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Abstract
We describe a novel approach to transcrib-
ing morphologically complex, local, oral lan-
guages. The approach connects with local mo-
tivations for participating in language work
which center on language learning, accessing
the content of audio collections, and applying
this knowledge in language revitalization and
maintenance. We develop a constraint-based
approach to interactive word completion, ex-
pressed using Optimality Theoretic constraints,
implemented in a finite state transducer, and
applied to an Indigenous language. We show
that this approach suggests correct full word
predictions on 57.9% of the test utterances, and
correct partial word predictions on 67.5% of
the test utterances. In total, 87% of the test ut-
terances receive full or partial word suggestions
which serve to guide the interactive transcrip-
tion process.

1 Introduction

Thousands of the world’s languages have small
populations and are characterized by primary oral
usage (Ong, 1982). These local languages co-exist
alongside trade languages, i.e., languages of com-
merce, education, mass media, and government.
Local languages are generally losing ground to
larger languages, a process known as language shift
(Fishman, 2001). Key features of local languages
are that they generally have no literary tradition,
and little incentive exists for writing. There is often
no established or widely known orthography, and
usually no widely accepted standard variety to ren-
der into writing. The point where a related dialect
becomes a distinct language may not be clearly
understood or widely agreed.

Many heritage communities seek to reclaim or re-
vitalize their ancestral languages (Hinton and Hale,
2001; Grenoble and Whaley, 2006). Here, people
often depend on historical sources, including infor-
mal collections of audio recordings, in order to ac-
cess the ancestral code. Scholars are also involved,

using historical recordings in the process of lan-
guage documentation and description (Woodbury,
2003). Ideally, everything would be transcribed,
and it would be easy to access the content of such
collections for the purposes of learning and scholar-
ship. However, given that these are oral languages,
there is usually no pool of readily available tran-
scribers to call upon.

None of the above is systematically addressed by
current low-resource approaches to transcription,
which require upwards of 100k words (or 12-27
hours) of training data in the language, in order for
sufficiently accurate phone recognition to support
reasonable word error rates. Such work generally
assumes that a comprehensive lexicon is available,
and we find that this is generally not the case.

We seek a new approach, one that works with
the locally available resources and human capaci-
ties. Our work is founded on three insights. First,
work on Indigenous languages proceeds from lo-
cally meaningful, locally motivated activities. This
usually prioritizes content over form, interpreting
over transcribing (Bouquiaux and Thomas, 1992;
Wilkins, 2000). Two important use cases are lan-
guage learning and accessing the content of media
collections. We devise tasks that leverage infor-
mal linguistic knowledge, such as the ability to
form morphotactically valid words, and specialized
knowledge of the vocabulary that pertains to a se-
mantic domain of interest. This insight does not
simply connect with local motivation, it is an ef-
fective way to meet the reciprocity requirement for
ethical Indigenous research (NHMRC, 2018).

Second, work with speakers of Indigenous lan-
guages is more effective when it involves collabora-
tion on realistic tasks. Thus, we operate within the
skill set and time availability of speakers and lin-
guists. In particular, we eschew artificial tasks like
phonetic transcription, instead tapping into peo-
ple’s ability to identify words in connected speech
(Meakins et al. 2018, 230; Bird 2020). This can in-
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volve learning vocabulary, and getting clear about
nuances of word meaning by drawing on usage in
context, or speech concordances. Third, we apply
what is known about the language, even when it is
a non machine readable grammar, by interpreting
it into a computational form that can be deployed
to guide language tasks.

Thus, our contribution is a novel approach to
transcribing local languages that is: locally mo-
tivated, feasible, and leverages what is already
known about the language. As proof of concept
we provide a finite state implementation, using the
framework of constraint-based Optimality Theory
(Prince and Smolensky, 2004; Ellison, 1994). We
envisage that this implementation, suitably opti-
mized, could be deployed in an interactive, collab-
orative, sparse transcription system.

2 Background

2.1 Sparse Transcription

The initial phase of working with a language – prior
to having 100k words of transcribed audio – is
characterized by uncertainty (Newman and Ratliff,
2001; Crowley, 2007). We have elicited enough
words to establish the phonemic inventory, and tran-
sition to working with texts (Hale, 2001). However,
when we listen to connected speech, we are only
able to identify a few familiar words; the rest is
a sea of undifferentiated speech sounds. We may
attempt a transcription of those sounds, but the pres-
ence of coarticulation and disfluencies confounds
our efforts to segment them and produce a contigu-
ous transcription.

A popular solution is for linguists to delegate
transcription work to literate speakers (King, 2015).
However, as we have noted, for many oral lan-
guages it can be difficult to find suitable people. In-
stead, we may ask someone to carefully “re-speak”
a recording, phrase by phrase (Woodbury, 2003,
11). Here we have found, for every place where
we have conducted fieldwork, that speakers find
this task immensely tedious. A solution is offered
by collaborative transcription, where non-linguist
speakers and non-speaker linguists work together.

Collaborative transcription, as we have experi-
enced it, involves a speaker and a linguist listening
to a recording, while revising a partial transcription
consisting of words that the linguist has identified
in connected speech. Between the identified words
is unidentified material, hence the term “sparse
transcription” (Bird, 2020). We illustrate this in (1),

showing four iterations of linguist guesses and
speaker confirmations. Not shown here is the fact
that, between each iteration, we consider dozens of
other utterances containing the words, and detect
new, frequent words to add to our lexicon. Steps (a)
and (d) may be separated in time by several days, a
period during which the linguist is steadily learn-
ing to recognize a larger set of words in connected
speech.

(1)

In (1), the x’s indicate mismatches between
phone recognizer output and the canonical tran-
scriptions of the lexicon. These are leveraged in
the optimality theoretic approach we set out below.

Sparse transcription is a shift away from cur-
rent practices of transcribing phones, transcribing
first, and transcribing fully (Bird, 2020). Instead,
the focus is on local capacity and aspirations, and
how these feed into and draw from semi-structured
linguistic activities.

Sparse transcription avoids segmenting the in-
put on the way to recognizing words; after all, hard
boundaries do not exist in the speech stream (Osten-
dorf, 1999). A sparse transcription is represented
as an audio collection, a lexicon, and a collection of
tokens that pair lexical entries with locations in the
speech stream. For each such token, we keep track
of whether it has been confirmed by a speaker.

The ultimate aim of sparse transcription is con-
ventional, dense transcription. However, the inter-
mediate products are useful: a lexicon with con-
firmed examples from the corpus; and a corpus
indexed by terms of interest. These early outputs
support oral language learning and access to the
content of informal audio collections.

We envisage a context where a background pro-
cess, a machine in the loop, continually detects
putative new tokens of words, leveraging the lexi-
con and the grammar, presenting them for human
confirmation. We anticipate a deployment of our
solution inside a collaborative transcription system,
increasing the quantity and quality of transcriptions
in the early, bootstrapping stage of language work.
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2.2 Local Word Discovery
The new task of “local word discovery” was pro-
posed by Lane and Bird (2021) to complement
the word spotting described in section 2.1 above.
They observe that, for morphologically complex
languages, a lexicon consists of morphemes, not
full words, avoiding the combinatoric explosion
of the vocabulary. Accordingly, we spot lexemes
(morphs instead of words), and just require addi-
tional computational support to expand confirmed
morph tokens into full words. They provide a
baseline implementation, a finite state morpholog-
ical analyzer, which recognizes morphotactically
valid words conditioned on a previously confirmed
morph together with its left and right phonemic
context (See Figure 1).

Figure 1: Local word discovery seeks to discover words
at the locus of known lexemes.

The phone recognizer is not, as Bird (2020)
warns, used to create output for a linguist to post-
edit. Rather, it is used as an intermediate representa-
tion of the speech, guiding the local word discovery
model as it generates plausible word candidates.

A weakness of local word discovery is that it
requires explicit alignment of the known lexemes
with the phone sequence. The present work ad-
dresses this shortcoming by proposing a finite state
solution which accepts a phone string and an or-
dered list of known lexemes as input, and handles
the alignment of lexemes to phones implicitly as
it generates predictions. This solution relieves the
original local word discovery algorithm of its de-
pendency on manual alignment.

2.3 Finite State Morphological Analysis
Finite state methods remain central to computa-
tional analysis of morphologically complex lan-
guages. Beesley and Karttunen (2003) give a thor-
ough treatment of patterns for finite state modeling
of morphology. FSTs continue to play an integral
role in the morphological analysis of complex lan-
guages, from field grammars (Lane and Bird, 2019)
to extensive multi-year projects (Harrigan et al.,
2017; Arppe et al., 2017; Schmirler et al., 2017;

Snoek et al., 2014), to robust neural models trained
on data generated by an FST (Schwartz et al., 2019;
Moeller et al., 2018; Lane and Bird, 2020a). Over
the years, several finite state toolkits have become
prevalent in research, including FOMA (Hulden,
2009) and HFST (Lindén et al., 2009).

2.4 Optimality Theory

Since the 1970’s it has been accepted that phono-
logical and syntactic processes can be influenced by
constraints on the output of a grammar (McCarthy,
2007). Optimality theory (OT) arose as is a frame-
work for modeling linguistic well-formedness by
maximizing the harmonization of ranked con-
straints (Prince and Smolensky, 2004). In short,
OT provides a formalism for flexible ranked con-
straints on the output of a process. Model output
can be optimized by ordering constraints by their
relative importance.

The process works as follows. A function GEN
generates all possible output candidates given a
particular input, or lexical, underlying form. Then
all candidates are marked for any violations of the
constraints. Finally, an evaluation function EVAL
filters out candidates which violate constraints. The
candidates which violate the fewest high-ranking
constraints are said to be the most harmonic. Sub-
optimal candidates are culled.

The application of OT to specific input is ex-
pressed in a tableau, a visual representation of
generated candidates (GEN) and the selection of
optimal candidates (EVAL) (see Fig. 2).

Figure 2: Sample OT tableau: candidates are marked
for violations of constraints ranked from left to right.
Candidates violating more highly-ranked constraints are
rejected in favor of those which only violate lesser con-
straints. Chosen candidates are marked with an arrow.

In this example, some input has prompted the
generation of several candidates (column 1). We
also see that three constraints have been chosen and
ordered according to importance, such that Con-
straint 1 ≫ Constraint 2 ≫ Constraint 3 (row 1).
The candidates are marked for violations of vari-
ous constraints with asterisks (columns 2-4). To
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identify the optimal candidate, we examine the vi-
olations marked in the columns from left to right.
When a violation occurs, the cell is marked with
an exclamation mark. So long as other, viable can-
didates remain, the current candidate is removed
from consideration. After the EVAL process is
complete, the optimal candidates are those which
violated the fewest, most minimal constraints.

Ellison (1994) showed how OT can be imple-
mented using finite state transducers, so long as
three requirements are met: all constraints are bi-
nary; the output of GEN is a regular set; and all
constraints are regular. For the present application,
the GEN function, a morphological transducer, is
regular. Equally, the transducers which count vio-
lations of phone matches can be converted into a
suite of binary, regular transducers.

3 Available Resources

Low-resource languages are not necessarily under-
studied; many have significant description. This
work benefits from an existing finite state morpho-
logical analyzer (Lane and Bird, 2019). We use it
as an acceptor of morphotactically valid strings in
the language, combining canonical lexemes with
noisy phone recognizer output.

Additionally, it is common for linguists to main-
tain a bilingual lexicon, and a corpus of up to 10k
words of human-transcribed speech. The computa-
tional model described in the following section in-
corporates these resources. We define two lexicon
classes: “topical” words, semantically relevant to
the audio we are transcribing, and “attested” words,
those known to exist in the overall corpus.

Finally, recent advances in phone recognition
have made it possible to train or fine-tune models
capable of producing phone sequences from audio
(Adams, 2017; Li et al., 2020). Allosaurus is a pre-
trained universal phone recognizer which allows
for language-specific fine-tuning. We obtained the
fine-tuned model of (Lane and Bird, 2021) and used
it to automatically generate noisy phone sequences
from field recordings of Kunwinjku speakers.

4 Joint Alignment and Local Word
Discovery

The goal of the proposed local word discovery
model is to give useful signal to the transcriber
in the form of full word suggestions–which may
be completely or partially correct–conditioned
on known lexemes provided by the transcriber.

Equally, we would like the model to be able to pro-
vide high confidence suggestions when possible,
and back off to cast a wider net when necessary.

In this section we propose a finite state imple-
mentation of local word discovery which accom-
plishes this, while also incorporating implicit align-
ment. The GEN function takes a phone string and
an ordered list of known lexemes, converts them
to FSTs, and produces a list of candidate strings
marked for constraint violations. The EVAL func-
tion converts these candidate strings to FSTs, and
passes them through a cascade of constraints, im-
plemented as FSTs and combined using lenient
composition (see Fig. 3).

We employ three types of constraint: (a) an-
chored – these constraints are anchored to the be-
ginning or end of the phone string; (b) topical – a
lexical constraint consisting of words already dis-
covered in the recording we are transcribing; (c) at-
tested – a lexical constraint consisting of words
which are attested in the language.1

We give more detail about the function of each
of these components in the following sections. The
Python implementation is available2.

4.1 GEN

The responsibility of the GEN function is to pro-
duce a list of candidate strings which could plausi-
bly be completions of the input anchor lexemes. In
this section we describe an implementation of the
different pieces of this function in detail.

Input The GEN module requires as input an or-
dered list of known lexemes, and phone string.
Known lexemes are the anchor morphs, partial
words, or full words which the transcriber has rec-
ognized in the audio. The phone string comes from
access to a phone recognizer, fine-tuned for the tar-
get language. We use the Allosaurus model from
(Lane and Bird, 2021), which was fine-tuned on 79
minutes of Kunwinjku field recordings and which
achieved a 31.8% average word error rate in a 6-
fold cross-validation.

Additionally as input we require, for each utter-
ance, an ordered list of orthographic strings. These
are the forms that have already been identified in
the utterance, the “known lexemes”. For example,
a linguist might be able to recognize the top N
most frequent morphs in the language, and write

1In practice, the attested constraints can be spread across
multiple lexical buckets according to probability estimations.

2http://cdu-tell.gitlab.io/tech-resources/
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Figure 3: High-level view of local word discovery with implicit alignment.

them out in the order that they hear them in a par-
ticular utterance. See lines 1 - 6 of Figure 5 for
the definition of input FSTs which would ideally
be composed dynamically with the input in a real
local word discovery system.

Alignment and Candidate Generation The
phone input string is converted into an FST which
recognizes and transduces the original string. This
FST is composed with an FST which converts
phones to their possible orthographic realizations.
We automatically construct an FST which trans-
duces the known lexemes into a string of the same
ordered lexemes interspersed with zero or more of
any character. The XFST code on line 17 of Fig. 5
defines the FST which accepts a list of lexemes and
transduces all possible strings which include the
lexemes interspersed with arbitrary characters.

The lower side of this relation represents the
space of all possible alignments of known lex-
emes to the phone string. This FST can be com-
posed with edit distance FSTs to transduce the lan-
guage of candidate string alignments, allowing for
alignment of known lexemes with up to N inser-
tion/deletions of flexibility. For example, consider
the utterance in (1).

In (1a), we have no known lexemes, and have
just identified kabirri “they” and manme “food.” In
the next iteration, kabirri and manme are known
lexemes, and we have identified durrkmirri “work.”
Thanks to the implicit alignment in (1b), we see
that kabirri has been aligned to a less optimal po-
sition (requiring the insertion of a), in order to
accommodate durrkmirri.

As the number of known lexemes grows, the po-
tential number of insertions and deletions required
to produce valid alignment candidates also grows.
Accordingly, we allow greater edit distance for as
the length and number of known lexemes grows: 1
edit per known segment of length 1-3 characters,
and 2 edits for each longer segment. Our edit dis-
tance FST is a minor variation of the pattern set out
by Hulden (2013) (e.g., see Fig. 5, lines 18-19).

Figure 4: Constraint tableau for local word discovery
with implicit alignment.

After having composed the FST which accepts a
phone string and known lexemes as input and trans-
duces all possible variants of the phone string with
known lexemes aligned, we compose it with a se-
ries of FSTs which recognizes and transduces any
word licensed by the morphological FST, allowing
any characters to the left or right. This word dis-
covery block can also be altered to allow for some
edit distance in order to widen the range of possible
licensed words recognized by the morphological
analyzer FST (e.g., see Fig. 5, lines 29-32).

Note that depending on which edit distance path
is taken, we can append a corresponding tag (In
our case the “^” character) to mark how many edit
violations were required to produce a particular
word candidate (See Fig. 5, lines 24-25, 30-31).

4.2 EVAL

The EVAL function filters candidates according
to prioritized constraints, assuming an FST that
accepts a phone string and a list of known lexemes,
and produces full word candidates marked for edit
distance violations (see Fig. 4).

Constraints
In optimality theory, constraints are prioritized con-
ditions that must be maximally satisfied in order to
select the optimal candidate set. Optimality theory
is traditionally applied to filter for linguistic well-
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0 # Set up Lexicons and Mappings as FSTs
1 define LEXICON [ k u m e kk e | ng a rr i b o m | n a m e kk e | ng a d b e rr e ];
2 define PHONESTR [k u m k E b E n k a r k a m b E N r b O m ñ a m E E k a b u r k m a N a t b E r E k u k u];
3 define LEXEMES [X k u X ng a rr i X ng a d X];
4 define LEXEMESB [k u | ng a rr i | ng a d];
5 define TOPICAL [b i m | k u kk u | b i m b o m];
6 define ATTESTED [k u m e kk e | ng a rr i b o m | ng a d b e rr e];
7 define PHONES2ORTH b -> [ b | bb ] .o.
8 ñ -> [ nj ] .o.
9 N -> [ ng ] .o.
10 n -> [ n ] .o.
11 t -> [ d ] .o.
12 k -> [ k | kk ] .o.
13 d -> [ t | d ] .o.
14 ...
15 i -> [ i ];
16
17 define LexemePattern [[LEXEMES .o. [X -> ?*]].i].u;
18 define Edit1 [?* [?:0|0:?|?:?-?] ?*]^<2;
19 define Edit2 [?* [?:0|0:?|?:?-?] ?*]^<3;
20
21 # GEN: Generate alignment candidates
22 define OrthStrs [PHONESTR .o. PHONES2ORTH];
23 define Edit0Align [[?]* LexemePattern [?]*]["^"]*;
24 define Edit1Align [[?]* [ Edit1 .o. LexemePattern] [?]*][0:"^"];
25 define Edit2Align [[?]* [ Edit2 .o. LexemePattern] [?]*][0:"^"][0:"^"];
26 define AlignedOrth [OrthStrs .o. [ Edit0Align | Edit1Align | Edit2Align ]];
27
28 # GEN: Generate word candidates from alignment candidates
29 define Edit0Discover [[?:0]* LEXICON [?:0]*]["^"]*;
30 define Edit1Discover [[?:0]* [Edit1 .o. LEXICON] [?:0]*][0:"^"];
31 define Edit2Discover [[?:0]* [Edit2 .o. LEXICON] [?:0]*][0:"^"][0:"^"];
32 define DiscoverWords [AlignedOrth .o. [ Edit0Discover | Edit1Discover | Edit2Discover]];
33
34 # EVAL: Evaluate word candidates
35 define AnchoredWords [?+ LEXEMESB] | [LEXEMESB ?+] | [?+ LEXEMESB ?+];
36 define TopicalWords [?* TOPICAL ?*];
37 define AttestedWords [?* ATTESTED ?*];
38 define edit1Words [[?-"^"]* ["^"]^<2 ];
39 define edit2Words [[?-"^"]* ["^"]^<3 ];
40
41 regex DiscoverWords .O. AnchoredWords
42 .O. AttestedWords
43 .O. TopicalWords
44 .O. edit2Words
45 .O. edit1Words;

Figure 5: Minimal example of local word discovery with implicit alignment. NB LEXEMES and PHONESTR FSTs
would typically be built on the fly using input to the algorithm. For this reason, our final algorithm implements the
logic presented here with the HFST Python bindings, enabling parts of the network to be compiled at input time.

formedness. However, in the case of local word
discovery, grammaticality is already captured by
GEN, and the morphological FST. Therefore, we
only need to constrain candidates on pragmatics
grounds: what context can we leverage to elevate
some words over the others? Through a trial and
error process typical of OT, we identified the fol-
lowing ranking: anchored ≫ attested ≫ topical
≫ edit distance.

Anchored candidates are words which are at-
tached to a known segment provided by the user.
The model could easily hallucinate candidates
across the entire phone string. However, such a
broad search with loose edit distance parameters
generates many spurious candidates. It is prefer-
able to focus search on candidates for which we
already have strong priors.

Attested candidates are words which are attested
in some form across a wider corpus of language.

We represent attested candidates which occur in
a lexicon of the top N% most frequently words
drawn from a corpus of public texts published in
Kunwinjku: a bible translation, a set of 45 Kun-
winjku children’s books accessed from AIATSIS
(AIATSIS Mura Collections Catalogue, 2021), and
the example sentences scraped from the Kunwin-
jku dictionary (Bininj Kunwok Regional Language
Centre, 2021). For the model evaluated in this
work, we set N to 30%.

Topical candidates are words which have already
been transcribed from audio related to the current
audio. This lexicon grows over time, but its scope
should remain topically limited to relevant themes
and locations of the audio we are currently anno-
tating. In this work, the audio we are transcribing
comes from a tour of the outstation of Kabulwar-
namyo. We have previous recordings which have
been transcribed with other speakers giving similar
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tours, and so we sample a small set of words from
these to simulate a small set of 8 words to seed the
topical lexicon.

Edit Violations are the final and lowest-priority
of the constraints. Essentially, if we arrive at a
set of words which are already anchored, attested,
and topical, then we would further filter that result
set by taking those with the least number of edit
distance violations.

These constraints are operationalized in the
EVAL function through the use of lenient com-
position, a finite state operator that allows strings
to violate constraints as long as there are no other
strings which do not violate that constraint. That
is, a set of string candidates can be passed through
a chain of leniently-composed FSTs which check
for adherence to their individual constraints. At
each successive state, strings which violate the con-
straint are filtered out, and the remaining strings are
passed to the next constraint. If no more strings are
able to pass a filter, then the last viable set of strings
is returned as the result set (Karttunen, 1998).

5 Model Evaluation and Results

The objective of this model is to provide a reason-
able set of word candidates which lead to correct
transcriptions. As such, any model suggestions
which correctly predict subword units beyond the
anchor lexemes can be useful for helping the tran-
scriber discern the full word they are hearing, as
they interactively poll the model. Accordingly, we
chose to evaluate the performance of this model by
automatically simulating a first pass at transcrib-
ing 126 utterances of the test set. These 126 ut-
terances are recorded audio segmented by breath
group, from a tour of Kabulwarnamyo, conducted
in Kunwinjku.

The input of the model requires a phone string,
and an ordered list of known lexemes. As already
mentioned, we use the Allosaurus model fine-tuned
for Kunwinjku of (Lane and Bird, 2021). Similarly,
we adopt their sparse transcription data prepara-
tion method: we simulate a sparse transcription of
the audio by selecting a vocabulary of the top 20
morphs occurring in the training set, and use that
vocabulary to manually annotate the test set. To see
how this works, suppose that the test set includes
an audio file (2).

(2) birri-wam
they-went

balanda
white.person

birri-bo-ngu-ni
they-liquid-eat-PI

‘the white people went off drinking’

The corresponding prepared sparse transcription
would be the unaligned, ordered list of morphs
from the “known” vocabulary, i.e., birri, balanda,
birri.

Using these sparse transcriptions and the auto-
matically derived phone strings, we fed the test set
to the local word discovery model to generate a
list of candidate words anchored at the locus of
the known lexemes. In this way, we found that
12.7% of all predictions across all utterances were
correct full word predictions. Additionally, 38.2%
of all model suggestions were partially correct, i.e.,
a substring of the suggested word attached to the
anchor segment was correct, and thus a useful sig-
nal for the transcriber to decide how to continue
transcribing the word (Fig. 7).

On the utterance level, 57.9% of result sets con-
tained correct full word suggestions, and 66.7%
contained correct partial word suggestions. In to-
tal, 86.5% of utterance-level result sets contained
correct full or partial word suggestions. A sample
of these results can be seen in Fig. 6.

6 Discussion

The key feature of this model is that we drop man-
ual lexeme-to-phone alignment, and instead per-
form alignment on the fly, incorporating newly
identified lexemes. This is illustrated in (1), where
newly identified morphemes for each iteration are
marked in red.

This innovation has an important consequence
for the transcription process: it can be iterative.
Each time the linguist and/or speaker revisit an ut-
terance, they consider a new set of suggestions for
building the transcription out from known lexemes
where the model has taken care of working out
where everything fits. They may also posit entirely
new lexemes and add them to the lexicon. For each
new lexeme, the user only needs to indicate their
relative position with respect to existing lexemes.

For each new visit to an utterance, the lexicon is
in an expanded state due to transcription of other
utterances, and the model makes new suggestions.

The model handles some subtle issues in tran-
scription. For example, when a morph appears
multiple times in an utterance, as we see for kabirri
“they” (1). When a transcriber adds a lexeme, the
model assigns it to the best location, but only for
the purpose of discovering words anchored at this
lexeme (1a). When the transcriber identifies a new
lexeme, e.g. durrkmirri “work”, the previously
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Figure 6: Sample of test set utterances with #suggestions by model (blue); #correct partial word suggestions
(orange); #correct full word suggestions (green).

Number of utterances 126
% predictions full correct 12.7
% predictions partial correct 38.2
% docs with full correct 57.9
% docs with partial correct 66.7
% docs with any correct 86.5

Figure 7: LWD-A Test Set Statistics

identified lexeme is aligned elsewhere (1b). Fur-
ther suggestions–by the human transcriber or an
automatic word spotter–identify a second instance
of kabirri (1c).

Alongside these benefits are some shortcomings.
First, if a transcriber is mistaken about the identity
of a lexeme, the model will not be able to come up
with better suggestions for that locus, except in the
unlikely event that there is another locus where that
incorrect lexeme can be aligned. Second, the model
may generate suggestions for a given anchor lex-
eme, when a user wants to work on a different part
of the utterance. Here, the user may need to accept
high priority suggestions (if they are correct) and
wait for a later iteration to get model suggestions
for other parts of the utterance. Third, thanks to the
iterative nature of this approach, the precision and
recall of the model for a given utterance depends on
how high we are in the constraint hierarchy when
results are returned. High priority constraints are
more precise, with results sets of 1 or 2 candidates
(varying on the size of the topical lexicon). Low
priority constraints contain edit distance-based vari-
ations on the source signal, and therefore can grow
quite large with as a function of uncertainty.

This variability with precision and recall leads
to a further benefit. The model is able to prioritize
precision when possible, while backing off to recall
when necessary. Accordingly, for our test data, the
average number of predictions per utterance is just
6.5, compared to an average of 64.1 predictions
per utterance of the non-constraint based model of

Lane and Bird (2021).
A further shortcoming of our approach is that we

must compile unique FSTs at runtime. This means
we cannot precompile the network with LEXC and
FOMA or HFST compilers, but must use Python
bindings, and compile FSTs dynamically with each
new input. This could be prohibitively slow in
some instances, as complexity increases exponen-
tially with the size of the phone stream and known
segment lists. A solution is to add a preprocessing
step: utterances are already segmented from the
original audio using silence; any overlong utter-
ances are further split on confirmed full words.

7 Conclusion

We have proposed a novel approach to collabora-
tive transcription, which works with locally avail-
able resources and human capacities. In particu-
lar, local Indigenous participation is not reduced
to laborious and unmotivated phone transcription,
but focuses on the identification of keywords in
connected speech. These may be relevant to a con-
current cultural activity, or to language learning, in
which the meaning of words in context is of more
interest than their phonemic representation. The
results suggest that this model does well in leverag-
ing a computational grammar to give meaningful,
interactive signal in a collaborative transcription
context. This model improves on previous local
word discovery models in that it is able to suggest
words while performing alignment implicitly. We
anticipate that this approach will integrate with in-
teractive, collaborative transcription systems, such
as (Lane and Bird, 2020b). We also hope to have
shown a way of bridging language data collection
to locally-motivated language work.
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Ethical Considerations

This research has been approved by traditional own-
ers in the communities where it was conducted, and
the board of Warddeken, the Aboriginal land man-
agement company which hosted the research. It
is covered by a research permit from the Northern
Land Council and by human research ethics ap-
proval of Charles Darwin University. The authors
have made several visits to an Aboriginal communi-
ties over several years, working closely with elders
and traditional owners in pursuing their agenda for
the future of their languages.
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