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Abstract

In this paper, we explore class-incremental
learning for intent classification (IC) in a set-
ting with limited old data available. IC is
the task of mapping user utterances to their
corresponding intents. Even though class-
incremental learning without storing the old
data yields high potential of reducing human
and computational resources in industry NLP
model releases, to the best of our knowl-
edge, it hasn’t been studied for NLP clas-
sification tasks in the literature before. In
this work, we compare several contempo-
rary class-incremental learning methods, i.e.,
BERT warm start, L2, Elastic Weight Consoli-
dation, RecAdam and Knowledge Distillation
within two realistic class-incremental learning
scenarios: one where only the previous model
is assumed to be available, but no data cor-
responding to old classes, and one in which
limited unlabeled data for old classes is as-
sumed to be available. Our results indicate
that among the investigated continual learning
methods, Knowledge Distillation worked best
for our class-incremental learning tasks, and
adding limited unlabeled data helps the model
in both adaptability and stability.

1 Introduction

In real-world scenarios, NLP models are regularly
updated to incorporate new functionality that ei-
ther covers new data distributions or includes new
output classes (Diethe et al., 2018). We focus on
the latter scenario in this work, and we consider a
feature expansion use case for a spoken language
understanding (SLU) task in a voice assistant, such
as Siri or Alexa. In particular, we focus on the task
of intent classification (IC), which is a common
sub-task in SLU that aims to map an input user
utterance to an intent supported by the system (for
instance, PLAYMUSIC for play the best songs from
Madonna). With feature expansion, new intents
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are to be added to the SLU model over time to
support new output classes that corresponds to new
user-facing features in a voice assistant.

A regular feature expansion process in produc-
tion results in a series of consecutive SLU model
releases that are trained for the same intent clas-
sification task, in which new output classes are
being added to the model. Having regular model
releases, it is wasteful of computing and human
resources to start from scratch every time and not
re-use the previous release model in one form or an-
other. Moreover, as our research community moves
towards building NLP systems that are environmen-
tally friendly (e.g., requiring less training time and
computational resources), class incremental learn-
ing (C-IL) becomes an important research direction.
Hence, the problem of class incremental learning
(C-IL) has been studied by the community for a
while now (Kirkpatrick et al., 2017); yet, most of
the previous work has focused on computer vision
tasks (Cheng et al., 2019) with limited attention to
NLP (Cao et al., 2020; Thorne and Vlachos, 2021).

A C-IL setup for regular releases of a model of-
fers both challenges and opportunities. On the one
hand, updating the previous model with new classes
introduces a stability-plasticity problem (Mermil-
lod et al., 2013), where the new model should both
retain the knowledge about the old classes and learn
the new classes on the same level of accuracy. On
the other hand, re-using the old model to build the
next release might help to reduce the reliance on
old training data and speed up the training of the
next release (Ash and Adams, 2020).

In this work, we compare contemporary solu-
tions for incremental learning on a C-IL problem
for the IC task following a production-inspired fea-
ture expansion cycle. We assume a number of
consecutive model releases, where each one adds a
number of new output classes and the correspond-
ing training data. The training data for the old
classes is either limited or not available at all in
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line with the privacy requirements of a real-life
setup, where there might be restrictions on storing
or using older data.

We simulate this setup with the large intent
classification OOS (Out-of-scope) dataset (Larson
et al., 2019). Furthermore, we restrict our experi-
ments to methods that do not increase the capacity
of the final model with time. This is an important
restriction in a real-world scenario where runtime
constraints do not allow to make the model larger.

Our main contributions are:

1. To best of our knowledge, we are the first to
explore different incremental learning meth-
ods for class-incremental learning in SLU in
a data-scarce scenario.

2. We focus on the restriction of a production-
like setup, where previous models might be
available, but not the data and the runtime
restriction prohibit making the model larger
with time.

3. We present in-depth experiments on C-IL in
two data-scenarios: without old data being
available and with limited old, but unlabelled
data being available. In the experiments, we
compare the techniques that were previously
proposed for fine-tuning and task-incremental
learning and apply them repeatedly to extend
the same model with new classes.

2 Related Work

2.1 Spoken language understanding

SLU has been mostly approached with deep learn-
ing methods (Mesnil et al., 2013) and specifically
with large pre-trained models (Zhang and Wang,
2016; Chen et al., 2019; Louvan and Magnini,
2020). To improve the overall SLU performance,
the community has investigated semi-supervised
learning and paraphrasing to bootstrap new features
and to overcome the class imbalance problem (Cho
et al., 2019; Sokolov and Filimonov, 2020). The
most research on SLU assumes that the number of
classes is static, while in a real production SLU
system, new classes are added on a regular basis.
In contrast, in this work, we propose to focus on
a C-IL scenario, where new classes are added to
the system and the models needs to adapted in the
absence of the previous training data.

2.2 Class-incremental learning

In a production environment, C-IL is a challenging
problem since normally the new classes are only a
small fraction of the classes in the new data.

Most approaches for incremental learning have
been developed in the context of task-incremental
learning and computer vision problems. In this pa-
per, we study the importance of such methods on
C-IL in NLP. There are several approaches that use
regularization terms together with the classification
loss in order to mitigate catastrophic forgetting.
Few methods concentrate on the weights and esti-
mate an importance metric for each parameter in
the network (Kirkpatrick et al., 2017; Thorne and
Vlachos, 2021) to decide what to update, while oth-
ers focus on preventing the activation drift (Li and
Hoiem, 2018).

Many previous works on continual learning have
also focused on learning from a continuous stream
of data (Biesialska et al., 2020) or on an incremen-
tal learning of new tasks (Kanwatchara et al., 2021)
and languages (Castellucci et al., 2021). Payan
et al. (2021) discuss a single-task continual learn-
ing setup and simulated a passive data extension
scenario where new examples are coming in for
all output classes on a public dataset. Similarly,
Ash and Adams (2020) evaluate a batch-learning
setup, where each model iteration is warm-started
from the previous step and the whole training data
is always available, while some new data is added
across all output classes in each batch.

Finally, Wu et al. (2022) experiment on 5 differ-
ent tasks to investigate the behaviour of fine-tuned
large pre-trained models when the number of out-
put classes grows with time. This setup is close
to ours, as we also look at an expanding set of
output intents in models. Uniquely, we focus on
data-scarce scenarios, where old data might not be
available anymore, which is motivated by privacy
and production requirements of voice assistants.

3 Challenges

The fundamental obstacles to effective C-IL are
conceptually simple, but in practice very challeng-
ing to overcome. These challenges originate from
the sequential training of tasks and the requirement
that at any moment the learner must be able to clas-
sify all classes from all previously learned tasks. In-
cremental learning methods must balance retaining
knowledge from previous tasks while learning new
knowledge for the current task. This problem is
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called the stability-plasticity dilemma (Mermillod
et al., 2013). A naive approach to class incremen-
tal learning which focuses solely on learning the
new task will suffer from catastrophic forgetting: a
drastic drop in the performance on previous tasks.
Preventing catastrophic forgetting leads to a second
important problem of class incremental learning,
i.e., the problem of intransigence: the resistance to
learn new tasks. Class incremental learning meth-
ods need to balance between keeping knowledge
about old classes and learning new classes at the
same level of accuracy.

4 Method

We consider a C-IL scenario in which an exist-
ing NLP classification model is updated over time.
We assume a number of consecutive model up-
dates, and for each update, a certain number of new
classes and corresponding training data become
available, which need to be supported. Since, to
the best of our knowledge, C-IL has not yet been
explored for NLP classification tasks, this study
includes a diverse set of techniques, which have
shown promising results on other incremental learn-
ing tasks. In the following, we first describe our
C-IL scenario in more detail. Subsequently, we
discuss the considered basic classification model
architecture and the C-IL strategies afterwards.

4.1 Class-incremental learning scenario

We assume that a task-specific classification model
M0 is available, which may already cover a com-
paratively large number of different output classes.
Furthermore, we assume that we have access to
an input stream of datasets D, each comprising
labeled data for new classes: D = [D1, . . . , Dn]

with Di = {(xi,j , yi,j)}|Di|
j=1, where xi,j1 , . . . , xi,jn

is an utterance with n tokens, and yi,j is a sentence-
level intent label. Each Di ∈ D comprises labeled
data belonging to ki new classes, i.e., classes which
have not been observed during training of M0 or
in any of the previous datasets D1, . . . , Di−1. For
each dataset Di, we perform a model update to in-
tegrate the new classes starting from the previous
model Mi−1, yielding model Mi. More specifi-
cally, we assume that for each model update Mi

1. only the previous model Mi−1 is available,

2. the dataset Di comprising data belonging to
ki new classes is available, and

3. the datasets from previous iterations
D1, . . . , Di−1 are not available anymore.

In some of our experiments, we additionally as-
sume that unlabeled data for classes from previous
iterations are available.

In this class-incremental learning scenario, our
goal is to add new classes over time, such that

1. a reasonable performance is attained on the
data belonging to the new classes and

2. there is no catastrophic forgetting (perfor-
mance degradation) on old classes.

4.2 Basic classification model architecture

Following the current state-of-the-art for produc-
tion SLU models (Chen et al., 2019; Gaspers et al.,
2021b,a; Weld et al., 2021), we consider classifi-
cation model architectures that leverage large pre-
trained masked language models (MLM) for the
models Mi. In particular, we assume that a model
Mi consists of an MLM encoder and a task-specific
classification head with softmax on top. We use
cross-entropy loss for the classification task.

4.3 Class-incremental learning methods

We have selected five methods from different cat-
egories, including popular C-IL approaches based
on weight regularization and on data regularization,
which we summarize in the following.

Warm start (BERT) A naive C-IL strategy is
simply to continue fine-tuning the previous model
on new data. Recently, it has been shown that pre-
trained language models can effectively transfer
task-agnostic knowledge to task-specific knowl-
edge, and fine-tuning is a commonly used tech-
nique to mitigate model biases (Du et al., 2021).
Therefore, “warm starting” the optimization rather
than initializing randomly from scratch may be use-
ful for quick adaptation to the new data and incorpo-
rating the new classes. However, on the downside,
a direct pre-train-then-fine-tune approach is prone
to catastrophic forgetting of previous knowledge
(Ash and Adams, 2020).

Weight regularization-based approaches focus
on preventing weight drift to consolidate previous
knowledge when learning a new task. We include
three methods that fall into this category: L2, Elas-
tic Weight Consolidation (EWC) and RecAdam.
As noted in the introduction, we only consider
methods that do not increase model size with time,
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as this would be not restricted in a real-life runtime
environment.

L2 When training on a new task, the importance
of each parameter is used to penalize changes to
them. Therefore, in addition to the classification
loss (cross-entropy), we add an L2 regularised loss:

L(θi) = Lcross(∗) +
N∑

p

(θi−1p − θip)2, (1)

where N = total number of parameters of |θi−1|.
EWC Kirkpatrick et al. (2017) proposed Elastic

Weight Consolidation (EWC) that is a weight regu-
larization method that penalizes parameter updates
according to the model’s sensitivity. The model
sensitivity is calculated as a diagonal approxima-
tion of the Fisher Information Matrix Fi, which
captures the importance of the model at the mini-
mum after each task is learned, while ignoring the
influence of those parameters along the learning
trajectory in weight space. The modified loss with
EWC is defined as:

L(θi) = Lcross(∗) +
N∑

p

λ

2
Fp(θ

i−1
p − θip)2 (2)

where N = total number of parameters of |θi−1|.
RecAdam. Recently, Chen et al. (2020) pro-

posed RecAdam to address the problem of sequen-
tial transferring regime of deep pre-trained LMs.
They assume that the pre-training data is not avail-
able during fine-tuning on a new task. They pro-
pose an optimizer that consists of two modules: Pre-
training Simulation and Objective Shifting, where
the former allows the model to learn source tasks
without pre-training data, and the latter allows the
model to focus on target tasks. Recadam was moti-
vated by EWC and it keeps a copy of the pretrained
parameters and accesses them at each training step.
Recadam introduces a quadratic penalty between
pretrained and fine-tuned weights in the optimiza-
tion objective to prevent deviating from the pre-
trained model weights. In our class incremental
learning setting, we also keep the model’s param-
eters trained on previous classes and access them
for training on new class data.

Knowledge distillation. Knowledge distillation
(KD) was initially proposed by Hinton et al. (2015)
to encourage the outputs of one model to approx-
imate the outputs of another, and hence it can be

applied to prevent activation drift. In this study,
we adopted the Teacher-Student framework for
KD. In our case, at C-IL stage i, the teacher is
the model Mi−1 which was already trained on the
previous datasets. The student model is a clone of
the teacher, which is fine-tuned using a combined
loss function:

L = (1− λ)Lcross + λLKD, (3)

where Lcross is the task-specific cross-entropy loss,
which is computed on the new dataset Di. The
knowledge distillation loss LKD is computed as
the cross-entropy between the output probability
distributions provided by the student and teacher
models. λ is a hyper-parameter balancing the two
losses. We set the hyper-parameter λ to kold

kold+knew

where k is the number of classes.
Note in all of the above setups we initialize

(warm-start) the next model M i with the previous
M i−1 model.

5 Experimental set up

In our experiments, we study two C-IL scenarios:
without any old data available and assuming that
a small amount of unlabeled data for old classes
can be accessed. In the following, we first discuss
both scenarios in more detail. Subsequently, we
describe the dataset and class-incremental learning
simulation, and finally the experimental settings.

5.1 Class-incremental learning scenarios

In our experiments, we study the following two
class-incremental learning scenarios:

1. Core C-IL scenario with no previous data.
This scenario can be referred to as the "true"
class-incremental learning scenario described
in section 4.1 and this is the most extreme
scenario for incremental learning. We assume
that at C-IL stage i we only have access to
the previous model Mi−1 and the new dataset
Di covering new classes. However, no data
corresponding to previous classes is available.
We study this scenario because storing data
for long is often impossible and training a
model from scratch is expensive in real-world
scenarios. Therefore, we assume that we only
have a previously trained model available but
no old exemplars (i.e., no data corresponding
to old classes) in this setting.
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Limited Core C-IL
unlabeled data no previous data

IS Train TC Train TC Dev/Test
0 5000 1-50 5000 1-50 1000/1500
1 1250 1-70 1000 51-70 1400/2100
2 1350 1-90 1000 71-90 1800/2700
3 1450 1-110 1000 91-110 2200/3300
4 1550 1-130 1000 111-130 2600/3900
5 1650 1-150 1000 131-150 3000/4500

Table 1: Data statistics for the IL setup on the OOS
datase. IS: Incremental stage, Train: available training
data at each stage, TC: Included training classes.

2. Limited unlabeled data availability C-IL
scenario. In this scenario, we assume that
a limited amount of unlabeled data for older
classes is available. While we are aiming for
a technique that succeeds in scenario 1, this is
a very challenging problem to solve. On the
other hand, in real-world settings, some unla-
beled data of previous classes sometimes can
be collected again or stored for a short period.
Thus, scenario 2 is also reasonable and in-
cluded for comparison regarding what perfor-
mance can be reached when a small amount of
unlabeled data of previous classes is available
vs. unavailable. In this scenario, we addition-
ally leverage semi-supervised learning and we
use the previous model Mi−1 to label the un-
labeled data at the incremental stage i. Note
that unlabeled data are much less expensive
than labeled data as no annotators are needed,
and it is preferable w.r.t. privacy concerns, as
no human needs to look into the utterances to
annotate them.

In both cases, we assume that an initial model
M0 is trained first, covering 50 intent classes. Sub-
sequently, five incremental learning stages are con-
ducted, and in each stage 20 new classes are added.

5.2 Data
We evaluate our models using the out-of-scope
(OOS) dataset (Larson et al., 2019) for intent classi-
fication. The OOS dataset comprises English user
queries which were annotated with intents. It con-
tains 150 intent classes, and our goal is that model’s
learn these 150 classes incrementally.

For class-incremental learning experiments, we
first randomly selected 50 classes and used all cor-
responding training and development data for train-
ing the initial model M0. Next, we randomly split
the remaining classes into 5 groups, each compris-
ing 20 classes, and we created datasets by collect-

ing the data for the groups of classes. This process
resulted in datasets covering 5 incremental stages
(IS), which we split to create training, development
and test sets for each incremental stage.

To simulate the second C-IL scenario with lim-
ited unlabeled data amounts for old classes, we
set 5% of data aside per class and dropped labels.
Next, we use the previously trained model (Mi−1)
to annotate the unlabeled data for the next incre-
mental stage and add the annotated data to the new
labeled training data.

The data splits and statistics are reported in Ta-
ble 1. The number of exemplars per class in each
incremental phase is uniform.

5.3 Hyperparameter details and metrics

We use the BERT-large-uncased model from the
Huggingface Transformers package. The BERT
architecture type is widely used in practical ap-
plications1 and we limit our experiments to this
common architecture type and instead choose to
evaluate multiple scenarios and C-IL methods (see
Section 5). We train five random initializations of
each model, reporting the mean accuracy for all
of the experiments. This results in over 180 ex-
perimental runs for the two setups, the five tested
methods and the oracle. For fine-tuning, the learn-
ing rate and regularization strength are selected
through 5-fold cross-validation on the BERT warm
start train data, selecting the model with the high-
est training accuracy. We choose the regularization
strength λ from {106, 2∗106, 107, 2∗107} and three
learning rates in {2∗106, 4∗106, 6∗106}. We also
use the following hyperparameters: (a) Embedding
dimension: 768, (b) Optimizer: AdamW, and (c)
Gradient Norm: 10.0. Our main evaluation metric
at each incremental step is the standard multi-class
accuracy. We report overall accuracy results, as
well as the break down for old and new classes.

6 Experimental Results

Recall that the core challenge with class incremen-
tal learning methods is to balance retaining knowl-
edge from old exemplars while learning new knowl-
edge for the new exemplars. In our experiments, we
investigate how the different incremental learning
methods perform on both preventing catastrophic
forgetting and intransigence i.e., resistance to learn

1C.f. the number of downloads in the last months for BERT
models https://huggingface.co/models?sort=
downloads&search=bert
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Figure 1: Average accuracy of the C-IL methods on all
seen classes so far until the previous incremental phase
for the core C-IL scenario.
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Figure 2: Accuracy of the C-IL methods methods on
new class labels at different IL stages for the core C-IL
scenario.

about new exemplars. Where appropriate, we also
include performance of an "oracle"; contrasting
with the C-IL techniques, the oracle has access to
all of the previously available labeled datasets. It
should be seen as an upper bound, indicating what
performance would be possible if older labeled data
could be kept for model training.

6.1 Core C-IL scenario

Forgetting over time We first study the perfor-
mance of the C-IL methods in addressing the catas-
trophic forgetting problem. Figure 1 compares the
different C-IL methods on old class labels at differ-
ent incremental learning stages. Firstly, we observe
that the KD method performs consistently better
than other C-IL methods in the trend of accuracy
at different incremental learning stages. Next, we
find that RecAdam suffers the most significant per-
formance drop. Interestingly, the performance of
EWC until incremental stage (IS) 3 is comparable
to BERT WARM-START and L2. However, as the

number of incremental stages increases, the perfor-
mance of BERT WARM-START and L2 compara-
tively drops more.

We also report the upper bound results denoted
as Oracle where models are trained with all training
data of the classes learned so far. The gap in perfor-
mance of KD and EWC appears unbridgeable after
IS 2. This suggests that (1) only constraining old
parameters does not suffice to prevent forgetting
and (2) there is a positive effect of the distribution
information of previous features in C-IL.

Performance on new exemplars To analyze
the effectiveness of different C-IL models more
concretely, we explore how they affect the new
class label’s accuracy. Figure 2 shows the per-
formance of different methods on newer class la-
bels at different incremental phases. We find that
RecAdam performs better on the new class labels.
The RecAdam optimizer was designed to improve
the model’s performance on the fine-tuning task by
not deviating too much from the pretrained model
parameters. This could be an intuitive reason for
RecAdam’s strong performance on newer class la-
bels. This also aligns with the poor performance of
RecAdam on the older exemplars (see Figure 1).

We observe that BERT WARM-START per-
forms better than KD on new class labels at the
earlier incremental stages. However, when the
number of stages increases, the KD method outper-
forms BERT WARM-START and EWC in learning
about the new class labels and remembering pre-
vious labels (see Figure 1). This indicates that the
performance of the KD method is better in reduc-
ing the forgetting problem and performs better on
newer class labels when we increase the number of
incremental stages.

Analysis Tables 2a-2e present the performance
with respect to average Accuracy and Forgetting
Rates of each method at different incremental
stages. The last column (red cells) of each table
represents the average accuracy:

A =
1

N + 1

N∑

i=0

Ai, (4)

where Ai is accuracy on the test dataset Dtest
i com-

prising data belonging to the ki batch of classes.
For example, the A column at M1, M2,.., M5 rep-
resents the performance on classes 1-70, 1-90, ..,
1-150 respectively. The diagonal cells represent the
performance of each method on new class labels
(this is also the data visualized in Figure 2). In this
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case, IS=1, IS=2,.., IS=5 means the performance on
classes 51−70, 71−90, .., 131−150 respectively.

The lower triangle (blue cells) of each table rep-
resents Forgetting Rates (lower is better) : F =
Ai,i − Ai,j , where j < i. Similar to (Liu et al.,
2020), we define a forgetting rate, denoted as F ,
by calculating the difference between the accuracy
of the old model (Mk) and the new model (Mk+i)
on the same test data. For example, in Table 2a,
the M1 model at IS=0 (i.e., performance on 1-50
classes) forgets 1.81 accuracy points with respect
to the model M0.

The bold numbers represent the best performing
model at different incremental stages. There are
two main observations: (1) For class incremental
learning, we hypothesize that the model is prone to
suffer from more severe forgetting as the incremen-
tal stage increases. We find that although there was
some big drop after training on the 3rd incremen-
tal stage, KD forgetting rate is low. Interestingly,
the forgetting rate for EWC is relatively low. We
find that with the EWC method the results at some
incremental phases have negative forgetting rates
suggesting that a new model (such asM3,M4,M5)
performs better than the corresponding previous
model for some old classes. One intuitive reason
could be that the performance on the new labels for
EWC is comparatively poor compared to BERT
WARM-START and the KD method. KD maintains
stable performance as the number of incremental
stages increases. Especially after training on the
4th and 5th stage, the forgetting increment was rel-
atively small, which demonstrated the robustness
of KD. (2) After each individual phase, the learned
modelMi is evaluated on the test dataDtest

o:i , where
0 : i denotes all seen classes so far. We observe
that initially all methods except RECADAM work
well but as the incremental phase increases to 5th,
the KD method gains +14.2 pp.

6.2 Limited unlabeled data available

Motivated by our findings in the supervised setting,
in this scenario, we assume that we have a small
amount of unlabelled data corresponding to previ-
ous class labels available. We use the previously
trained model to automatically annotate the unla-
belled data and add this data into the training set
for training the model for the next phase.

Figure 3 presents the results of the different C-
IL methods on class labels seen so far until the
previous incremental learning stages. Firstly, we

Forgetting Rate
IS=0 IS=1 IS=2 IS=3 IS=4 IS=5 A

M0 97.4
M1 1.81 86.66 92.3
M2 9.55 38.36 87.83 80.6
M3 22.15 35.66 24.83 51 59.3
M4 30.03 63.66 45.33 31.5 51.8 49.0
M5 38.03 71.5 71.67 46 43.97 40.0 29.1

(a) BERT Warm Start

Forgetting Rate
IS=0 IS=1 IS=2 IS=3 IS=4 IS=5 A

M0 97.4
M1 2.74 92.16 93.57
M2 3.81 18.16 50.83 81.2
M3 21.55 65.33 -5.17 70.16 56.08
M4 29.43 64.16 -4.33 29.16 15.66 47.41
M5 39.7 77.5 26.83 56.66 -12.67 23.0 29.6

(b) EWC

Forgetting Rate
IS=0 IS=1 IS=2 IS=3 IS=4 IS=5 A

M0 97.4
M1 2.6 92 94.6
M2 6.88 8 80.5 82.6
M3 11,75 11.5 1.84 45 72.66
M4 20.55 18 11.65 23.4 71.11 55.17
M5 40.7 44.17 39.39 31.34 16.45 49.5 43.8

(c) KD

Forgetting Rate
IS=0 IS=1 IS=2 IS=3 IS=4 IS=5 A

M0 97.4
M1 5 94 92.8
M2 10.14 31.84 84.3 81.18
M3 19.87 54 35.8 48.66 60.1
M4 24.4 64 38 34.5 49.83 49.66
M5 48.8 81 67.3 45.86 34.08 49 29.22

(d) L2

Forgetting Rate
IS=0 IS=1 IS=2 IS=3 IS=4 IS=5 A

M0 97.2
M1 93.5 98.5 30.66
M2 93.47 98.5 92.8 22.70
M3 95 98.5 92.8 94.66 18.30
M4 97.4 98.5 92.8 94.66 98.66 15.17
M5 97.4 98.5 92.8 94.66 98.66 98.16 13.08

(e) RecAdam

Table 2: Performance of each method with respect
to average accuracy (last column) and forgetting rates
(lower triangle) at different IS. For average accuracy
higher is better, for forgetting rates lower is better.

observe that the performance of all C-IL methods
benefits from the extra data. Interestingly, the per-
formance of the EWC method is much more stable
than without any previously labelled data. More-
over, the KD method still performs relatively bet-
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Figure 3: Average accuracy in the setting where limited
unlabeled data is available for the C-IL methods on all
seen classes so far until the previous incremental phase.
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Figure 4: Accuracy in the setting where limited unla-
beled data is available for the C-IL methods on new
class labels at different incremental learning stages.

ter than other methods in preventing the forget-
ting problem. Figure 4 depicts the performance on
the newer class labels at each incremental phase.
BERT WARM-START works better than the KD
and EWC methods, indicating that extra noisy data
helps BERT WARM-START more. Similar to Fig-
ure 2 we observe that RECADAM performs better
on newer class labels, indicating that it is over-fitted
to newer exemplars.

The average accuracy results are shown in Table
3. The EWC and KD methods perform best by a
large margin. EWC shows a small gain for the
first couple of incremental phases compared with
KD and L2. However, the gain increases as more
incremental phases are conducted. Regarding the
final incremental classifier on all classes, the KD

method outperforms EWC, L2 and BERT WARM-
START by 0.8%, 2% and 2.44% respectively.

7 Conclusion

In this paper, we explored class-incremental learn-
ing for the intent classification task. In particular,

Test classes 70 90 110 130 150

Method M1 M2 M3 M4 M5

BERT Warm-start 95.52 91.5 86.81 80.2 73.06
EWC 95.4 93.4 88.18 81.7 74.7
KD 95.7 91.7 89.18 82.5 75.5
RecAdam 73.8 53.22 49.18 48.89 14.2
L2 95.38 92.25 86.5 80.8 73.5

Table 3: Average Accuracy of different C-IL methods
in the setting where limited unlabeled data is available.

we compared several methods, i.e., BERT warm
start, L2, Elastic Weight Consolidation, RecAdam
and Knowledge Distillation. We compared per-
formance within two class-incremental learning
scenarios: one where only the previous model was
assumed to be available, but no data corresponding
to old classes, and one in which limited unlabeled
data for old classes was assumed to be available.

We are the first to benchmark these methods in
the challenging incremental learning setup for in-
tent classification motivated by real-life restrictions
where no old data might be available. We presented
extensive experiments on the out-of-scope dataset
for intent classification. Among the investigated
continual learning methods, Knowledge Distilla-
tion worked best for our class-incremental learning
tasks, and adding limited unlabeled data helped the
model in both adaptability and stability. We plan to
add token-level slot prediction task to our setup in
the future and include further MLM models beyond
just the BERT architecture.

8 Ethical considerations

The experiments presented in this paper are per-
formed with publicly available models and meth-
ods on a public dataset and can be verified indepen-
dently. Our experimental setup is motivated by a
real-life problem of regular SLU model releases,
where it is critical to maintain the performance on
old classes and not to introduce new errors into
the existing model so that no user is negatively af-
fected by the changes. The incremental learning
techniques discussed here have a potential to im-
prove user privacy, as they do not rely on storing
the old data. Training only on the data incremen-
tal has also a significant impact on model training
times and resource usage and, as a consequences,
improves the environmental impact of a model re-
lease pipeline.
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