
Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022, pages 1–10
November 20–23, 2022. ©2022 Association for Computational Linguistics

1

Efficient Entity Embedding Construction from Type Knowledge for BERT

Yukun Feng1∗, Amir Fayazi2, Abhinav Rastogi2, Manabu Okumura1

1Tokyo Institute of Technology
2Google Research

{yukun,oku}@lr.pi.titech.ac.jp
{amiraf,abhirast}@google.com

Abstract

Recent work has shown advantages of incor-
porating knowledge graphs (KGs) into BERT
(Devlin et al., 2019) for various NLP tasks.
One common way is to feed entity embeddings
as an additional input during pre-training.
There are two limitations to such a method.
First, to train the entity embeddings to include
rich information of factual knowledge, it typi-
cally requires access to the entire KG. This is
challenging for KGs with daily changes (e.g.,
Wikidata). Second, it requires a large scale
pre-training corpus with entity annotations and
high computational cost during pre-training.
In this work, we efficiently construct entity em-
beddings only from the type knowledge, that
does not require access to the entire KG. Al-
though the entity embeddings contain only lo-
cal information, they perform very well when
combined with context. Furthermore, we show
that our entity embeddings, constructed from
BERT’s input embeddings, can be directly in-
corporated into the fine-tuning phase without
requiring any specialized pre-training. In addi-
tion, these entity embeddings can also be con-
structed on the fly without requiring a large
memory footprint to store them. Finally, we
propose task-specific models that incorporate
our entity embeddings for entity linking, en-
tity typing, and relation classification. Exper-
iments show that our models have compara-
ble or superior performance to existing models
while being more resource efficient.

1 Introduction

Many studies have attempted to enhance pre-
trained language models with knowledge such as
ERNIE (Zhang et al., 2019), KnowBert (Peters
et al., 2019), K-ADAPTER (Wang et al., 2020), E-
BERT (Poerner et al., 2020), and KEPLER (Wang
et al., 2021). Among them, ERNIE, KnowBert,
E-BERT, and KEPLER are typical work that do
so by incorporating entity embeddings. The entity

∗Work was extended after the internship with Google.

embeddings are usually trained by methods that
model the global graph structure, such as TransE
(Bordes et al., 2013a) used in ERNIE and TuckER
(Balažević et al., 2019) used in KnowBert. These
entity-incorporated pre-trained language models
have shown to be powerful on various natural lan-
guage processing (NLP) tasks, such as entity link-
ing, entity typing, and relation classification.

In this paper, we investigate whether we can con-
struct entity embeddings by considering only local
entity features. This is motivated by the observation
that the context itself usually provides good infor-
mation for the right answer. A number of examples
are shown in Table 1. Instead of heavily relying on
entity embeddings that encode global information,
we simply tell the model what these entities are by
using local features to help the model infer the an-
swer from the context more easily. For example, if
we can know ’Cartí Sugtupu’ is a place in the rela-
tion classification example in Table 1, the task may
be easier. To utilize such information for an entity,
we select entity-type knowledge from Wikidata as
a local feature for the entity. Specifically, we pro-
pose to encode the labels of neighboring nodes of
the entity connected through instance_of edges in
Wikidata. Figure 1 shows an example. These la-
bels can informatively tell the entity type and are
usually short, which enables them to be efficiently
encoded by simple methods, that we mention later.

One big advantage of utilizing only local fea-
tures of entities is that we can update our entity
embeddings very fast once the knowledge graph
(KG) is changed, which is a desirable feature for
KGs with rapid updates. We can construct the en-
tity embeddings even on the fly to significantly re-
duce memory consumption and parameters since a
number of tasks (e.g., entity linking) easily involve
millions of entities. A disadvantage is that it is hard
to infer the answer if large amounts of information
are missing. For example, the LAnguage Model
Analysis (LAMA) task (Petroni et al., 2019) re-

2

quires a [MASK] placeholder in the given sentence
"Sullivan was born in Chippewa Falls, Wisconsin
in [MASK]" to be filled. The type knowledge may
not be able to answer this question. Thus, we do not
focus on such tasks. Instead, we apply our method
on several typical entity-focused tasks, which were
also chosen by related work.

To construct the entity embeddings, we simply
average BERT’s WordPiece embeddings from the
type label of the entity as there are only 2.8 or
2.96 WordPiece tokens on average per label de-
pending on our tasks. Thus, our method is very
fast and can be used to construct the entity embed-
dings on the fly without much cost to save mem-
ory and reduce parameters. For example, E-BERT
requires six hours to train its entity embeddings,
while our method takes only about 1 minute to
prepare the entity embeddings for our downstream
tasks. The trained entity embeddings of E-BERT
take up around 30GB in size1. Thus, storing these
embeddings requires a large memory footprint, and
the size continues to grow linearly if new entities
are added. However, our method does not require
such extra space for entity embeddings.

For incorporation, previous work incorporates
their entity embeddings during both fine-tuning and
pre-training (ERNIE and KnowBert). However,
pre-training language models is a cumbersome and
resource-intensive task. We show simply incor-
porating our entity embeddings during fine-tuning
without any pre-training works well. One reason
may be that these entity embeddings are directly
constructed through averaging BERT’s WordPiece
embeddings, so that they look like BERT’s Word-
Piece embeddings, which may be helpful for incor-
poration for BERT.

Finally, we propose task-specific models to incor-
porate our entity embeddings2. For entity linking,
we propose a model that incorporates entity embed-
dings into the output; for entity typing and relation
classification, the proposed model incorporates en-
tity embeddings into the input. We show that our
entity embeddings and incorporation method are
simple and can achieve comparable or superior
performance to existing methods on entity linking,
entity typing, and relation classification. The contri-
bution of this work can be summarized as follows:

1This size here is from the downloaded embeddings pro-
vided by the author.

2Our code is available at https://github.com/
yukunfeng/efficient_bert_ent_emb

baltimore

instance_of
instance_of

instance_ofcity of the
united states

independent
city

big city

part_of

....

subclass_of

....

....

........

....

........

Figure 1: An example of connected entity nodes from
Wikidata. The circles are entity nodes with blue texts
as their labels. We encode the labels of the neighboring
nodes of “baltimore” connected through instance_of
edges to construct its entity embedding.

• We propose an efficient method to construct
entity embeddings that are particularly a good
fit for BERT, and they work well without any
pre-training step during incorporation.
• Our entity embeddings can be constructed on

the fly for BERT. We do not need a large
memory footprint to store entity embeddings,
which is often required by other work.
• We propose task-specific models to incorpo-

rate our entity embeddings for entity linking,
entity typing and relation classification.

2 Related Work

ERNIE (Zhang et al., 2019), KnowBert (Peters
et al., 2019), E-BERT (Poerner et al., 2020), and
our model are all based on Google BERTBASE and
aim to incorporate entity embeddings into them.
The main differences between the models are the
methods for constructing entity embeddings and
incorporating them.

For entity embeddings, ERNIE uses the one
trained on Wikidata by TransE (Bordes et al.,
2013b). KnowBert uses TuckER (Balazevic et al.,
2019) embeddings, and E-BERT incorporates
Wikipedia2Vec entity embeddings (Yamada et al.,
2016).These entity embeddings were trained with
consideration for a KG structure and have to be
trained again if new updates need to be incor-
porated from KGs, which further requires addi-
tional pre-training of ERNIE and KnowBert. When
only local features are used to construct the en-
tity embeddings, the aforementioned issues can be
avoided. In addition, our entity embeddings are
simply obtained by averaging BERT WordPiece
embeddings and can be constructed on the fly to
save a large memory footprint usually required by

https://github.com/yukunfeng/efficient_bert_ent_emb
https://github.com/yukunfeng/efficient_bert_ent_emb

3

Task Example Label

Entity linking Cricket - England beat Pakistan by 107 runs in
second one-dayer.

England_cricket_team
Pakistan_national_cricket_team

Entity typing GM is a publicly traded company that releases every
bit of news they have organization

Relation classification Cartí Sugtupu can be reached by boat from the nearby
onshore settlement of Carti and the Carti Airstrip. place_served_by_transport_hub

Table 1: Examples of entity linking, entity typing, and relation classification. The text in bold is the entity of
interest. In these examples, we can infer the label from the context.

other work. We found that although our entity
embeddings contain only local information, they
perform well when combined with context. How-
ever, ERNIE, KnowBert or E-BERT are supposed
to work better than ours where large amounts of
information are missing such as in LAMA task.

For the incorporation, ERNIE and KnowBert
both use new encoder layers to feed the entity em-
beddings, which requires pre-training. In contrast,
E-BERT achieves comparable results without pre-
training by directly incorporating its entity embed-
dings into the standard BERT model during task-
specific fine-tuning. One proposal from E-BERT
is to align the entity and BERT WordPiece embed-
dings in the same space. To do so, it first trains
word and entity embeddings jointly and then learns
a linear mapping from word to BERT WordPiece
embeddings. The final entity embeddings can be
obtained by applying this learned linear mapping so
that they look like BERT WordPiece embeddings.
This mapping helps improve 4.4 micro F1 score on
the test data on entity linking task. To learn this
mapping, E-BERT needs to train both word and
entity embeddings, which are 30GB in size. Our
method for constructing entity embeddings shares
the similar spirit, but it is an averaging method
from BERT WordPiece embeddings.

K-ADAPTER (Wang et al., 2020) and KEPLER
(Wang et al., 2021) are both trained using multi-
task learning based on RoBERTa (Liu et al., 2019)
in relation classification and knowledge base com-
pletion and do not rely on entity embeddings.

Outside the area of incorporating entity embed-
ding into pretrained language model, there are a
number of work that propose to use entity types
from KGs on various tasks. For example, on entity
linking task, some work use entity types together
with entity descriptions or entity embedding trained
over whole KG (Francis-Landau et al., 2016; Gupta
et al., 2017; Gillick et al., 2019; Hou et al., 2020;
Tianran et al., 2021). Some work use only entity
types on entity linking task (Sun et al., 2015; Le

and Titov, 2019; Raiman, 2022). Khosla and Rose
(2020) use entity type embeddings for coreference
resolution. The main difference between our work
with them is that we mainly design our method for
constructing entity embedding and our incorpora-
tion method for BERT. As introduced before, we
simply create entity embeddings from the BERT’s
internal WordPiece embeddings. When incorpo-
rating our entity embeddings into BERT, we also
propose a model that makes use of BERT’s position
embeddings on entity typing and relation classifi-
cation task (mentioned in Sec. 5.2).

3 Entity Embedding Construction

We take the labels of the neighboring nodes for
an entity obtained from Wikidata as local features.
Since these labels are usually very short, as shown
in Figure 1, we can efficiently obtain label em-
beddings by averaging WordPiece embeddings in
the label. The final entity embeddings are then
obtained by averaging the label embeddings. We
denote mij as the j-th WordPiece embeddings in
the i-th label of an entity. The entity embeddings e
are computed as follows:

e =
1

M

M∑
i=1

1

Ni

Ni∑
j=1

mij , (1)

where M and Ni are the number of labels and that
of WordPiece tokens in the i-th label, respectively.
Please note that M and Ni are small in our relation
classification task (1.27 and 2.96, respectively, on
average). Finally, the generated entity embeddings
are updated in the task-specific fine-tuning.

4 Entity Linking

4.1 Task Description
Entity linking (EL) is the task of recognizing
named entities and linking them to a knowledge
base. In this paper, we focus on an end-to-end
EL system that includes detecting the entities and
then disambiguating them to the correct entity IDs.

4

Train Dev. Test
#Tokens 222K 56K 51K
#Gold entities 18454 4778 4778
#Unique generated entities 230K 154K 148K
#Conversion rate 0.8 0.80 0.81

Table 2: Data statistics of AIDA and found unique en-
tities by generator. The conversion rate is the ratio of
found entities that we can link to Wikidata.

Following the same setting of E-BERT3, we use
KnowBert’s candidate generator to first find all
spans that might be potential entities in a sentence.
These spans are matched in a precomputed span-
entity co-occurrence table (Hoffart et al., 2011) and
each span is annotated with linked entity candidate
IDs associated with prior probabilities based on
frequency. Note that the generator tends to over-
generate and most found spans should be rejected
according to our observation on the training dataset.
Thus, given a span in a sentence, our model needs
to learn to reject it or predict the correct one among
its candidate IDs in accordance with the context.
As with E-BERT, we formulate this task as a classi-
fication task where the model needs to classify the
given input. The classified labels contain candidate
IDs and a rejection label.

4.2 Dataset

We use the AIDA dataset (Hoffart et al., 2011),
which was also chosen in related works. The gold
named entities in AIDA and spans found by Know-
Bert’s generator are identified with Wikipedia
URLs. Due to this reason, we have to convert
them to Wikidata IDs to determine the type knowl-
edge of an annotated entity, in which a number are
missing during conversion. The statistics of AIDA,
found entities by generator, and conversion rates
are shown in Table 2.

4.3 Model

Our model is based on BERTBASE and the archi-
tecture is shown in Figure 2. We describe the in-
corporation method, modeling, and training hyper-
parameters in the following.

4.3.1 Incorporation Method
Given a span from the generator, we de-
note the embeddings of candidate entities as
{c1, c2, ..., cN} and corresponding prior probabili-
ties as {p1, p2, ..., pN}. The entity embeddings are

3Our code is based on E-BERT, which is available from
https://github.com/NPoe/ebert

computed by Eq. 1. Since different candidate enti-
ties may have the same type (e.g., the type ’country’
may contain different entities), the model cannot
distinguish these label embeddings in classification
if we simply use the entity embeddings as the label
embeddings. Note that this is not an issue when
incorporating these entity embeddings into the in-
put, as shown later in our entity typing and relation
classification tasks, because the surface forms of
entities included in the input can help distinguish
between each embedding. Thus, to distinguish
these label embeddings, we propose to combine
the surface forms of entity candidates, which are
still local features, and entity embeddings into label
embeddings. The embeddings of surface forms of
entities are denoted as {s1, s2, ..., sN}. si is simply
computed by averaging the WordPiece embeddings
in the surface form, which is the same way as com-
puting our entity embeddings. Since large number
of entities are involved in this task as shown in Ta-
ble 2, we compute si and ci both on the fly to save
memory and reduce the parameters. This means the
gradients will come to the WordPiece embeddings
during backpropagation. To combine si and ci, we
use a gate to learn to control the weight between
si and ci, and label embedding li is computed as
follows:

g = sigmoid(Wci),

li = (1− g)� ci + g � si
(2)

� is element-wise multiplication and W ∈ Rd×d

are trainable parameters where d is a BERT dimen-
sion. If ci is not found during the aforementioned
conversion, we only use si.

4.3.2 Modeling
We denote the output vector from the BERT en-
coder at the position of ’[ENT]’ as oENT. The value
of the i-th candidate entity before the softmax func-
tion is computed as lTi oENT + bi where bi is the
bias of the i-th entity candidate. To incorporate the
prior probabilities in the classification, we set bi as
logpi so that the probability will be pi if no other
information is available (i.e., lTi oENT equals zero).
The bias of a rejection label will be learned from
the training data. We use the standard cross entropy
as our loss function.

4.3.3 Hyper-parameters
Since the dataset is quite small as shown in Table 2,
we only train for maximum of four epochs, and the

5

 [CLS] Cricket - England beat [ENT] Pakistan by 107 runs...

BERT Encoder

Pakistan_national_cricket_team

Pakistan

Pakistan_national_football_team

Dominion_of_Pakistan

[ENT]

Rejection

…..

classify

Label
embeddings

Figure 2: Model architecture for entity linking. The text in bold in the example is the span that the model needs
to reject it as a named entity or accept it and link it to the correct entity entry in accordance with the context. A
special symbol ’[ENT]’ is inserted before the span, and the output vector from it will be used for classification.

model with best micro F1 score on the valid dataset
is chosen. The batch size is set to 16 and the default
AdamW optimizer was used with a linear learning
rate scheduler (10% warmup). The learning rate
was chosen among {1e-5, 2e-5, 3e-5,} on a valid
set.

4.4 Results

The results on the AIDA test set are shown in Ta-
ble 3. We mainly compare our model with BERT-
Random (introduced later), KnowBert and E-BERT
as they also focus on incorporating entity embed-
dings to BERT. Note that we only include end-to-
end EL models in this table, and the results are
not comparable to ones of disambiguation-only EL
models where the golden entity mentions are given.

We used BERT-Random as our baseline, which
is the same as our model except that the label em-
beddings are randomly initialized and trained from
scratch. Compared with BERT-Random, our model
shows significant improvement, which suggests our
proposed label embeddings are effective.

E-BERT incorporates its entity embeddings not
only to the output but also to the input. The em-
bedding of its ’[ENT]’ in the input is computed
by averaging all embeddings of candidate entities.
We also tried a similar strategy but found no obvi-
ous change in our model. Thus, we only focused
on the output. In addition, E-BERT uses another
strategy that iteratively refines predictions during
inference. However, this strategy slows down the
inference speed. The results, indicate that the lo-
cal features work even better than global features
used to train entity embeddings in E-BERT. This
may suggest that we can utilize local features to

Models Strong
micro-F1

Strong
macro-F1

Cao et al. (2021) 83.7 -
Kannan Ravi et al. (2021) 83.1 -
van Hulst et al. (2020) - 81.3
Broscheit (2019) 79.3 -
Kolitsas et al. (2018) 82.6 82.4
Hoffart et al. (2011) 71.9 72.8
E-BERT (Poerner et al., 2020) 85.0 84.2
KnowBert (Peters et al., 2019) 73.7 -
Our model 86.3 84.4
BERT-Random 73.3 76.8

Table 3: Results on AIDA test set. BERT-Random
use randomly initialized label embeddings trained from
scratch.

construct entity embeddings in tasks where the con-
text already contains a lot of information. Please
also note that we can only convert around 80%
of Wikipedia URLs to Wikidata IDs, and this may
limit the performance of our model. Another advan-
tage is that our label embeddings are constructed
on the fly and thus save memory and reduce the
number of training parameters. Finally, our model
and E-BERT achieved the highest strong micro-F1
and macro-F1 scores among all models, indicating
it may be a good way to incorporate knowledge
through entity embeddings.

5 Entity Typing and Relation
Classification

5.1 Task Description

The goal of entity typing is to predict the types of a
given entity from its context. Note that it is not nec-
essary that the mention of a given entity is a named
entity. For example, the type ’they’ is labeled as
’organization’ as shown in the example of entity

6

typing in Table 1. The formulation of relation clas-
sification is similar with the only difference being
that there are two target entities in the sentence.
We need to predict the relation of two given target
entities together with the context. Thus, the appli-
cation of our entity embeddings is similar for entity
typing and relation classification. We introduce our
incorporation method in the following section.

5.2 Incorporation Method

Unlike the EL task where we applied our entity
embeddings to the output, we only incorporate en-
tity embeddings to the input for these two tasks.
To incorporate the entity embeddings, we propose
a method that emphasizes target entities (e.g., in
relation classification, there are two entity men-
tions). Specifically, for all entities, we first sum the
embeddings of the entities and the corresponding
BERT WordPiece tokens, and then feed them into
the BERT model. For target entities, we explicitly
insert the entity embeddings into the input of Word-
Piece token embeddings and make the entity em-
beddings share the same position embeddings with
their corresponding WordPiece token embeddings,
as if they are in the same position. Our model ar-
chitecture is shown in Figure 3. We mathematically
describe our method as follows.

We denote the number of WordPiece tokens in a
sentence as T , and the i-th WordPiece token embed-
ding, entity embedding, and position embedding
as wi, ei, and pi, respectively. As shown in the
figure, the entity embedding ei is 0 if the i-th token
is not the start token of an entity. For simplicity,
we ignore token type embeddings here, although
they are actually used in our model. We first obtain
the input xi to the BERT encoder by summing the
entity embeddings with the other embeddings:

xi = ei +wi + pi. (3)

Since target entities are usually more important
than other entities in an entity-centric task, we ex-
plicitly insert target entity embeddings that have the
same position embeddings as their aligned Word-
Piece embeddings, as if they are in the same po-
sition. For the relation classification task, there
are two target entities, and thus the extra inserted
inputs are xT+1 and xT+2, which are computed
as follows:

xT+1 = ek1 + pk1 ,

xT+2 = ek2 + pk2 ,
(4)

where k1 and k2 are the index of the first and second
target entities, respectively.

5.3 Experiments
5.3.1 Entity Typing
We chose Open Entity (Choi et al., 2018) to eval-
uate our model. The dataset has several versions,
and we chose the one that has nine general types
(e.g., person, location, and object), which is the
same as that in previous works. One example from
this dataset is shown in Table 1. As previously men-
tioned, the entity mention in Open Entity is not lim-
ited to named entities, and pronoun mentions and
common noun expressions are also included. We
used a preprocessed version from ERNIE (Zhang
et al., 2019). This preprocessed dataset was an-
notated with mentions of named entities and au-
tomatically linked to Wikidata by TAGME (Fer-
ragina and Scaiella, 2010) so that we could find
their type knowledge in Wikidata for all entities
in Open Entity. We used the same annotated en-
tities as the ones used in ERNIE by keeping the
same confidence threshold to filter unreliable en-
tity annotations. The statistics of this dataset are
shown in Table 4. Most annotated entities are non-
target because the entity mention in Open Entity is
not limited to named entities. Our model needs to
utilize the context together with the entity annota-
tions to infer the types of the target entity. We can
also see the type labels of entities are quite short
(only 2.8 word pieces per label), and this may be
one reason that our averaging method for construct-
ing entity embeddings works. If the label is long
(e.g., becoming a text description), the averaging
method might be too simple to encode it. Since
the involved entities are not that many, we did not
construct the entity embeddings on the fly to speed
up the training. That is, the entity embeddings are
initialized by Eq. 1 and are updated in the training.

Train Dev. Test
#Instances 2,000 2,000 2,000
#Target entities 122 107 94
#All entities 2573 2511 2603
#Labels per entity 1.56 1.56 1.63
#WordPieces per label 2.8 2.8 2.8

Table 4: Statistics of Open Entity dataset with nine la-
bel types. TAGME (Ferragina and Scaiella, 2010) is
used to automatically annotate named entities in the
dataset.

Our code was adapted from ERNIE,4 and we
4https://github.com/thunlp/ERNIE

7

 [CLS] New York and Seattle are cities in the USA

MASK MASK MASK MASK MASK MASK MASK

+ + + + + + + + + +

+ + + + + + + + + +

BERT Encoder

MASK

+

+

MASK

+

+
New
York USA New

York USASeattle

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p2 p10

target entity non-target entity target entity

wordpiece
embeddings

entity
embeddings

position
embeddings

Figure 3: Overall architecture showing a sequence input to the BERT encoder for the relation classification task.
The entity embeddings are obtained by encoding the labels of their neighboring nodes, as described in Sec. 3. Note
that the entity and position embeddings for the two target entities are copied over to the end of the sequence.

used the same setup as it. For each instance, we
used a special symbol to mark the span of a target
entity and used the [CLS] vector in the last hidden
layer from the BERT encoder for classification.
For the hyper-parameters, we basically followed
those of ERNIE. The learning rate was set to 2e-5
with the AdamW optimizer and a linear learning
rate scheduler (10% warmup). The model was
trained for 10 epochs with a batch size of 16. The
results are shown in Table 5. Among the models
in the BASE size, our model is comparable to or
more effective than the related methods. Compared
with KnowBert and ERNIE, the construction of our
entity embeddings is more efficient and our model
does not require pre-training. Further analysis of
our model will be in the ablation study.

5.3.2 Relation Classification
We used a preprocessed relation classification
dataset from ERNIE (Zhang et al., 2019) to evalu-
ate our model. This dataset is from the FewRel cor-
pus (Han et al., 2018) and was rearranged by Zhang
et al. (2019) for the common relation classification
setting. One example from this dataset is shown in
Table 1. We used FewRel oracle entity IDs, which
were also used in ERNIE and E-BERT (Poerner
et al., 2020). These oracle entity IDs cover only tar-
get entities; there are no annotations for non-target
entities. Our model needs to predict the relation of
two given target entities with their annotations and
context. The statistics of the FewRel dataset are
shown in Table 6. Since oracle annotations were
used, the statistics of annotated target entities are
not shown in the table. Again, we can see the type
labels are quite short, which enables them to be en-
coded with a simple averaging method. Since there
are not many entities involved, we take these en-

tity embeddings as parameters and do not construct
them on the fly.

As with the entity typing task, special tokens
[HD] and [TL] were used to mark the span of a head
and tail entity, respectively. The [CLS] vector in the
last hidden layer of the BERT encoder was used for
relation classification. For the hyper-parameters,
we basically followed those of ERNIE. The model
is trained for 10 epochs with a batch size of 16.
The default AdamW optimizer was used with a
linear learning rate scheduler (10% warmup). The
learning rate was set to 4e-5, which was chosen
among {2e-5, 3e-5, 4e-5, 5e-5} on the valid dataset.

The results are shown in Table 7. ERNIE,
E-BERT, and our model can be directly com-
pared with because all the models are based on
BERTBASE and used the same entity annotations.
Our model achieves better results than ERNIE and
E-BERT, indicating that our methods are effec-
tive while being cost-efficient. However, E-BERT
reports that their entity coverage is about 90%
(around 10% of entity embeddings are not found in
their Wikipedia2Vec embeddings), while the entity
coverage in our model and ERNIE is about 96%.
This may put E-BERT at a disadvantage.

5.4 Ablation Study

To analyze the gain, we define three components
in our model for entity typing and relation classifi-
cation: entityEmbs, defined by Eq. 1, sum, defined
by Eq. 3, and insert, defined by Eq. 4. When
entityEmbs is not used, the entity embeddings are
initialized randomly. The results for cases when in-
dependently excluding each component are shown
in Table 8. When entityEmbs was removed, the
performance of our model on two datasets dropped
significantly, which indicates our method for con-

8

Model Architecture P R F1

Incorporate KG
in pre-training

ERNIE (Zhang et al., 2019) BERTBASE 78.42 72.90 75.56
KnowBERT (Peters et al., 2019) BERTBASE 78.60 73.70 76.10
K-ADAPTER (Wang et al., 2020) RoBERTaLARGE 79.30 75.84 77.53
KEPLER (Wang et al., 2021) RoBERTaBASE 77.80 74.60 76.20

Fine-tuning only BERTBASE (our reproduction) BERTBASE 79.78 70.90 75.08
Our model BERTBASE 78.53 74.16 76.28

Table 5: Results of our model and related models on the entity typing dataset - Open Entity. Note that only K-
ADAPTER is in the LARGE size, and ERNIE, KnowBERT, and K-ADAPTER also require incorporating knowl-
edge during fine-tuning.

Train Dev. Test
#Instances 8,000 16,000 16,000
#Labels per entity 1.27 1.25 1.25
#WordPieces per label 2.96 3.0 3.02

Table 6: Relation classification dataset FewRel with 80
relation types.

Model P R F1
ERNIE (Zhang et al., 2019) 88.49 88.44 88.32
E-BERT (Poerner et al., 2020) 88.51 88.46 88.38
BERTBASE (our reproduction) 86.16 86.16 86.16
Our model 88.93 88.93 88.93

Table 7: Relation classification results on FewRel.
Only ERNIE incorporates entity embeddings in both
pre-training and fine-tuning steps.

structing entity embeddings is effective while main-
taining cost-efficiency. Once entityEmbs was used,
we can see that sum shows improvement on the
two datasets. The performance can be further im-
proved if insert was used together with sum, which
suggests that sum does not make full use of the
information for target entities, and emphasizing
target entities explicitly by insert is effective.

To analyze how insert and sum separately work
on target and non-target entities, we conducted an-
other ablation study on Open Entity, and the results
are shown in Table 9. Since there are no non-target
entity annotations in FewRel, only Open Entity is
included. If insert was applied for all entities, the
performance degraded, which suggests that empha-
sizing non-target entities is not helpful, and it is
more effective to incorporate entity embeddings
for target and non-target entities in a different way.
When sum was applied only to non-target entities
without insert, its performance was better than that
of BERTBASE, indicating that incorporating the em-
beddings of non-target entities is useful.

6 Conclusion

In this paper, we proposed to construct entity em-
beddings using local features instead of training

Model Open Entity FewRel
Our model 76.28 88.93

w/o entityEmbs 74.03 84.98
w/o sum 75.83 88.81
w/o insert 75.62 87.99

Table 8: Ablation study with F1 scores. Each compo-
nent in our model is excluded independently.

Model P R F-1
Our model 78.53 74.16 76.28

w/o sum insert 78.33 73.48 75.83
insert for all 78.73 72.32 75.39

w/o insert sum for only
non-target 79.12 72.43 75.62

Table 9: Ablation study on Open Entity dataset.

those with consideration of the whole KG for tasks
where the context already contains large amounts
of information. Utilizing local features to construct
the entity embeddings is much faster than the meth-
ods mentioned in related work. The local features
of an entity used in this paper are the labels of its
neighboring nodes connected through instance_of
edges in Wikidata. Since these labels are usually
very short, we can simply encode them by aver-
aging their WordPiece embeddings. The simple
averaging method enables us to even construct en-
tity embeddings on the fly without much cost. This
is helpful for saving memory and reducing param-
eters in tasks where minions of entities may be
involved. Finally, we proposed task-specific mod-
els to incorporate our entity embeddings. Unlike
most previous works, our entity embeddings can
be directly incorporated during fine-tuning without
requiring any specialized pre-training. Our experi-
ments on entity linking, entity typing, and relation
classification show that our entity embeddings and
incorporation method are simple and effective, and
the proposed models have comparable or superior
performance to existing models while having the
aforementioned advantages.

9

References

Ivana Balažević, Carl Allen, and Timothy M
Hospedales. 2019. Tucker: Tensor factorization for
knowledge graph completion. In Empirical Methods
in Natural Language Processing.

Ivana Balazevic, Carl Allen, and Timothy Hospedales.
2019. TuckER: Tensor factorization for knowledge
graph completion. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5185–5194, Hong Kong, China. As-
sociation for Computational Linguistics.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013a. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems, volume 26. Curran Associates,
Inc.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013b. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Samuel Broscheit. 2019. Investigating entity knowl-
edge in BERT with simple neural end-to-end en-
tity linking. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 677–685, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
In International Conference on Learning Represen-
tations.

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-
moyer. 2018. Ultra-fine entity typing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 87–96, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Paolo Ferragina and Ugo Scaiella. 2010. Tagme:
on-the-fly annotation of short text fragments (by
wikipedia entities). In Proceedings of the 19th ACM
international conference on Information and knowl-
edge management, pages 1625–1628.

Matthew Francis-Landau, Greg Durrett, and Dan Klein.
2016. Capturing semantic similarity for entity link-
ing with convolutional neural networks. In Proceed-
ings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1256–1261, San Diego, California. Association for
Computational Linguistics.

Daniel Gillick, Sayali Kulkarni, Larry Lansing,
Alessandro Presta, Jason Baldridge, Eugene Ie, and
Diego Garcia-Olano. 2019. Learning dense repre-
sentations for entity retrieval. In Proceedings of
the 23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 528–537, Hong
Kong, China. Association for Computational Lin-
guistics.

Nitish Gupta, Sameer Singh, and Dan Roth. 2017. En-
tity linking via joint encoding of types, descriptions,
and context. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2681–2690, Copenhagen, Denmark. As-
sociation for Computational Linguistics.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan
Yao, Zhiyuan Liu, and Maosong Sun. 2018. FewRel:
A large-scale supervised few-shot relation classifica-
tion dataset with state-of-the-art evaluation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4803–
4809, Brussels, Belgium. Association for Computa-
tional Linguistics.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bor-
dino, Hagen Fürstenau, Manfred Pinkal, Marc Span-
iol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. 2011. Robust disambiguation of named en-
tities in text. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Process-
ing, pages 782–792, Edinburgh, Scotland, UK. Asso-
ciation for Computational Linguistics.

Feng Hou, Ruili Wang, Jun He, and Yi Zhou. 2020. Im-
proving entity linking through semantic reinforced
entity embeddings. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 6843–6848, Online. Association
for Computational Linguistics.

Manoj Prabhakar Kannan Ravi, Kuldeep Singh, Isa-
iah Onando Mulang, Saeedeh Shekarpour, Johannes
Hoffart, and Jens Lehmann. 2021. Cholan: A mod-
ular approach for neural entity linking on wikipedia
and wikidata. In Proceedings of the 16th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: Main Volume.

Sopan Khosla and Carolyn Rose. 2020. Using type in-
formation to improve entity coreference resolution.
In Proceedings of the First Workshop on Computa-
tional Approaches to Discourse, pages 20–31, On-
line. Association for Computational Linguistics.

Nikolaos Kolitsas, Octavian-Eugen Ganea, and
Thomas Hofmann. 2018. End-to-end neural entity

https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.18653/v1/D19-1522
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://doi.org/10.18653/v1/K19-1063
https://doi.org/10.18653/v1/K19-1063
https://doi.org/10.18653/v1/K19-1063
https://openreview.net/forum?id=5k8F6UU39V
https://doi.org/10.18653/v1/P18-1009
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N16-1150
https://doi.org/10.18653/v1/N16-1150
https://doi.org/10.18653/v1/K19-1049
https://doi.org/10.18653/v1/K19-1049
https://doi.org/10.18653/v1/D17-1284
https://doi.org/10.18653/v1/D17-1284
https://doi.org/10.18653/v1/D17-1284
https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.18653/v1/D18-1514
https://aclanthology.org/D11-1072
https://aclanthology.org/D11-1072
https://doi.org/10.18653/v1/2020.acl-main.612
https://doi.org/10.18653/v1/2020.acl-main.612
https://doi.org/10.18653/v1/2020.acl-main.612
https://doi.org/10.18653/v1/2020.codi-1.3
https://doi.org/10.18653/v1/2020.codi-1.3
https://doi.org/10.18653/v1/K18-1050

10

linking. In Proceedings of the 22nd Conference
on Computational Natural Language Learning,
pages 519–529, Brussels, Belgium. Association for
Computational Linguistics.

Phong Le and Ivan Titov. 2019. Distant learning for
entity linking with automatic noise detection. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4081–
4090, Florence, Italy. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A.
Smith. 2019. Knowledge enhanced contextual word
representations. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 43–54, Hong Kong, China. Associ-
ation for Computational Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2463–2473, Hong Kong, China. As-
sociation for Computational Linguistics.

Nina Poerner, Ulli Waltinger, and Hinrich Schütze.
2020. E-BERT: Efficient-yet-effective entity em-
beddings for BERT. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,
pages 803–818, Online. Association for Computa-
tional Linguistics.

Jonathan Raiman. 2022. Deeptype 2: Superhuman en-
tity linking, all you need is type interactions. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 36(7):8028–8035.

Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhen-
zhou Ji, and Xiaolong Wang. 2015. Modeling men-
tion, context and entity with neural networks for en-
tity disambiguation. In Twenty-fourth international
joint conference on artificial intelligence.

Li Tianran, Yang Erguang, Zhang Yujie, Chen Yufeng,
and Xu Jinan. 2021. Improving entity linking by
encoding type information into entity embeddings.
In Proceedings of the 20th Chinese National Con-
ference on Computational Linguistics, pages 1087–
1095, Huhhot, China. Chinese Information Process-
ing Society of China.

Johannes M. van Hulst, Faegheh Hasibi, Koen Derck-
sen, Krisztian Balog, and Arjen P. de Vries. 2020.
Rel: An entity linker standing on the shoulders of
giants. Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in
Information Retrieval.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Cuihong Cao, Daxin Jiang, Ming
Zhou, et al. 2020. K-adapter: Infusing knowl-
edge into pre-trained models with adapters. arXiv
preprint arXiv:2002.01808.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhiyuan
Liu, Juanzi Li, and Jian Tang. 2021. Kepler: A
unified model for knowledge embedding and pre-
trained language representation. Transactions of the
Association for Computational Linguistics.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and
Yoshiyasu Takefuji. 2016. Joint learning of the em-
bedding of words and entities for named entity dis-
ambiguation. In Proceedings of The 20th SIGNLL
Conference on Computational Natural Language
Learning, pages 250–259, Berlin, Germany. Associ-
ation for Computational Linguistics.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced language representation with informative en-
tities. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1441–1451, Florence, Italy. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/K18-1050
https://doi.org/10.18653/v1/P19-1400
https://doi.org/10.18653/v1/P19-1400
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/2020.findings-emnlp.71
https://doi.org/10.18653/v1/2020.findings-emnlp.71
https://doi.org/10.1609/aaai.v36i7.20774
https://doi.org/10.1609/aaai.v36i7.20774
https://aclanthology.org/2021.ccl-1.97
https://aclanthology.org/2021.ccl-1.97
https://arxiv.org/abs/1911.06136v3
https://arxiv.org/abs/1911.06136v3
https://arxiv.org/abs/1911.06136v3
https://doi.org/10.18653/v1/K16-1025
https://doi.org/10.18653/v1/K16-1025
https://doi.org/10.18653/v1/K16-1025
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139

