e.g., a document)
to a vector representation e, which is in turn
used as input to the encoder network;

2. An encoder network, h = Enc(e), which
maps the input representation to the final hid-
den representation;

3. An aggregated objective (L∗), which is a
weighted combination of a cross-entropy loss,
contrastive loss based on main task labels, and
contrastive loss based on protected attribute
labels, as described next.

3.1 Contrastive Loss

Given a mini-batch with a set of N randomly sam-
pled instances, positive instance pairs (representing
the same concept) and negative instance pairs (rep-
resenting different concepts) are formed. These
pairs can be created based on either their main task
label or their protected attribute, as described be-
low. Assuming a batch of positive and negative
pairs, the contrastive loss is computed as,

Lscl =

N∑
i=1

−1

|P (i)|
∑

p∈P (i)

log
exp(hi · hp/τ)∑

q∈Q(i) exp(hi · hq/τ)
,

where i=1 . . . N is the index of an instance
in the mini-batch; Q(i) ≡ {1 . . . N} \ {i};
hi = l2(Enc(Embed(xi))) is the normalised rep-
resentation; and τ>0 is a scalar temperature pa-
rameter controlling smoothness. P (i) is the set
of instances that result in positive pairs for the ith
instance, and |P (i)| is its cardinality. We next de-
scribe how positive/negative pairs are created.

For ease of illustration, we overload the defini-
tion of Lscl as an function, i.e.,

Lscl = Lscl(h; τ ;P (·);Q(·)), (1)

where P (·) is the set of indices of positive sam-
ples, and Q(·) is the set of sample indices that are
considered in the contrastive loss.
Lscl is computed on positive and negative sam-

ples constructed based on main task labels (e.g.,
POS vs. NEG sentiment), where instances in the
mini-batch belonging to the same main task class
are used to construct positive samples; otherwise,
they are used to form negative samples. The intu-
ition behind this loss component is that representa-
tions that are well-separated for the main task are
more desirable.

3.2 Fair Contrastive Learning for
Demographic Parity

Demographic parity is satisfied if predictions
are independent of protected attributes, i.e.,
Pr(ŷ=1|a=0) = Pr(ŷ=1|a=1) ∀y∈Y, a∈A,
where Y is the main task label set and A is the
protected attribute value set. With fair contrastive
learning, the training objective for demographic
parity (Lfcl-dp) is to infer latent representations
which are oblivious to the protected attribute of
an instance. We create samples with respect to pro-
tected attribute labels (e.g., a = MALE vs. a = FE-
MALE), where instances of the same protected at-
tribute class form positive samples; otherwise, they
constitute negative samples:

Lfcl-dp = −1× Lscl(h; τ ;Pfcl-dp(·);Q(·)),

where Pfcl-dp(i) ≡ {p ∈ Q(i) : ap = ai} con-
structs positive samples based on protected at-
tributes rather than target classes in supervised con-
trastive learning (Equation (1)). Importantly, the
−1 changes the sign of supervised contrastive loss,
enforcing representations of instances with differ-
ent protected attribute values to mix together by
discouraging the model from effectively contrast-
ing those instances.

The final classifier objective produces task-
indicative and protected-attribute-agnostic repre-
sentations, as the weighted sum of standard cross-
entropy loss Lce, and contrastive loss terms Lscl,
and Lfcl-dp,

Ldp = Lce + αLscl + βLfcl-dp (2)
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where α and β are hyperparameters that control
the relative importance of the cross entropy and
contrastive learning terms. We refer to the con-
trastive classifier based on the loss in Equation (2)
as Condp.

3.3 Fair Contrastive Learning for Equal
Opportunity

A model is fair wrt equal opportunity (Hardt et al.,
2016) if instances from different groups within the
same class are treated equally, i.e., Pr(ŷ = y|Y =
y, a=0) = Pr(ŷ=y|Y=y, a=1) ∀y∈Y, a∈A, con-
necting directly to the widely-used fairness metric
GAP (see Section 4.2).

Accordingly, we construct samples in terms of
protected attribute labels conditioned on the main
task labels, and compute Lfcl-eo as the average loss
over labels,

Lfcl-eo =
−1

|Y |
∑
y∈Y

Lscl(h; τ ;Pfcl-eo(·);Qfcl-eo(·)),

where Qfcl-eo(i, y)) ≡ {q|q ∈ 1, . . . , N, yq =
y, and q ̸= i} ensures that contrastive losses are
calculated per class, and Pfcl-eo(i, y) ≡ {p ∈
Qfcl-eo(i, y) : ap = ai} constructs positive sam-
ples based on protected attributes from a particular
main task class y. Optimizing for Lfcl-eo minimizes
mutual information between instances from differ-
ent protected groups within each target class.

Analogous to Equation (2), we define a fair clas-
sifier objective wrt equal opportunity as,

Leo = Lce + αLscl + βLfcl-eo. (3)

We refer to contrastive classifiers based on the loss
in Equation (2) as Coneo.

3.4 Remarks
Non-binary protected attributes: Our Lfcl-dp
and Lfcl-eo extend to non-binary protected attributes
by sampling negative instances at random from any
alternative subgroup.

Loss component weights: The same value is
adopted for α and β for both Lscl and Lfcl-dp/Lfcl-eo
as they are similar in concept and magnitude, and
weighting them equally balances performance with
bias reduction, as confirmed in extensive prelimi-
nary experiments.

Relation to mutual information: Optimizing
contrastive loss is equivalent to maximizing mutual
information between classes (Oord et al., 2018;

Khosla et al., 2020). Conversely, in representa-
tional fairness, representations h should be inde-
pendent of protected attributes a, i.e., minimise
mutual information between h and a. Lfcl-dp and
Lfcl-eo intuitively satisfy this by flipping the sign of
the contrastive objective.

4 Experiments

In this section, we report experimental results for
bias mitigation. All experiments are conducted
with the fairlib library (Han et al., 2022b), and full
experimental details are provided in Appendix D.

4.1 Comparison Models

We evaluate the utility of contrastive fairness, and
systematically study the relation between repre-
sentational and empirical fairness. To do so, we
include competitive debiasing methods covering
pre-, in-, and post-processing:

1. CE: train Enc(·) with cross-entropy loss. No
bias mitigation.

2. INLP: train Enc(·) with cross-entropy loss,
and apply iterative null-space projection (Rav-
fogel et al., 2020) to the learned representa-
tions. Specifically, a linear discriminator is
iteratively trained over the protected attribute
to project the representation onto the discrimi-
nator’s null-space, thereby reducing protected
attribute information from the representations.

3. Adv: jointly train Enc(·) with cross-entropy
loss and an ensemble of 3 adversarial discrim-
inators over the protected attribute, with an
orthogonality constraint applied to each pair
of sub-discriminators to encourage them to
learn different aspects of the representations
(Han et al., 2021b). The Enc(·) is trained to
prevent protected attributes from being identi-
fied, and thus results in fairer representations.

4. FairBatch: formulate the model training as
a bi-level optimization problem, which min-
imises prediction disparities through adjusting
resampling probabilities (Roh et al., 2021).

5. EOGLB: optimize equal opportunity through
proxy objective functions based on group-
specific cross-entropy, which essentially ad-
justs instances weights in training (Shen et al.,
2022).

6. Gate: use demographic information to make
predictions, with balanced training as regular-
izers in training to avoid learning spurious cor-
relations (Han et al., 2022a). Unlike the afore-
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mentioned models, which aim to reduce both
representational and empirical bias, Gate is
expected to be high in representational bias
and low in empirical bias.

In summary, we incorporate three types of base-
lines: (1) INLP and Adv remove protected informa-
tion from hidden representations to mitigate repre-
sentational bias, which is similar to our contrastive
learning methods; (2) FairBatch and EOGLB mit-
igate empirical bias based on model predictions,
without considering representational fairness; and
(3) Gate uses protected information explicitly to
make fair predictions, explicitly violating represen-
tational fairness.

4.2 Evaluation Metrics
Following Ravfogel et al. (2020), we adopt Accu-
racy for both the binary and multi-classification
datasets to evaluate the performance of models on
the main task, and measure empirical fairness based
on equal opportunity in terms of the model predic-
tions. To measure representational fairness, we
follow Elazar and Goldberg (2018) in measuring
protected attribute leakage in text representations.

To measure empirical fairness, we adopt equal
opportunity, which measures the difference in true
positive rate (TPR) between binary protected at-
tribute a and ¬a (such as FEMALE vs. MALE) for
each main task class. It is defined as GAPTPR

a,y =
|TPRa,y − TPR¬a,y|, y ∈ Y , where TPRa,y =
P{ŷ = y|y, a}. Here ŷ and y are the predicted and
gold-standard main task labels; and Y is the set of
main task labels. TPRa,y measures the percentage
of correct predictions among instances with main
task label y and protected attribute a. GAPTPR

a,y

measures the absolute difference between the two
different groups represented by the protected at-
tribute, given the main task class y. To take all
target classes into consideration, we follow De-
Arteaga et al. (2019) and Ravfogel et al. (2020) in
calculating the root mean square of GAPTPR

a,y over
all classes y ∈ Y , to get a single score:

GAP =

√
1

|Y |
∑
y∈Y

(GAPTPR
a,y )2

A difference of 0 indicates a fair model, as the pre-
diction ŷ is conditionally independent of protected
attribute a. For ease of exposition, we report the
equal opportunity fairness (Fairness) as 1−GAP,
where larger is better and a perfectly fair model
will achieve a fairness score of 1.

Distance to the optimum (DTO) has been
used to simplify model comparisons in previous
work (Marler and Arora, 2004; Han et al., 2022a),
which measures the Euclidean distance from a par-
ticular model to the optimum point (aka “Utopia”
point), usually set to 100% accuracy and 100%
equal opportunity fairness, denoting the best possi-
ble values. While the dimensions of the space are
performance and fairness, DTO explicitly reflects
the performance-fairness trade-off of a model. We
calculate DTO based on empirical fairness, and
perform model selections based the smallest DTO
over the development set (Han et al., 2022a).

Representational Fairness is evaluated through
Leakage as the ability of an attacker to recover
the protected attribute from a model’s final hidden
representations. We train one attacker (i.e., neural
network) for each model, to extract information
of protected attributes from a model’s final-layer
hidden representations (Wang et al., 2019; Han
et al., 2021b). We fix the attacker architecture
across models, so that attackers are not guaran-
teed to be optimal and leakage estimators should
be interpreted as lower bounds.1

4.3 Experiment 1: Sentiment Analysis

4.3.1 Task and Dataset
The task is to predict the binary sentiment for a
given English tweet, based on the dataset of Blod-
gett et al. (2016) (Moji hereafter), where each tweet
is also annotated with a binary private attribute
indirectly capturing the ethnicity of the tweet au-
thor as either African American English (AAE)
or Standard American English (SAE). Following
previous studies (Ravfogel et al., 2020; Han et al.,
2021b), the training dataset is balanced with re-
spect to both sentiment and ethnicity but skewed
in terms of sentiment–ethnicity combinations (40%
HAPPY-AAE, 10% HAPPY-SAE, 10% SAD-AAE,
and 40% SAD-SAE, respectively).2 The dataset
contains 100K/8K/8K train/dev/test instances.

4.3.2 Implementation Details
Following previous work (Elazar and Goldberg,
2018; Ravfogel et al., 2020; Han et al., 2021b), we

1Preliminary analyses revealed that non-linear attackers
outperform linear ones in recovering protected attributes, and
attackers with different non-linear architectures have similar
capacity to recover protected attribute information from repre-
sentations. We use non-linear MLPs as our attacker. Further
details are in Appendix A.

2Note that the dev and test set are balanced in terms of
sentiment–ethnicity combinations.
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Model Accuracy ↑ Fairness ↑ DTO↓ Leakage ↓

CE 72.3±0.5 61.2±1.4 47.7 87.9±3.3
INLP 73.3±0.0 85.6±0.0 30.3 86.7±0.6
Adv 75.6±0.4 90.4±1.1 26.3 78.8±6.0
Gate 76.2±0.3 90.1±1.5 25.8 100.0±0.0
FairBatch 75.1±0.6 90.6±0.5 26.7 88.4±0.4
EOGLB 75.2±0.2 90.1±0.4 26.7 85.7±1.2
Condp 75.8±0.3 88.1±0.6 26.9 54.2±0.9
Coneo 74.1±0.7 84.1±3.0 30.3 80.1±4.2

Table 1: Experimental results on Moji (averaged over
5 runs). The best result for each metric is indicated
in bold. Here, ↑ and ↓ indicate that higher and lower
performance, resp., is better for the given metric.

use DeepMoji (Felbo et al., 2017), a model pre-
trained over 1.2 billion English tweets, as Embed(·)
to obtain text representations. The parameters of
DeepMoji are fixed in our experiments.

4.3.3 Results
Table 1 presents the results. Our proposed methods
achieve competitive empirical fairness results with
other debiasing methods, all of which improve over
CE. Adv, Gate, FairBatch, and EOGLB achieve
the best performance in terms of Fairness, while
our proposed method Condp achieves the best per-
formance in terms of Leakage. Specifically, none
of the baselines reduce leakage substantially except
for Adv. The reason that Adv can reduce Leakage
is that the architecture of Adv is the closest one to
the leakage estimation framework, which also em-
ploys attackers to extract protected attributes and
unlearns attackers in training. However, Condp

still outperforms Adv, highlighting the effective-
ness of our proposed method in improving repre-
sentational fairness. The ineffectiveness of INLP,
Gate, FairBatch, and EOGLB in reducing Leak-
age is due to different reasons: INLP is due to the
fact that it relies on linear projections to remove
protected attribute information and is ineffective
at removing nonlinear correlations; Gate is due
to the fact that it employs a gate mechanism to
augment text representations with protected infor-
mation, and as a result, achieves 100% Leakage;
and both FairBatch and EOGLB are due to the
fact that these two methods are optimized to di-
rectly mitigate empirical bias without considering
representational bias. This indicates that the re-
lationship between representational fairness and
empirical fairness is not as simple as suggested in
previous work (Elazar and Goldberg, 2018; Ravfo-
gel et al., 2020; Han et al., 2021b)

Coneo, which is proposed to ensure condi-

Model Accuracy ↑ Fairness ↑ DTO↓ Leakage ↓

CE 82.3±0.2 85.1±0.8 23.2 98.0±0.0
INLP 82.3±0.0 88.6±0.0 21.0 97.6±0.1
Adv 81.9±0.2 90.6±0.5 20.4 88.6±4.6
Gate 83.7±0.2 90.4±0.9 18.9 100.0±0.0
FairBatch 82.2±0.1 89.5±1.3 20.6 98.0±0.3
EOGLB 81.7±0.4 88.4±1.0 21.7 97.2±0.5
Condp 82.1±0.2 84.3±0.8 23.9 76.3±1.5
Coneo 81.8±0.3 85.2±0.4 23.5 84.9±3.4

Table 2: Experimental results on Bios (averaged over 5
runs).

tional representational fairness within each class,
achieves similar prediction fairness to Condp, but
with much worse leakage. This further shows that
representational fairness cannot be directly linked
to prediction fairness. It is encouraging to see that
incorporating debiasing techniques can contribute
to improvement on the main task. We hypothesise
that incorporating debiasing techniques (either in
the form of adversarial training or contrastive loss)
acts as a form of regularisation, leading to greater
robustness over the training dataset skew relative
to the unbiased test set.

4.4 Experiment 2: Profession Classification
4.4.1 Task and Dataset
The task is to predict a person’s profession given
their biography, based on the dataset of De-Arteaga
et al. (2019) (Bios hereafter), consisting of short
online biographies which have been labelled with
one of 28 professions (main task label) and binary
gender (protected attribute). We use the dataset
split of (De-Arteaga et al., 2019; Ravfogel et al.,
2020), consisting of 257K/40K/99K train/dev/test
instances.3

4.4.2 Implementation Details
Following the work of Ravfogel et al. (2020), we
use the [CLS] token representation of the pre-
trained uncased BERT-base (Devlin et al., 2019) as
Embed(·), without any further finetuning.

4.4.3 Results
Table 2 shows the results on the test set. In terms
of prediction fairness, baseline methods achieve
similar results, however, both Condp and Coneo

are less effective for improving prediction fairness.
We hypothesise that this is because of the multi-
class setting (28 classes), where the large number

3There are slight differences between our dataset and that
used by De-Arteaga et al. (2019) and Ravfogel et al. (2020)
as a small number of biographies were no longer available on
the web when we scraped them.
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of main task classes impedes the ability of con-
trastive learning to learn representations that jointly
maximize mutual information for main task classes
and minimize mutual information for demographic
labels. In Section 4.5, we conduct ablation stud-
ies to analyse their robustness to the number of
classes, affirming our explanation. In terms of the
representational fairness, consistent with the results
over Moji, Condp and Coneo substantially reduce
Leakage, where most baselines fail.

Overall, the trend for these three types of meth-
ods over the Bios dataset is consistent with that over
the Moji dataset: (1) INLP and Adv, which focus
on representational fairness, result in empirical fair-
ness improvements and marginal gain in Leakage;
(2) FairBatch and EOGLB, which target for em-
pirical fairness, lead to fairer predictions but no
benefit to Leakage; and (3) Gate, which augments
representations with protected information, also
improves empirical fairness while suffering from
100% Leakage. Based on the consistent trend over
two benchmark datasets, we argue that it cannot be
assumed that empirical fairness is associated with
representational fairness, with the fact that Condp

and Coneo achieve the best representational fair-
ness but lowest empirical fairness further adding
weight to this argument.

4.5 Analysis

Robustness to the Number of Classes Our pro-
posed methods are quite effective over Moji but
not competitive over Bios in terms of Fairness. We
hypothesize that this is due to contrastive loss strug-
gling with a larger number of classes. To verify
this, we construct 4 synthetic datasets from Bios
by selecting a subset of classes from 2 to 8.4

Figure 2 presents Accuracy, empirical Fairness,
and DTO with respect to 2, 4, 6, and 8 target classes.
Although the scores with respect to different num-
bers of classes are not directly comparable as we
also have to vary the number of classes in the test
set, resulting in different test sets, it is reasonable
to compare the trend of changes in the rank of de-
biasing methods.

Overall, increasing the number of classes leads
to a decrease in Accuracy while Fairness is almost
unchanged. As a result, the trade-off between Accu-
racy and Fairness (DTO) drops. In terms of Accu-
racy, Condp and Coneo achieve competitive perfor-

4In Appendix C.1, we provide the full details of the syn-
thetic datasets.
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Figure 2: Varying the number of classes in the Bios
dataset. We treat the number of classes as a categorical
variable, and draw categorical scatter plots with non-
overlapping points.

mance with other debiasing methods, all of which
are slightly worse than CE.

Looking at empirical Fairness, Condp achieve
quite competitive performance when the number
of target classes is 2, while Coneo is unable to sig-
nificantly improve Fairness. This is consistent the
results over the binary classification dataset (Moji).
For other settings (4, 6, and 8 target classes), Coneo

shows better trade-offs than Condp. However, both
Condp and Coneo only achieve slight improve-
ments in Fairness, and are not as good as some
other debiasing methods.

To conclude, the changes in DTO confirm our
hypothesis that contrastive loss struggles with a
larger number of classes: contrastive loss achieves
one of the best DTO for 2 classes, competitive
results with other debiasing methods for 4 and 6
classes, and the worst DTO for 8 classes.

Correlation between Representational and Em-
pirical Fairness Although we have discussed the
connection between representational and empirical
fairness for individual methods, it is still not clear
how they are correlated.
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For each method, we have 5 random runs, and
in total, there are 5 groups of methods: (1) CE;
(2) INLP and Adv; (3) FairBatch and EOGLB; (4)
Gate; and (5) Condp and Coneo. To treat each
group of methods equally, we fit a bivariate Gaus-
sian distribution to each method over the 5 runs,
and draw 20k random samples from each group for
a given dataset.

Based on the random samples, the Pearson cor-
relation coefficients between representational and
empirical fairness over Moji and Bios are 0.072
and −0.222, respectively. Clearly, both correlation
coefficients are not substantially better than 0, in-
dicating that there is little to no linear dependency
between representational fairness and empirical
fairness. Even more damningly, the negative sign
for the Bios suggests that worse representational
fairness may result in higher empirical fairness.

Clearly further work is required to examine the
theoretical difference/connection between represen-
tational and empirical fairness, which we leave to
future work.

5 Conclusion

Biased representations and predictions can re-
inforce existing societal biases and stereotypes.
While previous work has assumed a direct link
between biases in the representations learned by
models and performance disparities in model pre-
dictions, there has not been a systematic study of
the relationship between the two. We have explored
the relationship wrt both a range of existing meth-
ods and two newly-proposed methods based on su-
pervised contrastive learning. The contrastive learn-
ing methods are based on the intuition that similar
instances belonging to the same main task class
should be pulled together and similar instances be-
longing to the same protected attribute class should
be pushed apart in the representation space, based
on which we proposed to combine cross-entropy
loss with two contrastive loss components in op-
timizing neural networks in two different ways,
incorporating demographic parity and equal op-
portunity respectively. Experimental results over
two tasks demonstrate the effectiveness of the pro-
posed methods in terms of representation fairness,
but further analysis showed no meaningful correla-
tion between representational fairness and empiri-
cal fairness, contradicting a common assumption
made in prior research, and motivating future work
on approaches that achieve both representational

and empirical fairness.
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Limitations

A limitation of our proposed methods is that we
focus on learning fair representations for the main
task, where the protected attribute is explicitly
present in the dataset. The mitigation of biases
present only implicitly, such as protected informa-
tion revealed in the text rather than indicated by
demographics, as studied by Lahoti et al. (2020),
is out scope of our work. For main tasks other
than classification, such as generation tasks, adop-
tion of contrastive learning for generating fairer
text is not trivial, which is one direction for future
work. In our work, Embed(·) is not learned or fine-
tuned together with Enc(·) and the classification
layer in an end-to-end fashion. However, finetun-
ing the Embed(·) has the potential for better task-
specific or semantic-preserving representations of
text, which may further remove biases encoded in
pretrained models. One simplifying assumption
in our work is that we focus exclusively on binary
protected attributes, implying the adoption of an
oversimplified binary notion of gender. Exploring
attributes of higher arity, and more complex and
realistic bias dimensions, is an important direction
for future work.

Ethical Considerations

We propose Condp and Coneo to prevent text clas-
sifiers from encoding protected information. How-
ever, there is a possibility that multiple protected
attributes, such as gender, age, and ethnicity, are
encoded in text and the dataset is annotated only
wrt one of the protected attribute. Therefore, a
method designed to alleviate a specific type of bias
is not guaranteed to be bias-free. The usage of our
fair classifiers in the real world should be carefully
monitored with the aid of domain experts.
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# L D AF Moji Bios

1 – – 84.80±0.54 96.63±0.03
2 100 Tanh 87.12±0.51 97.91±0.03
2 100 ReLU 87.03±0.34 97.92±0.04
2 300 Tanh 87.37±0.13 98.00±0.03
2 300 ReLU 87.89±0.34 97.96±0.05
4 100 Tanh 87.21±0.57 97.84±0.10
4 100 ReLU 87.38±0.70 97.82±0.06
4 300 Tanh 87.42±0.45 97.90±0.05
4 300 ReLU 87.50±0.29 97.86±0.04

Table 3: Leakage estimations over Moji and Bios with
respect to different attacker architectures. # L, D, and
AF denote number of hidden layers, hidden dimensions,
and activation functions, respectively. Leakage estima-
tion statistics (mean and standard deviation) are calcu-
lated over 5 runs.

A Robustness to Leakage Estimation

To analyse the robustness of leakage estimations,
we vary attacker architectures and compare esti-
mated leakage of the CE model. Table 3 summaries
results over the Moji and Bios datasets

Overall, leakage estimations are robust to differ-
ent architectures, except the results of linear attack-
ers (i.e., 1 layer), which are consistently worse over
both datasets.

In terms of the standard deviation, the training
set of Bios is larger than that of Moji (205k v.s.
100k), resulting in a smaller standard deviation for
leakage estimations over Bios than Moji.

B Adv Settings

Each sub-discriminator consists of two MLP layers
with a hidden size of 256, where the first layer is ac-
companied with a LeakyReLU activation function.
The final classifier layer is used to predict the pro-
tected attribute. Sub-discriminators are optimized
for at most 100 epochs after each epoch of Enc(·)
training, leading to extra training time.

C Bios Distribution

Table 4 shows the number of instances of each
profession, the number of male and female indi-
viduals of each profession, and the ratio of female
individuals for each profession in the Bios training
dataset.

C.1 Synthetic Dataset Construction
We follow Subramanian et al. (2021) in construct-
ing the binary classification version of the Bios
dataset based on the two professions of nurse and
surgeon. For the additional classes in the synthetic

Profession Total Male Female Ratio

professor 76748 42130 34618 0.451
physician 26648 13492 13156 0.494
attorney 21169 13064 8105 0.383
photographer 15773 10141 5632 0.357
journalist 12960 6545 6415 0.495
nurse 12316 1127 11189 0.908
psychologist 11945 4530 7415 0.621
teacher 10531 4188 6343 0.602
dentist 9479 6133 3346 0.353
surgeon 8829 7521 1308 0.148
architect 6568 5014 1554 0.237
painter 5025 2727 2298 0.457
model 4867 840 4027 0.827
poet 4558 2323 2235 0.490
filmmaker 4545 3048 1497 0.329
software_engineer 4492 3783 709 0.158
accountant 3660 2317 1343 0.367
composer 3637 3042 595 0.164
dietitian 2567 183 2384 0.929
comedian 1824 1439 385 0.211
chiropractor 1725 1271 454 0.263
pastor 1638 1245 393 0.240
paralegal 1146 173 973 0.849
yoga_teacher 1076 166 910 0.846
dj 964 828 136 0.141
interior_designer 949 182 767 0.808
personal_trainer 928 505 423 0.456
rapper 911 823 88 0.097

Table 4: Statistics of the Bios training dataset.

experiments, we further select pairs of professions
that are both large in size and biased in gender
skew, resulting in photographer + teacher, dentist
+ psychologist, and software engineer + model. The
resulting training dataset sizes are 21145, 47449,
68873, and 78232 for 2, 4, 6, and 8 classes, respec-
tively.

D Hyperparameter Settings

We vary the architecture of Embed(·) across dif-
ferent tasks, and do not finetune it during train-
ing. The architecture of Enc(·) consists of two
fully-connected layers with a hidden size of 300.
All models are trained and evaluated on the same
dataset splits, and models are selected based on
their performance on the development set. For fair
comparison, we first finetune the learning rate and
batch size using grid search, then finetune hyperpa-
rameters introduced by the corresponding debias-
ing methods for each model on each dataset. For all
experiments, we use the Adam optimizer (Kingma
and Ba, 2015) and early stopping with a patience
of 10.
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Figure 3: Effects of contrastive loss components for
Condp.

D.1 Twitter Sentiment Analysis

For CE, the learning rate is 0.001, and the batch
size is 1024. For INLP, following Ravfogel et al.
(2020), we use 300 linear SVM classifiers, each
of which is trained over a subset of instances
with the same target class. For Adv, the number
of sub-discriminators is 3, λadv is 1.0, and λdiff

is 0.01. For Gate, all hyperparameters are the
same as CE, except the hidden layers of MLP are
replaced by a hyperparameter-free augmentation
layer. For FairBatch, the objective is equal oppor-
tunity, and the adjustment rate for resampling prob-
abilities is 0.19952623149688797. For EOGLB,
the strength of the additional difference loss is
0.3981071705534973. For Condp, τ = 0.01, and
α = β = 0.0199526231496888. For Coneo, all
hyperparameters are the same as Condp, except for
α = β = 0.7943282347242822.

D.2 Occupation Classification

For CE, the learning rate is 0.003, and the
batch size is 2048. For INLP, each classi-
fier is trained over a subset of instances with
same target class. For Adv, the number of sub-
discriminators is 3, λadv is 1.0, and λdiff is 0.01.
For Gate, all hyperparameters are the same as
CE, except for the hidden layers of MLP are re-
placed hyperparameter-free augmentation layer.
For FairBatch, the objective is equal opportu-
nity, and the adjustment rate for resampling prob-
abilities is 0.05011872336272725. For EOGLB,
the strength of the additional difference loss is
0.00707945784384138. For Condp, τ = 0.01,
and α = β = 0.00011885022274370189. For
Coneo, all hyperparameters are the same as Condp,
except for α = β = 0.00016788040181225607.

Figure 4: t-SNE scatter plots of learned representations
of CE and Condp over the Moji dataset (based on 150
random samples from each main task class; best viewed
in colour). Red and blue colours indicate that they have
different sentiment (main task) labels: red → HAPPY
and blue → SAD. Green and purple colours indicate that
they have different ethnic groups (protected attribute):
purple → AAE and green → SAE.

D.3 Analysis
D.3.1 Effect of Loss Components
See Figure 3 for a breakdown of results for each
loss component of Condp over Moji and Bios.

D.3.2 Visualising Representations
See Figure 4 for t-SNE plots of learned representa-
tions for CE vs. Condp over Moji.


