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Abstract

This paper investigates the pretrained language
model (PLM) specialised in the Japanese le-
gal domain. We create PLMs using different
pretraining strategies and investigate their per-
formance across multiple domains. Our find-
ings are (i) the PLM built with general domain
data can be improved by further pretraining
with domain-specific data, (ii) domain-specific
PLMs can learn domain-specific and general
word meanings simultaneously and can distin-
guish them, (iii) domain-specific PLMs work
better on its target domain; still, the PLMs re-
tain the information learnt in the original PLM
even after being further pretrained with domain-
specific data, (iv) the PLMs sequentially pre-
trained with corpora of different domains show
high performance for the later learnt domains.

1 Introduction

Transformer-based pretrained language models
(PLMs) such as BERT (Devlin et al., 2019) and its
successors (Liu et al., 2019; Yang et al., 2019; Clark
et al., 2020) achieved solid performance in various
NLP tasks for a generic domain (Wang et al., 2018).
Following their success, domain-specific PLMs
have been proposed for science (Beltagy et al.,
2019), medical (Alsentzer et al., 2019; Lee et al.,
2019), financial (Yang et al., 2020; Loukas et al.,
2022), and legal (Chalkidis et al., 2020) domains.
These domain-specific PLMs are pretrained solely
with the target domain corpora, or with both the
generic and target domain corpora. The latter is a
good option when the domain corpus size is limited.
Gururangan et al. (2020) empirically proved that
further pretraining a generic PLM using domain-
specific corpora provided benefits; Chalkidis et al.
(2020) confirmed this claim for the legal domain.

However, previous studies do not care the perfor-
mance of the domain-adapted PLMs for a generic
domain. The domain adaptation might degrade
the model performance for a generic domain. The

domain-adapted PLM should perform well in both
the target domain and the domain in general. This
requirement is essential for the legal domain, where
the legal argumentation includes evidence descrip-
tions cited from non-legal text such as web pages,
books and SNS posts. The requirement is related
to catastrophic forgetting. Ramasesh et al. (2022)
recently showed that more steps and data for pre-
training make a model robust against catastrophic
forgetting. However, their findings are primarily in
computer vision, and their experiments with PLMs
are still preliminary. They focus on sequential
fine-tuning of various size PLMs pretrained with
a single domain corpus. On the other hand, we
focus on pretraining PLMs with different domains
through evaluation using corpora from 13 domains,
including domains exclusive of training data. Also,
compared with English, there are few findings in
domain adaptation strategies of Japanese PLMs,
despite several Japanese PLMs available for the
generic (NICT, 2020; Tohoku NLP Group, 2021;
NLP-Waseda, 2021), financial (Suzuki et al., 2021)
and medical (Kawazoe et al., 2021) domains.

Further, despite its significance, no PLM study
exists in the Japanese legal domain. In the re-
cent COLIEE workshop, a competition on legal
information extraction and entailment tasks, includ-
ing the Japanese language, most high-scoring ap-
proaches utilise BERT-like PLMs (Rabelo et al.,
2022) trained on Japanese Wikipedia text. Al-
though there is an expectation that PLMs trained
with Japanese legal corpora improve their perfor-
mance, the insufficient size of publicly available
corpora does not allow it. Further pretraining a
generic PLM with available legal corpora is one of
the promising adaptation strategies.

Against this backdrop, particularly considering
the above-mentioned legal-domain peculiarity that
both domain-specific and generic meanings are
equally important, this paper reports the first com-
prehensive study on PLM adaptation strategies in
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the Japanese legal domain and their performance
across different domains through intrinsic evalua-
tion.

2 Research Questions

Chalkidis et al. (2020) adopted two strategies for
pretraining domain-specific PLMs: further pretrain-
ing (FP) an existing PLM with the domain corpus
and pretraining a domain-specific PLM with the
domain corpus from scratch (SC). Comparing these
two strategies, we investigate the cross-domain per-
formance of domain-specific PLMs, specialised
in the Japanese legal domain. We set up the fol-
lowing research questions. RQ1: Is the FP/SC
learning strategy effective and which is more effec-
tive? RQ2: Can the domain-adapted PLM learn
the domain-specific meaning and distinguish it
from the meaning of general usage? RQ3: Does
the PLM performance change across the domain?
RQ4: What is the best order of training data do-
mains for pretraining?

3 Experimental Settings

3.1 Resources
Dataset We use the Japanese civil case judg-
ment dataset (JD)1, the Japanese Wikipedia dataset
(WP)2 and the Balanced Corpus of Contemporary
Written Japanese (BCCWJ) (Maekawa et al., 2014).
BCCWJ contains texts from 13 domains as shown
in Table 4. Their data sizes are 5.4GB (JD), 3.2GB
(WP) and 0.7GB (BCCWJ). Table 5 in the Ap-
pendix shows the dataset statistics. BCCWJ is used
as a test dataset. JD and WP are split into train-
ing and test data at a ratio of 9:1, following the
NVIDIA BERT implementation (NVIDIA, 2019).

Base PLM We use the BERT-base (WWM ver-
sion) checkpoint by Shibata et al. (2019), which is
pretrained with the Japanese Wikipedia dataset3.

3.2 Preprocessing
The texts are divided into sentences and further into
morphological units. The “short unit” (NINJAL,
2015) is used for BCCWJ, and the output of the
morphological analyser JUMAN++ (Tolmachev
and Kurohashi, 2018) is used for JD and WP as the
morphological unit. The leading meta information,
such as the case number, is removed from JD.

1provided by LIC Co., Ltd.
2version:20220520
3The Wikipedia dataset that Shibata et al. (2019) uses is

an older dump than WP.

Setting Strategy Data size [%] MLM NSP

2-phase FP 100 0.805 0.992
50 0.801 0.991
25 0.793 0.989

SC 100 0.789 0.991
50 0.785 0.991
25 0.775 0.988

1-phase FP 100 0.806 0.990
50 0.788 0.987
25 0.763 0.982

SC 100 0.785 0.989
50 0.755 0.984
25 0.697 0.975

Baseline 0.703 0.687

Table 1: Accuracy of JLBERT family on the JD test set

The SC strategy uses the vocabulary of 32,000 to-
kens created from the domain corpus by BPE (Sen-
nrich et al., 2016), and the FP strategy uses the
vocabulary of the Base PLM for subword tokenisa-
tion.

3.3 Pretraining settings

We adopt the masked language modelling (MLM)
and next sentence prediction (NSP) tasks to train
the BERT model (Devlin et al., 2019). Following
NICT (2020), Tohoku NLP Group (2021) and the
NVIDIA BERT implementation (NVIDIA, 2019),
we use two types of pretraining settings: two-phase
(2-phase) and single-phase (1-phase) training. The
2-phase training limits the input token length to
128 in the first phase and enlarges it to 512 tokens
in the second phase. The 1-phase training trains the
model with the input token length limited to 512.
The hyperparameters are the same for the 1-phase
training setting and the second phase of the 2-phase
training setting. We use the LAMB (You et al.,
2020) optimiser. Table 6 in the Appendix shows
the hyperparameters for the pretraining settings.

4 Experiments

4.1 RQ1: Pretraining strategies (FP vs SC)

We combine the two pretraining strategies (FP/SC)
and the two pretraining settings (1/2-phase) to cre-
ate four variants of PLMs, which we call the JL-
BERT family. We further pretrain the base PLM de-
scribed in 3.1 using the JD dataset for the FP strat-
egy. Only the JD dataset is used for the SC strategy.
The model performance is measured through the in-
trinsic evaluation with the MLM and NSP tasks, i.e.
the accuracy of those tasks on the JD test set. To
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investigate the impact of the training data size on
the performance, we created the models with 25%,
50% and 100% of the JD dataset. The number of
training steps in the 1-phase setting is reduced to
4,000 and 2,000 according to the dataset reduction,
while the number of training steps in the 2-phase
setting is fixed to 8,000. We also create a baseline
model from the WP dataset using the SC strategy
and the 1-phase setting. This baseline model is
similar to the base PLM used in the FP strategy.
However, the base PLM lacks the classifiers for
solving the MLM and NSP tasks. Therefore, we
create it from scratch.

Table 1 shows that pretraining with the domain-
specific data increases the accuracy for both tasks
against the baseline regardless of the pretraining
strategies and settings. As the performance of NSP
is almost saturated for all JLBERT models, we fo-
cus on the MLM performance hereafter. The FP
strategy creates better models than the SC strat-
egy, suggesting that out-of-domain data help than
no data. This tendency becomes more signifi-
cant when the domain-specific training data size is
small. Increasing the training data size contributes
to performance improvement. We need a larger JD
dataset to see if the performance improvement has
been saturated.

The training time for the first and second phases
of the 2-phase setting was 28 and 18 hours, respec-
tively, and 77 hours for the 1-phase setting, using
four NVIDIA RTX A6000 GPUs. The 2-phase
setting reduced the training time by 40% while re-
taining a comparable performance with the 1-phase
setting. The model parameters learned in the first
phase are applicable to inputs longer than 128 to-
kens, and the model needs to learn only position
embeddings beyond 128 tokens in the second phase.
It explains the speedup in the 2-phase setting.

4.2 RQ2: Domain specific meanings

RQ2 provides a microscopic analysis of PLMs
looking at word meanings, whereas other RQs are
macroscopic analysis using overall accuracy as met-
rics.

While recent PLM analysis researches focus on
latent domains and concepts behind representa-
tions (Aharoni and Goldberg, 2020; Dalvi et al.,
2022; Sajjad et al., 2022), we are interested in
words themselves that have drastically different
meanings across domains. For instance, “akui (ma-
liciousness)” has quite a different meaning, “know-

Figure 1: Contextualised embeddings for “akui” by
JLBERT-2-phase-SC (top) and Base PLM (bottom).
Only domains containing ≥ 10 occurrences of “akui”
are depicted. The boundaries are manually annotated.
The legend of domain acronyms is found in Table 4.

ing a fact”, in the certain legal context. Moreover,
both meanings can simultaneously appear in a sin-
gle document. We take “akui” as a probe word to
investigate the domain-specific PLM can learn the
domain-specific meaning and distinguish it from
its ordinary meaning.

Following Reif et al. (2019), we collected 2,052
sentences containing “akui” from the JD (test),
WP(test) and BCCWJ dataset and extracted the
corresponding contextualised embedding for “akui”
in each sentence. Figure 1 visualises the embed-
ding distribution made by UMAP (McInnes and
Healy, 2018). We used the base PLM (cf. 3.1), the
JLBERT models made by the 2-phase setting and
the FP or SC strategies to calculate embeddings.
Figure 1 shows that “akui” from JD (black), PB
(cyan) and LB (red), which would have the legal
meaning, made clusters. PB and LB are both book
domain, which potentially includes legal materials.
These clusters are separable from other domain-
mixture clusters. Besides, the boundary is more
apparent for the domain-specific PLM.

We also apply the k-nearest neighbour (kNN)
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#clusters 2-phase-SC 2-phase-FP base PLM

2 0.948 (.000) 0.945 (.000) 0.925 (.001)
3 0.951 (.004) 0.945 (.000) 0.908 (.000)
4 0.943 (.005) 0.943 (.002) 0.899 (.003)
5 0.948 (.001) 0.944 (.004) 0.890 (.008)
6 0.949 (.000) 0.944 (.003) 0.894 (.001)

Table 2: Global purity of clustered contextualised em-
beddings of “akui” with standard deviations in parenthe-
ses.

Baseline 1-phase-FP 1-phase-SC

WP (test) 0.697 0.589 0.596
JD (test) 0.703 0.806 0.785

LB 0.534 0.521 0.511
OB 0.520 0.512 0.502
OC 0.501 0.492 0.480
OL 0.739 0.827 0.808
OM 0.566 0.587 0.566
OP 0.584 0.580 0.558
OT 0.584 0.585 0.568
OV 0.345 0.305 0.301
OW 0.637 0.669 0.648
OY 0.478 0.455 0.448
PB 0.556 0.549 0.536
PM 0.527 0.492 0.483
PN 0.546 0.504 0.496

B
C

C
W

J

micro avg. 0.538 0.529 0.517

Table 3: Domain-wise accuracy for MLM

clustering to the embeddings to calculate global
purity, which indicates the majority’s degree of
dominance in a cluster. One of the authors4 anno-
tated the meaning of “akui” in the entire sentences
for purity calculation. We run the kNN cluster-
ing with different numbers of clusters from two
to six. The purity is calculated by averaging the
results of ten clustering runs with different random
seeds. Table 2 shows that the FP and SC strategies
always result in higher purity than the base PLM,
suggesting that the domain-specific models capture
the different meanings of “akui” better than the
generic model.

4.3 RQ3: Performance across domains

We investigate the model performance on the MLM
task across different domains by comparing the
baseline model described in 4.1, the JLBERT mod-
els made by the 1-phase setting and the FP or SC
strategies. The test set includes WP (test), JD (test)
and texts from 13 domains of BCCWJ. Table 3
shows that the JLBERT models are superior to the
baseline model in law documents (OL), white pa-

4The annotator has LL.B. and knowledge in the domain.

pers (OW), and minutes of Parliament (OM). These
domains contain legal content and follow a formal
writing style, similarly to JD. Conversely, the base-
line model works better in Yahoo! blog (OY), mag-
azines (PM), newspapers (PN), and verses (OV)
that are different in their writing styles from JD. We
conclude that the domain-specific PLM degrades
its performance outside the target domain but not
significantly. Moreover, the FP model is consis-
tently better than the SC model regardless of do-
mains, suggesting that the FP model retains and
leverages the information learnt from the WP data
even after being pretrained with the JD data.

4.4 RQ4: Order of domain datasets

We compare the MLM performance of two domain-
specific PLMs made by the 1-phase setting and
the FP strategy, namely WP+JD and JD+WP. The
WP+JD model is created by further pretraining the
baseline model introduced in 4.1 with JD, while
the JD+WP model is created by further pretraining
the JLBERT-1-phase-SC model (cf. 4.1) with WP.
WP+JD particularly works well in JD (Table 4). In
addition, law documents (OL), white papers (OW),
and minutes of Parliament (OM), which have a
formal writing style similar to JD, also show high
scores. On the other hand, JD+WP works well par-
ticularly in WP, and also does in newspapers (PN),
magazines (PM), and verses (OV). These results
indicate that the pretraining for the target domain
should be put later in a sequence of pretraining
phases to obtain a better domain-specific PLM.

5 Conclusion

This paper presents an empirical study of the pre-
trained language model specialised in the Japanese
legal domain. Our findings are (i) the PLM built
with general domain data can be improved by
further pretraining with domain-specific data, (ii)
domain-specific PLMs can learn domain-specific
and general word meanings simultaneously and can
distinguish them, (iii) domain-specific PLMs work
better on its target domain; still, the PLMs retain
the information learnt in the original PLM even
after further pretraining with domain-specific data,
(iv) the PLMs sequentially pretrained with differ-
ent domain corpora show high performance for the
later learnt domain. Although our findings might
be limited in the Japanese legal domain, they pro-
vide clues and a basis for future research in other
less-studied domains.
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(a) (b) (c)
Baseline WP+JD ∆ 1-phase-SC JD+WP ∆ (a)-(b) (c)-(a)

WP (test) 0.697 0.606 -0.091 0.596 0.718 0.122 0.010 0.112
JD (test) 0.703 0.822 0.119 0.785 0.694 -0.091 0.037 -0.128

LB: Books in library 0.534 0.542 0.008 0.511 0.545 0.034 0.031 0.003
OB: Bestseller 0.520 0.534 0.014 0.502 0.532 0.029 0.032 -0.003
OC: Yahoo! Chiebukuro 0.501 0.523 0.023 0.480 0.494 0.014 0.043 -0.029
OL: Law documents 0.739 0.834 0.095 0.808 0.741 -0.067 0.026 -0.093
OM: Minutes of Parliament 0.566 0.616 0.050 0.566 0.546 -0.021 0.050 -0.070
OP: Public relations paper 0.584 0.606 0.022 0.558 0.578 0.020 0.047 -0.028
OT: Textbook 0.584 0.599 0.015 0.568 0.597 0.029 0.031 -0.002
OV: Verse 0.345 0.328 -0.017 0.301 0.345 0.045 0.028 0.017
OW: White paper 0.637 0.679 0.042 0.648 0.638 -0.009 0.032 -0.041
OY: Yahoo! Blog 0.478 0.479 -0.001 0.448 0.484 0.036 0.031 0.005
PB: Published books 0.556 0.570 0.014 0.536 0.563 0.027 0.034 -0.007
PM: Magazine 0.527 0.519 -0.008 0.483 0.534 0.051 0.036 0.015
PN: Newspaper 0.546 0.527 -0.020 0.496 0.557 0.062 0.031 0.031

B
C

C
W

J

Micro average in BCCWJ 0.538 0.552 0.014 0.517 0.543 0.026 0.035 -0.009

Table 4: Accuracy for MLM: Impact of dataset order in pretraining

As we compared the PLM performance across
different domains, we adopted intrinsic evaluation
with domain-neutral tasks, MLM and NSP. As Gu-
rurangan et al. (2020) did, our future plan includes
conducting extrinsic evaluation using downstream
tasks like JGLUE (Kurihara et al., 2022).
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A Statistics of datasets

Dataset Genre #sents
#chars

per sent
#morphs
per sent

WP Train 22,053,315 48.1 26.9
Test 2,450,176 56.8 31.9

Overall 24,503,491 48.9 27.4

JD Train 21,411,914 77.0 46.8
Test 2,378,943 76.6 46.2

Overall 23,790,857 77.0 46.8

BCCWJ LB 1,649,778 33.5 21.2
OB 222,540 30.5 19.5
OC 681,967 28.2 17.5
OL 38,768 45.5 30.6
OM 140,409 63.3 39.9
OP 256,199 26.9 17.5
OT 63,667 27.1 17.2
OV 18,982 19.7 12.1
OW 146,280 57.7 37.9
OY 820,922 24.7 15.0
PB 1,482,226 35.3 22.2
PM 300,212 29.1 17.4
PN 80,037 31.0 19.7

Overall 5,901,987 32.7 20.6

Table 5: Statistics of preprocessed datasets

Table 5 shows the statistics of the datasets used
in this study. These values are calculated after pre-
processing (3.2). Comparing WP and JD, the num-
bers of recording sentences are almost the same.
Therefore, when learning WP or JD under the same
1-phase condition in RQ4 (4.4), the number of
epochs is also almost the same.

On the other hand, the number of characters and
morphemes per sentence on JD is much higher

than WP. Compared to WP, JD is not only a formal
written document, but also has a long sentence. For
this reason, it makes sense to create a JD-specific
PLM to solve JD’s downstream tasks.

B Pretraining hyperparameters

2-phase 1-phasephase1 phase2

Accumulated batch size 32,768 16,384 16,384
Mini-batch size 64 8 64
Gradient accumulation 512 2,048 256
Training steps 7,038 1,563 8,000
Mini-batch inputs 3.6M 3.2M 2M
Warm-up steps 2,000 200 1,024
Warm-up rate 28.43% 12.80% 12.80%
Max length of tokens 128 512 512
[MASK] rate 0.15 0.15 0.15
Max [MASK]/sentence 20 80 80
Learning rate 0.006 0.004 0.004

Table 6: BERT pretraining hyperparameters

Table 6 shows the detailed settings of 1-phase
and 2-phase (3.3). As shown in (3.3), the com-
puting time for the first and second phases in the
2-phase setting was 28 and 18 hours, respectively,
and 77 hours for the 1-phase setting, using four
NVIDIA RTX A6000 GPUs. By changing the
Mini-batch size in 2-phase phase 2 to 64, com-
puting time will be shorter.

C Statistics of annotated “akui”

knowing malice ? Sum

JD (test) 882 200 6 1088
WP (test) 0 317 0 317

LB 19 203 1 223
OB 0 28 0 28
OC 0 35 1 36
OL 2 1 0 3
OM 0 6 0 6
OT 0 1 0 1
OV 0 3 0 3
OY 4 38 1 43
PB 130 154 3 287
PM 0 15 0 15
PN 0 2 0 2

B
C

C
W

J

Sum 1037 1003 12 2052

Table 7: Statistics of annotated “akui”

Table 7 shows the statistics of annotated sen-
tences which contain the word “akui”. The “?”
column shows sentences that cannot be classified
into either “knowing a fact (technical usage in the
legal domain)” or “malicious (general usage)”.
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According to our annotation, 200 out of 1088
sentences mean “malicious” in JD (test). Even
in JD, which is a corpus of legal domain, “akui”
does not always mean “knowing a fact” but also
means “malicious”. For example, a legal argumen-
tation includes evidence descriptions cited from
non-legal text such as web pages, books and SNS
posts. Moreover, both meanings can simultane-
ously appear in a single document. Thus, source
of documents does not necessarily suggest which
meaning “akui” has.


