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Abstract

Large-scale pre-trained foundation models
have been an emerging paradigm for building
artificial intelligence (AI) systems, which can
be quickly adapted to a wide range of down-
stream tasks. This paper presents mPLUG,
a new vision-language foundation model for
both cross-modal understanding and genera-
tion. Most existing pre-trained models suffer
from inefficiency and linguistic signal over-
whelmed by long visual sequences in cross-
modal alignment. To address both problems,
mPLUG introduces an effective and efficient
vision-language architecture with novel cross-
modal skip-connections.

mPLUG is pre-trained end-to-end on large-
scale image-text pairs with both discrimina-
tive and generative objectives. It achieves
state-of-the-art results on a wide range
of vision-language downstream tasks, in-
cluding image captioning, image-text re-
trieval, visual grounding and visual ques-
tion answering. mPLUG also demonstrates
strong zero-shot transferability on vision-
language and video-language tasks. The
code and pre-trained models are available at
https://github.com/alibaba/AliceMind.

1 Introduction

Large-scale pre-training of vision-language models
have recently received tremendous success on a
wide range of cross-modal tasks (Tan and Bansal,
2019; Chen et al., 2020; Huang et al., 2020; Li
et al., 2020b; Yu et al., 2021; Li et al., 2021b;
Wang et al., 2021c). Such vision-language mod-
els learn cross-modal representations from a quan-
tity of image-text pairs by aligning the visual and
linguistic modalities. The key to learning vision-
language models is finding a good alignment be-
tween the two modalities to close the semantic gap
in-between.

∗ Equal contribution
†† Corresponding authors

Figure 1: Illustration of two conventional cross-modal
fusion networks and our proposed cross-modal skip-
connected network. We compare the running time and
performance of different fusion networks, where the
fusion layers, image encoder and text encoder are all
kept the same. The running time is the total forward
time of 100 samples in different fusion networks.

Most recent work (Huang et al., 2020; Wang
et al., 2021c; Li et al., 2021b; Kim et al., 2021;
Dou et al., 2021) proposes a direct alignment be-
tween the image and text representations in an end-
to-end manner, which turns out to perform well on
many vision-language tasks. These models extract
finer-grained visual representation with a long se-
quence of image patches or grids for good vision
understanding (Dou et al., 2021).

However, there are two significant problems in
fusing the asymmetric information caused by long
visual sequences: 1) vanishing information: the
caption text in widely-used image-text pre-training
data is usually short and highly abstract while more
detailed and diverse information can be extracted
from images as long visual sequences. This infor-
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mation asymmetry leads to linguistic signal over-
whelmed by visual signal when information of
the two modalities are directly blended. The lin-
guistic signal can be overlooked, which hinders
effective cross-modal fusion, and 2) inefficiency:
cross-modal fusion focuses so hard on interaction
between modalities that heavy and redundant self-
attention on long visual sequences takes most com-
putation time. This makes the cross-modal fusion
rather inefficient.

One straightforward way of cross-modal fusion
is the connected-attention network as shown in Fig-
ure 1 (a). It adopts a single Transformer (Vaswani
et al., 2017) network for early fusion of vision and
language by simply taking the concatenation of
visual and linguistic features as input (Li et al.,
2019). This paradigm allows self-attention to dis-
cover alignments between the modalities from the
bottom level, and requires full self-attention on
the concatenation of cross-modal sequences, which
is rather time-consuming. Besides, this type of
methods process information from both modalities
equally, which may suffer from the information
asymmetry especially when there is a big differ-
ence in information density or sequence lengths
between the modalities.

Another line of work employs separate Trans-
former networks for textual and visual features,
and uses techniques such as cross-attention to en-
able cross-modal interaction (Dou et al., 2021), as
shown in Figure 1 (b). This architecture design
conducts cross-modal fusion on both modalities in-
dependently, which helps alleviate the information
vanishing. However, it still suffers from computa-
tional inefficiency for full self-attention on long vi-
sual sequences, and it is not that parameter-efficient
with two separate Transformer networks.

In this work, we propose mPLUG, a uni-
fied Multi-modal Pre-training framework for both
vision-Language Understanding and Generation.
mPLUG performs effective and efficient vision-
language learning with novel cross-modal skip-
connections to address the problem of linguistic
signal overwhelmed by visual signal. Instead of
fusing visual and linguistic representations at the
same levels, the cross-modal skip-connections en-
ables the fusion to occur at disparate levels in the
abstraction hierarchy across the modalities. It cre-
ates inter-layer shortcuts that skip a certain number
of layers for visual representations. In one way,
it can skip heavy and redundant computation of

self-attention between uni-modal visual tokens for
efficiency. Besides, we adopt the asymmetric cross-
attention from vision to language in certain layers
so as to enhance the linguistic representation learn-
ing and alleviate information vanishing.

As shown in Figure 1 (c), in each block of
our cross-modal skip-connected network, mPLUG
first adopts an asymmetric co-attention architec-
ture at the first few layers for efficiency, by re-
moving the co-attention on vision which is time-
consuming due to long visual sequences. Com-
pared with the connected-attention network, this
fusion method keeps more linguistic signal from
being overwhelmed by visual signal. It is then
followed by one layer of connected-attention, by
concatenating the original visual representation and
the co-attention output on the language side as in-
put. This prevents the fused representation from
being biased towards linguistic signal and forget-
ting visual signal. Figure 1 shows that the new
cross-modal skip-connected network achieves supe-
rior performance with at least four times speed-up
than other cross-modal fusion networks. mPLUG
pushes the state of the art on a wide range of vision-
language tasks, including image captioning, image-
text retrieval, visual grounding and visual ques-
tion answering. mPLUG also demonstrates strong
zero-shot transferability on a wide range of vision-
language and video-language tasks.

2 Related Work

2.1 Vision-Language Pre-training

In terms of how information from different modali-
ties are aggregated, typical approaches to VLP (Tan
and Bansal, 2019; Chen et al., 2020; Li et al.,
2021b; Radford et al., 2021; Jia et al., 2021; Wang
et al., 2022a; Yan et al., 2021; Wang et al., 2022d,c)
can be roughly divided into two categories: dual en-
coder and fusion encoder. Dual encoder approach
utilizes two single-modal encoders to encode im-
ages and text separately, and then uses simple func-
tions such as dot product to model the instance-
level cross-modal interaction between image and
text. The advantage of dual encoder models like
CLIP (Radford et al., 2021) and ALIGN (Jia et al.,
2021) is that images and text can be pre-computed
and cached, which is quite computation-efficient.
However, they tend to fail in handling more compli-
cated VL understanding tasks that require complex
reasoning, such as visual question answering (An-
tol et al., 2015). In contrast, fusion encoder ap-
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proach uses deep fusion functions such as multi-
layer self-attention and cross-attention networks
to model the fine-grained cross-modal interaction
between image and text sequences. Representa-
tive methods of this category include the single-
stream architecture such as UNITER (Chen et al.,
2020) , OSCAR (Li et al., 2020b) and UFO (Wang
et al., 2021a), and two-stream architecture such
as LXMERT (Tan and Bansal, 2019), ALBEF (Li
et al., 2021b), BLIP (Li et al., 2022) and ERNIE-
ViL (Yu et al., 2021).

To improve the inference speed, some recent
work such as E2E-VLP (Xu et al., 2021a) and
ViLT (Kim et al., 2021) removes the complicated
object detector in feature extraction, and conducts
end-to-end VL learning with CNN-based grid fea-
tures and linearly projected patched embeddings,
respectively. In this work, mPLUG introduces a
new cross-modal fusion mechanism with cross-
modal skip-connections, to enables the fusion to
occur at disparate levels in the abstraction hier-
archy across the modalities. It achieves superior
performances in effectiveness and efficiency across
a wide range of VL tasks.

2.2 Skip-connection

Skip-connection is a popular technique to bypass
the gradient exploding or vanishing problem for
model optimization in deep neural networks, which
is widely-used in CV and NLP architectures such as
ResNet (He et al., 2016) and Transformer (Vaswani
et al., 2017). A variety of skip connection methods
have been proposed in recent years (He et al., 2016;
Vaswani et al., 2017; Huang et al., 2017; Liu et al.,
2021). ResNet (He et al., 2016) introduces summed
shortcut connections between different layers us-
ing simple identity mapping, while highway net-
work (Srivastava et al., 2015) designs a transform
gating function to control the balance of the input
and the transformed input. DenseNet (Huang et al.,
2017) designs new architectures with concatenated
skip-connections, allowing the subsequent layers
to re-use all the middle representations of previ-
ous layers. In this work, mPLUG proposes a new
cross-modal skip connection method to address
cross-modal fusion problem, and combines the
concatenated skip-connection and summed skip-
connection for choosing whether to attend to all the
concatenated representations of different modali-
ties or just focus on the cross-modal interaction
part at each layer.

3 mPLUG

3.1 Model Architecture
As shown in Figure 2, mPLUG consists of two uni-
modal encoders for image and text independently,
a cross-modal skip-connected network and a de-
coder for text generation. To better model the in-
herent modality bias information, we first use two
unimodal encoders to encode image and text sep-
arately. Following (Dou et al., 2021; Shen et al.,
2021), we use a visual transformer (Dosovitskiy
et al., 2020) directly on the image patches as the vi-
sual encoder, which is more computation-friendly
than using pre-trained object detectors for visual
feature extraction (Anderson et al., 2018; Zhang
et al., 2021). The visual encoder divides an input
image into patches and encodes them as a sequence
of embeddings {vcls, v1, v2, ..., vj} with an addi-
tional [CLS] token. The input text is fed to the text
encoder and represented as a sequence of embed-
dings {lcls, l1, l2, ..., lk}, where lcls is the embed-
ding of the [CLS] token and used to summarize the
input text. Then, the visual and linguistic represen-
tations are fed into a cross-modal skip-connected
network, which consists of multiple skip-connected
fusion blocks. In each skip-connected fusion block,
we adopt connected cross-modal fusion to each
of S asymmetric co-attention layers where S is
a fixed stride value. The aim of this network is
to take advantage of the effectiveness of the con-
nected cross-modal fusion and the efficiency of the
asymmetric co-attention for enhanced cross-modal
fusion in a recursive manner. Finally, the output
cross-modal representations are fed into a trans-
former decoder for sequence to sequence learning,
which equips mPLUG with both understanding and
generation capabilities.

3.2 Cross-modal Skip-connected Network
The cross-modal skip-connected network con-
sists of N skip-connected fusion blocks. In
each skip-connected fusion block, we adopt one
connected-attention layer to each of S asymmetric
co-attention layers where S is a fixed stride value.
We first pass the text feature and image feature
from unimodal encoders through the S asymmetric
co-attention layers. The asymmetric co-attention
layer can retain more linguistic signals so that it is
not overwhelmed by visual signals and is more ef-
ficient by removing the co-attention on vision side.
Then we connect the output text feature and im-
age feature to one connected-attention layer, which
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Figure 2: The model architecture and objectives of mPLUG, which consists of two unimodal encoders for images
and text separately, a cross-modal skip-connected network and a decoder for text generation.

can prevent the fused representation from being
biased towards linguistic signals and forgetting vi-
sual signals. We repeat the skip-connected fusion
block N times for the final connected image and
text representation.

Specifically, the asymmetric co-attention is
composed of the self-attention (SA) layer, cross-
attention (CA) layer and feed-forward network
(FFN). The input text feature ls−1 is first fed to
the self-attention layer, and then the visual feature
vs−1 is injected into the text feature lsSA by the
cross-attention layer which gives lsCA. The output
of cross-attention is added with lsSA and fed to the
FFN layer for the visual-aware text representation
ls:

lsSA = LN(SA(ls−1) + ls−1) (1)

lsCA = LN(CA(lsSA, v
s−1) + lsSA) (2)

ls = LN(FFN(lsCA) + lsCA) (3)

where LN is short for layer normalization.
The connected-attention layer is composed of

the self-attention (SA) layer and the feed-forward
network (FFN). We connect the image feature vn−1

and input text feature ln−1, where ln−1 is the output
of S asymmetric co-attention layers and vn−1 is
equivalent to vs−1. The connected image and text
feature [vn−1; ln−1] are fed to the self-attention
layer and FFN layer:

[vnSA; l
n
SA] = LN(SA([vn−1; ln−1])+[vn−1; ln−1])

(4)
[vn; ln] = LN(FFN([vnSA; l

n
SA]) + [vnSA; l

n
SA])

(5)

Then [vn; ln] is fed into the next cross-modal
skip-connected block repeatedly to get the final con-
nected image and text representation. Finally, the
connected output [vN ; lN ] is fed into a Transformer
decoder (Li et al., 2022, 2021b) for sequence to se-
quence learning.

3.3 Pre-training Tasks

We perform four standard pre-training tasks includ-
ing three understanding tasks (Image-Text Con-
trastive Learning, Image-Text Matching, Masked
Language Modeling) and one generation task (Pre-
fix Language Modeling). These pre-training tasks
are optimized jointly. We provide more details
about pre-training tasks in Appendix A.1.

4 Experiments

4.1 Data & Setup

Following the previous work (Li et al., 2021b),
we use the same pre-training dataset with 14M
images with texts, which includes two in-domain
datasets (MS COCO (Lin et al., 2014) and Visual
Genome (Krishna et al., 2017)), and three web out-
domain datasets (Conceptual Captions (Sharma
et al., 2018), Conceptual 12M (Changpinyo et al.,
2021), SBU Captions (Ordonez et al., 2011). See
Appendix A.2 for more details.

We pretrain the model for 30 epochs with the to-
tal batch size of 1024 on 16 NVIDIA A100 GPUs.
We use a 6-layer Transformer for both the text en-
coder and the cross-modal skip-connected network,
and a 12-layer Transformer for the decoder. The
text encoder is initialized using the first 6 layers
of the BERTbase (Devlin et al., 2018) model and
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Models
# Pretrain VQA COCO Caption NoCaps

Data Cross-entropy Optimization CIDEr Optimization
Test-std Test-dev B@4 M C S B@4 M C S C S

E2E-VLP 4M 73.25 73.67 36.2 - 117.3 - - - - - - -
OSCAR 6.5M 73.16 73.44 - - - - 41.7 30.6 140.0 24.5 83.4 11.4
VinVL 5.65M 76.52 76.60 38.5 30.4 130.8 23.4 41.0 31.1 140.9 25.2 97.3 13.8
LEMONlarge 200M - - 40.6 30.4 135.7 23.5 42.3 31.2 144.3 25.3 113.4 15.0
UFO 4M 76.76 - 38.7 30.0 131.2 23.3 - - - - 94.3 13.6
METER 4M 77.68 77.64 - - - - - - - - - -
BLIP 129M 78.25 78.32 40.4 - 136.7 - - - - - 113.2 14.8
VLMo - 79.94 79.98 - - - - - - - - - -
OFA 18M 79.87 80.02 - - - - 43.5 31.9 149.6 26.1 - -
SimVLMlarge 1.8B 80.03 80.34 40.3 33.4 142.6 24.7 - - - - - -
Florence 0.9B 80.16 80.36 - - - - - - - - - -
GIT 0.8B 78.81 - 44.1 31.5 144.8 24.7 44.1 32.2 151.1 26.3 125.5 16.0

mPLUGViT-B 14M 79.89 79.92 41.5 31.1 137.5 23.8 44.9 31.2 150.4 25.2 108.5 13.4
mPLUGViT-L 14M 81.27 81.26 43.1 31.4 141.0 24.2 46.5 32.0 155.1 26.0 114.8 14.8

Table 1: Evaluation Results on VQA, COCO Caption "Karpathy" test split and NoCaps validation set. B@4:
BLEU@4, M: METEOR, C: CIDEr, S: SPICE. The accuracy of vqa-score is used on VQA. More details about
comparison models in Appendix E

Models # Pretrain MSCOCO (5K test set) Flickr30K (1K test set)
data TR IR TR IR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
E2E-VLP 4M - - - - - - 86.2 97.5 98.92 73.6 92.4 96.0
UNITER 4M 65.7 88.6 93.8 52.9 79.9 88.0 87.3 98.0 99.2 75.6 94.1 96.8
OSCAR 4M 70.0 91.1 95.5 54.0 80.8 88.5 - - - - - -
VLMo 4M 78.2 94.4 97.4 60.6 84.4 91.0 95.3 99.9 100.0 84.5 97.3 98.6
ALIGN 1.8B 77.0 93.5 96.9 59.9 83.3 89.8 95.3 99.8 100.0 84.9 97.4 98.6
ALBEF 14M 77.6 94.3 97.2 60.7 84.3 90.5 95.9 99.8 100.0 85.6 97.5 98.9
Florence 0.9B 81.8 95.2 - 63.2 85.7 - 97.2 99.9 - 87.9 98.1 -
BLIP 14M 80.6 95.2 97.6 63.1 85.3 91.1 96.6 99.8 100.0 87.2 97.5 98.8
BLIP 129M 82.4 95.4 97.9 65.1 86.3 91.8 97.4 99.8 99.9 87.6 97.7 99.0

mPLUG 14M 82.8 96.1 98.3 65.8 87.3 92.6 97.6 100.0 100.0 88.4 97.9 99.1

Table 2: Image-text retrieval results on Flickr30K and COCO datasets.

the skip-connected network is initialized using the
last 6 layers of the BERTbase. Similar to (Li et al.,
2022), we explore two variants of ViTs: ViT-B/16
and ViT-L/14 and initialize the visual encoder by
CLIP-ViT (Radford et al., 2021). Unless other-
wise specified, all results reported in this paper as
“mPLUG” uses ViT-L/14. See Appendix A.3 for
more details.

4.2 Evaluation on Vision-Language Tasks

We compare our pre-trained model against
other VLP models on the six downstream V+L
tasks including visual quesion answering on
VQAv2(Antol et al., 2015) , image captioning on
MS COCO Caption(Chen et al., 2015a) and No-
Caps(Agrawal et al., 2018), image-text retrieval on
COCO(Lin et al., 2014) and Flickr30K(Plummer
et al., 2015), visual grounding on RefCOCO/Re-
fCOCO+/RefCOCOg(Yu et al., 2016; Mao et al.,

2016), visual entailment on SNLI-VE(Xie et al.,
2019), and visual reasoning on NLVR2(Suhr et al.,
2018). Details of the datasets and fine-tuning hy-
perparameters are in Appendix A.4. Details of the
comparison methods are in Appendix E

Visual Question Answering. We treat VQA as
an answer generation task and directly use uncon-
strained open-vocab generation during inference,
which is different from constrained close-vocab
generation models (Li et al., 2021b; Wang et al.,
2022b). As shown in Table 1, mPLUG achieves
81.27 on Test-std split and outperforms the SOTA
models including SimVLM and Florence, which
use 100X and 60X more pre-training image-text
pairs, respectively. Besides, under the same pre-
training data, mPLUG always significantly out-
performs ALBEF and BLIP which only rely on
co-attention from images to text for cross-modal
fusion. The gain can derive from the network de-
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Model RefCOCO RefCOCO+ RefCOCOg NLVR2 SNLI-VE
val testA testB val testA testB val-u test-u dev test-P dev test

UNITER 81.41 87.04 74.17 75.90 81.45 66.70 74.86 75.77 79.12 79.98 79.39 79.38
METER - - - - - - - - 82.33 83.05 80.86 81.19
ALBEF - - - - - - - - 82.55 83.14 80.80 80.91
VILLA 82.39 87.48 74.84 76.17 81.54 66.84 76.18 76.71 79.76 81.47 80.18 80.02
MDETR 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89 - - - -
UNICORN 88.29 90.42 83.06 80.30 85.05 71.88 83.44 83.93 - - - -
VLMo - - - - - - - - 85.64 86.86 - -
SimVLMlarge - - - - - - - - 84.13 84.84 85.68 85.62
OFA 90.05 92.93 85.26 84.49 90.10 77.77 84.54 85.20 - - 90.30 90.20

mPLUG 92.40 94.51 88.42 86.02 90.17 78.17 85.88 86.42 84.58 84.95 89.45 89.29

Table 3: Evaluation results on Visual grounding (ReferCOCO, ReferCOCO+, and ReferCOCOg), NLVR2 and
SNLI-VE. We use the accuracy of IOU 0.5 on visual grounding (a prediction is right if the IoU between the
grounding-truth box and the predicted bounding box is larger than 0.5)

sign of cross-modal skip-connections specifically
for information asymmetry of the two modalities.
Neither ALBEF nor BLIP addresses this problem
well, with bias towards the language modality. We
also present cases of VQA on out-of-answer-list or
out-of-domain images in Appendix 5.2.

Image Captioning. Following (Li et al., 2020b;
Wang et al., 2022b), we first fine-tune mPLUG
with cross-entropy loss and then with CIDEr opti-
mization (Rennie et al., 2017) for extra 5 epochs.
As shown in Table 1, mPLUG with only 14M pre-
training images can outperform the SOTA models
including LEMON and SimVLM on both COCO
Caption and Nocaps datasets. The two models
use 10X and 100X pre-training data more than
mPLUG . mPLUG performs the best on CIDEr
evaluation and surpasses the SOTA model by a
large margin of 5.5 on COCO Caption Karpathy
test set and 1.4 on NoCaps validation set.

Image-Text Retrieval. As shown in Table 2,
mPLUG outperforms all existing methods on both
datasets. Using 14M images, mPLUG achieves
better performance than BLIP with 129M and
Florence with 0.9B pre-training data. Using the
same 14M pre-training images, mPLUG substan-
tially outperforms the previous best model BLIP
by +2.7% in TR recall@1 on COCO and +1.0 % in
TR recall@1 on Flickr30K.

Visual Grounding. Table 3 shows that mPLUG
outperforms all the SOTA methods. We observe
that in RefCOCO testB the images often contain
arbitrary objects and in RecCOCOg test-u the ex-
pressions are longer than other datasets. Com-
pared with the previous best model OFA, mPLUG
achieves 3.16% absolute improvement on Ref-
COCO testB and 1.22% absolute improvement on

RefCOCOg test-u. It demonstrates that mPLUG
learns better multi-modal interaction from cross-
modal skip-connections and is better at handling
complex images and long queries. See Appendix
B for more qualitative examples.

NLVR2 & SNLI-VE. As shown in Table 3,
mPLUG can obtain competitive performances to
the SOTA models 1 in both NLVR2 and SNLI-VE
tasks, and even outperform SimVLM (Wang et al.,
2021c) and BLIP (Li et al., 2022), which use far
more pre-training data.

4.3 Effectiveness and Efficiency

4.3.1 Analysis of Stride for Skip
The stride S is the key factor to control the effective-
ness and efficiency tradeoff. Therefore, we further
compare the running time and performance of dif-
ferent stride value S in cross-modal skip-connected
network on VQA and NLVR2 tasks. Specifically,
we test four different stride values, which can be
divisible by the total number of cross-modal fu-
sion layers. The model is chosen as mPLUGViT-B

and all the other experiment settings are kept the
same. As shown in Figure 3, we can see that the
larger S is, the more efficient cross-modal fusion
is, where the running time can be largely reduced
from skipping the vision co-attention layers by 5X
times from S = 1 to S = 6. The performances of
mPLUG on both datasets gradually increases when
S = 3, and slightly decreases later on. Compared
with S = 3, mPLUG can achieve comparable per-
formance at S = 6, while speeding up by nearly
30%. Therefore, we set S = 6 on mPLUGViT-L for

1The SOTA models such as OFA and VLMo both add large-
scale text-only and image-only pre-training data for improving
the reasoning ability.
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Figure 3: Results w.r.t different stride values in cross-
modal skip-connected network on running time and
performance of VQA test-dev and NLVR2 test-P, where
the running time is the total forward time of 100 sam-
ples.

Figure 4: Results w.r.t different cross-modal fusions on
running time and performance on VQA test-dev and
NLVR2 test-P, where the running time is the total for-
ward time of 100 samples.

faster pre-training.

4.3.2 Analysis of Cross-modal Fusion
We compare the effectiveness and efficiency of dif-
ferent cross-modal fusion variants in terms of run-
ning time and performance on VQA and NLVR2
tasks. Specifically, we pre-train mPLUG with dif-
ferent cross-modal fusion network based on the
same image encoder and text encoder. All the
pre-training settings and the number of fusion lay-
ers are kept the same as in the original mPLUG
pre-training. As shown in Figure 4, the fusion
methods of co-attention and connected-attention
both requires much more running time due to long
visual sequence. Compared with the two fusion
methods, our proposed skip-connected network is
4X faster and obtain better performance on both
datasets. We also compare it with the asymmetric
co-attention used in BLIP (Li et al., 2021b, 2022)
which only relies on the co-attention layers from

Figure 5: Results w.r.t two cross-modal fusions on VQA
test-dev of different image resolution during finetuning.

images to text. Despite running slightly faster than
the skip-connected network does, the asymmetric
co-attention performs worse in accuracy on both
datasets. The performance degradation is attributed
to bias towards language and partial visual infor-
mation forgetting.

In addition, we investigate the effectiveness of
our model in tackling the problem of linguistic sig-
nal overwhelmed caused by long visual sequences
in cross-modal alignment. As shown in Figure 5,
we lengthen visual sequences by increasing the im-
age resolution, and test the performance of different
fusion models on VQA. When the image resolu-
tion is low, our skip-connected fusion model gives
marginal improvement compared to the connected-
attention fusion model. The improvement becomes
significant as the image resolution increases. When
the image resolution reaches 576, a visual sequence
is 60 times the length of a text sequence. This
shows the power of our model in tackling infor-
mation vanishing. A few cases produced by the
mPLUG with different image resolutions are avail-
able in Appendix B.

5 Case Study

5.1 Visual Grounding

We present cases with different resolutions in Fig-
ure 6 and performance comparisons in Figure 9.
We notice that low resolution can lead to failure
in multimodal understanding and alignment. Even
though the model attends to the correct areas, its
predicted bounding box can also be inaccurate be-
cause of the low resolution. Thanks to the skip-
connection structure, by increasing the resolution
of the images, our mPLUG can alleviate the lin-
guistic signal overwhelmed problem and can ade-
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darkest chair
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Figure 6: Visual grounding results from mPLUG with
different resolution on RefCOCO dataset. Red denotes
the ground truth bounding box. Green denotes the
predicted bounding box.

quately utilize the visual and linguistic signal and
correct the prediction.

5.2 VQA

As shown in Figure 7, We present cases of VQA
on out-of-answer-list and out-of-domain images to
demonstrate the capability of transferring to un-
seen domains and generating the answer that not
in the answer list. The first row of images are all
from vqa test set and the corresponding answers
are not in the 3,129 answer list, which is always
used in the previous models. We treat VQA as
an answer generation task and directly use uncon-
strained open-vocab generation during inference.
Therefore, our model can answer the question cor-
rectly. The second row of images are generated
by dall-2 (Ramesh et al., 2022), which are out-
of-domain sampls. mPLUG also achieves good

Model In Near Out Overall

SimVLMbase 83.2 84.1 82.5 83.5
SimVLMhuge 101.2 100.4 102.3 101.4
Oscar† 85.4 84.0 80.3 83.4
VinVL† 103.7 95.6 83.8 94.3
SimVLMhuge† 113.7 110.9 115.2 112.2

mPLUG 86.3 81.5 90.5 84.0
mPLUG† 116.7 113.7 117.0 114.8

Table 4: Image captioning results on NoCaps valida-
tion split (zero-shot and finetuned), and {In, Near, Out}
refer to in-domain, near-domain and out-of-domain re-
spectively. † denotes the models finetuned on COCO
Caption dataset.

Model TR IR
R@1 R@5 R@1 R@5

Zero-Shot

CLIP 88.0 98.7 68.7 90.6
ALIGN 88.6 98.7 75.7 93.8
FILIP 89.8 99.2 75.0 93.4
Florence 90.9 99.1 76.7 93.6
ALBEF† 94.1 99.5 82.8 96.3
BLIP† 94.8 99.7 84.9 96.7

mPLUG 93.0 99.5 82.2 95.8
mPLUG† 95.8 99.8 86.4 97.6

Table 5: Zero-shot image-text retrieval results on
Flickr30K. † denotes the models finetuned on COCO.

performance for the out-of-domain images.

5.3 Zero-shot Transferability
We examine the generalization of mPLUG and
compare the zero-shot result on two Vision-
Language and three Video-Language tasks.

Image Caption. We take the pretrained mPLUG
model and directly decode on NoCaps validation
set without further finetuning. As shown in Table 4,
the zero-shot performance of mPLUG is competi-
tive with fully supervised baselines such like Oscar
and VinVL. With further finetuning on MSCOCO
dataset, mPLUG outperforms the SimVLMhuge,
which use more pre-training image-text pairs and
has larger model parameters.

Image-text Retrieval. We perform zero-shot re-
trieval on Flickr30K. The result is shown in Table
5, where zero-shot mPLUG outperforms models
(CLIP, ALIGN, Florence) pretrained with more
image-text pairs. Table 5 shows that mPLUG
achieves better performance than the previous
SOTA models.

Video-text Retrieval. We evaluate the mPLUG
models pretrained and further finetuned on the
COCO-retrieval image-text dataset without any
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Figure 7: The first row of samples are from vqa test set, and the corresponding gold answers are out-of-answer-list.
The second row of images are generated by dall-2 (Ramesh et al., 2022), which are out-of-domain samples.

Model # Pretrain MSRVTT-Retrieval
data R@1 R@5 R@10

Zero-Shot

MIL-NCE How100M 9.9 24.0 32.4
VideoCLIP How100M 10.4 22.2 30.0
VATT How100M, AudSet - - 29.7
ALPRO W2M, C3M 24.1 44.7 55.4
VIOLET Y180M, W2M, C3M 25.9 49.5 59.7
CLIP WIT400M 26.0 49.4 60.7
Florence FLD900M 37.6 63.8 72.6
BLIP † 129M 43.3 65.6 74.7
mPLUG 14M 38.1 59.2 68.2
mPLUG † 14M 44.3 66.4 75.4

Fine-Tuning

VideoCLIP How100M 30.9 55.4 66.8
ALPRO C3M, W2M 33.9 60.7 73.2
VIOLET Y180M, C3M, W2M 34.5 63.0 73.4

Table 6: Zero-shot video-language results on text-to-
video retrieval on the 1k test split of the MSRVTT
dataset. † denotes the models finetuned on COCO. More
details about pretrain data in Appendix A.5

video pre-training or supervision. Table 6 shows
that zero-shot mPLUG can outperform the SOTA
models pre-trained on more pre-training data (e.g.,
Florence, BLIP), and can even outperform mod-
els finetuned on the supervised video dataset (e.g.,
VideoCLIP, VIOLET).

Video Question Answering. Following BLIP
(Li et al., 2022), We treat Video QA as an answer
generation task and perform evaluation based on

Model MSRVTT-QA MSVD-QA VATEX-Cap
Acc Acc CIDEr

Zero-Shot

VQA-T 2.9 7.5 -
BLIP 19.2 35.2 37.4
mPLUG 21.1 37.2 42.0

Table 7: Zero-shot video-language results on Question-
Answer and Caption tasks.

models finetuned on VQA. As shown in Table 7,
the zero-shot mPLUG outperforms BLIP.

Video Caption. Table 7 shows that zero-shot
mPLUG also outperforms BLIP for the superior
cross-modal generation ability.

6 Conclusion

This paper presents mPLUG, an effective and ef-
ficient VLP framework for both cross-modal un-
derstanding and generation. mPLUG introduces a
new asymmetric vision-language architecture with
novel cross-modal skip-connections, to address two
fundamental problems of information asymmetry
and computation efficiency in cross-modal align-
ment. Pretrained on large-scale image-text pairs,
mPLUG achieves state-of-the-art performance on a
wide range of vision-language tasks. mPLUG also
demonstrates strong zero-shot transfer ability when
directly applied to multiple video-language tasks.
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7 Limitations

Despite the effectiveness and efficiency of mPLUG
across a wide range of downstream image-text
tasks, our model still has several limitations:

Scalability. In our current settings, we pre-train
mPLUG with only 14M image-text pairs on the
largest size of 12+12 layer Transformer encoder-
decoder, and it is not clear how well the perfor-
mance will be if we pre-train a bigger mPLUG on a
larger pre-training dataset with other types of avail-
able data such as text-only, image-only data as well
as some labeled data.

Vision Encoder. The vision encoder within VLP
architecture plays important roles on both the ef-
fectivenss and efficiency, so far we only experi-
ment on the public CLIP vision encoder, and it
is worth investigating how to efficiently extract
more semantic-related visual features with a self-
designed visual encoder on large-scale image-text
and image only data.

Information Vanishing. Due to the presence of
remaining connected attention layers, the informa-
tion vanishing caused by long visual sequences still
exists when there is an extremely large gap in infor-
mation density (e.g., very short text). We think this
is a significant problem in cross-modal research,
which deserves more in-depth investigation and
attention.
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A Implementation Details

A.1 Pre-training Tasks

We perform four pre-training tasks including
Image-Text Contrastive Learning (ITC), Image-
Text Matching (ITM), Masked Language Modeling
(MLM) and Prefix Language Modeling (PrefixLM).
The ITC task is first applied to align the unimodal
representations from the visual encoder and text
encoder. Then, the ITM and MLM are used on the
visual and linguistic representations. Based on the
connected representation of the image and prefix
sub-sequence, the decoder is trained with a prefix
language modeling (Prefix LM) loss by generating
the remaining caption.

Image-Text Contrast (ITC). Following (Li
et al., 2021b), we employ the task to align the im-
age features and the text features from the unimodal
encoders. Specifically, we calculate the softmax-
normalized image-to-text and text-to-image simi-
larity, and take two dynamic memory queues (text,
image) to increase the number of negative exam-
ples as MoCo (He et al., 2020).

Image-Text Matching (ITM). This task aims
to predict whether an image and a sentence match
with each other on the cross-modal representation.
We also select hard negative image-text pairs based
on the contrastive text-image similarity as (Li et al.,
2021b).

Masked Language Modeling (MLM). The task
setup is basically the same as in pre-train language
models (Devlin et al., 2018; Wang et al., 2019),
where we randomly mask 15% of tokens in text
and the model is asked to predict these masked
words with the cross-modal representations.

Prefix Language Modeling (PrefixLM). This
task aims to generate the caption given an image
and predict the text segment subsequent to the
cross-modal context as (Bi et al., 2020). It op-
timizes a cross entropy loss by maximizing the
likelihood of text in an autoregressive manner.

A.2 Pre-training Dataset

Table 8 shows the statistics of the 14M images with
texts used in the pre-training stage.

COCO VG SBU CC3M CC12M

image 113K 100K 860K 3M 10M
text 567K 769K 860K 3M 10M

Table 8: Statistics of the pre-training datasets.

A.3 Pre-training Details
We use the AdamW (Loshchilov and Hutter, 2017)
optimizer with a weight decay of 0.02. The learn-
ing rate is warmed-up to 1e-5 (ViT-B/16) and 1e-4
(BERTbase) for mPLUGViT-B , and 5e-6 (ViT-L/14)
and 5e-5 (BERTbase) for mPLUGViT-L in the first
1000 iterations, and decayed to 1e-6 following a
cosine schedule. mPLUGViT-B and mPLUGViT-L are
pretrained with 16*A100-80G GPUs on the 14M
pre-training dataset for 107 hours and 145 hours,
respectively.

During pre-training, we take random image
crops of resolution 256 × 256 (ViT-B/16)/224 ×
224 (ViT-L/14) as input, and also apply RandAug-
ment (Cubuk et al., 2020) to improve the gener-
alization of vision encoders. For VQA and image
captioning tasks, we do an additional continue pre-
training on 4M image-text pairs. We increase the
image resolution during finetuning. For image-text
contrastive learning, the queue size is set as 65,536
and the momentum coefficient is set as 0.995.

A.4 Downstream Task Details
We evaluate mPLUG on the six downstream vision-
language tasks. The hyperparameters that we use
for finetuning on the downstream tasks are listed
in Table 9. Following (Li et al., 2021b), all tasks
adopt RandAugment, AdamW optimizer with a
weight decay of 0.05 and a cosine learning rate
schedule. We use an image resolution of 336 ×
336, except for VQA where we use 504 × 504
images. For VQA and image captioning tasks, we
also do an additional continue pre-training on 4M
image-text pairs, which can bring about 0.2+ accu-
racy improvement. Next we introduce the dataset
settings in detail.

VQA. The VQA task (Antol et al., 2015) re-
quires the model to answer natural language ques-
tions given an image. Most methods (Tan and
Bansal, 2019; Wang et al., 2021b; Li et al., 2020b;
Wang et al., 2021c) deal with visual question
answering tasks as multi-label classification on
pre-defined answer sets. This strategy achieves
strong performance, but it is not suitable for real-
world open scenarios. We conduct experiment on
the VQA2.0 dataset (Goyal et al., 2017), which
contains 83k/41k/81k images for training/valida-
tion/test. Following (Li et al., 2021b), we use
both training and validation splits for training, and
incorporate additional training data from Visual
Genome (Krishna et al., 2017). Following (Li et al.,
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Task LR (ViT-L/BERTbase) batch size epochs

VQA 2e-5/5e-6 1024 8
Captioning† 1e-5&8e-7 256 5
Retrieval 1e-5/2e-6 256 5
Visual Grounding 2e-5/2e-6 512 120
NLVR2 5e-5/5e-6 256 15
SNLI-VE 2e-5 64 5

Table 9: Finetuning hyperparameters for downstream
tasks. † denotes two stages fine-tuning.

2020b; Wang et al., 2022b), we concatenate the
question with the object labels and OCR tokens
extracted from image.

Image Captioning. The image captioning task
requires a model to generate an appropriate and
fluent caption for a given image. We evaluate image
captioning on two datasets COCO Caption (Chen
et al., 2015b) and NoCaps (Agrawal et al., 2018).
mPLUG finetuned with training data of COCO
Caption is tested on both of the datasets. We train
mPLUG on the MS COCO Caption and test on the
same Karpathy split (Li et al., 2020b; Wang et al.,
2021c) and NoCaps validation set. Following (Li
et al., 2020b; Wang et al., 2022b), we first fine-
tune mPLUG with cross-entropy loss for 5 epochs
with a learning rate of 1e-5 and a batch size of 256.
Based on the fine-tuned model, we the fine-tune it
with CIDEr optimization (Rennie et al., 2017) for
extra 5 epochs with a smaller learning rate of 8e-
7. We use the best checkpoint on COCO Caption
and predict on the Nocaps validation set directly.
During inference, we use beam search with a beam
size of 10, and set the maximum generation length
as 20.

Image-Text Retrieval. We conduct experiments
for both image-to-text retrieval (TR) and text-to-
image retrieval (IR) on COCO (Lin et al., 2014)
and Flickr30K (Plummer et al., 2015) datasets. We
adopt the widely-used Karpathy split (Karpathy
and Fei-Fei, 2015) for both COCO and Flickr30K.
COCO contains 113k/5k/5k images for train/vali-
dation/test, and Flickr30K contains 29k/1k/1k im-
ages for train/validation/test. Following (Li et al.,
2021b, 2022), we jointly optimize the ITC loss and
the ITM loss during fine-tuning. During inference,
we first select top-k candidates by computing the
dot-product similarity between the image and text
encoder features, and then rerank the selected can-
didates based on their ITM scores. We set k = 256
for COCO and k = 128 for Flickr30K.

Visual Grounding. Given a query in plain text
and an image, visual grounding requires models
to localize the referred object in the image. In-
stead of regressing the bounding boxes directly,
we concatenate visual features and attended tex-
tual features and feed them into the decoder to
predict the coordinates. We evaluate our method
on three referring expression grounding datasets:
RefCOCO, RefCOCO+ (Yu et al., 2016) and Re-
fCOCOg (Mao et al., 2016). The RefCOCO and
RefCOCO+ datasets share 19K images and con-
tain 142/141K queries. The RefCOCOg dataset
contains 25K images and 95K queries. To fully
use training data, we first train the model with a
mixed dataset with a learning rate of 2e-5. Then
we continue fine-tuning the model on each dataset
with a learning rate of 2e-6.

NLVR2 & SNLI-VE. We consider two datasets
for visual reasoning: NLVR2 (Suhr et al., 2018)
and SNLI-VE (Xie et al., 2019). The NLVR2 (Suhr
et al., 2018) task requires the model to predict
whether a sentence describes a pair of images. Fol-
lowing (Li et al., 2022), we use two cross-attention
layers to process the two input images, and their
outputs are merged and fed to the FFN. An MLP
classifier is then applied on the output embedding
of the language [CLS] token. The SNLI-VE (Xie
et al., 2019) task requires the model to evaluate
how the given image and text are semantically cor-
related, i.e., entailment, neutral, or contradiction.
Following (Wang et al., 2022b), the image premise,
text premise and text hypothesis are fed to the en-
coder. While we remove the decoder, and only use
the encoder modules for three-way classification,
which can save nearly half of the total computation
cost. We predict the class probabilities using the
multimodal encoder’s output representation of the
language [CLS] token.

Zero-shot Vision-Language Tasks. The pre-
training of mPLUG adopts image-text contrastive
and prefix language modeling tasks on large-scale
image-text pairs. Thus, mPLUG has zero-shot gen-
eralization ability in image-text retrieval and image
captioning. Following(Wang et al., 2021c; Li et al.,
2022), we feed a prefix prompt “A picture of” into
the text encoder to improve the quality of decoded
captions.

Zero-shot Video-Language Tasks. To evaluate
the generalization ability of mPLUG to Video-
Language Tasks, we conduct zero-shot experiments
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Figure 9: Visual grounding performance comparison
between different resolution on RefCOCO dataset.

on Video-text Retrieval, Video Caption and Video
Question Answering. Following (Li et al., 2022),
we uniformly sample n frames for each video
(n = 8 for Retrieval, n = 16 for QA, n = 8
for Caption), and concatenate the frame features
into a single sequence. For the video caption task,
we use a prefix prompt “A video of” to improve the
quality of decoded captions.

A.5 Video Pre-training Data

The video-language pre-training models always
use video datasets and image datasets. The
Video datasets include HowTo100M (Miech et al.,
2019), WebVid-2M(W2M) (Bain et al., 2021), YT-
Temporal-180M( Y180M) (Zellers et al., 2021).
Image datasets include CC3M(C3M) (Sharma
et al., 2018), FLD900M (Yuan et al., 2021),
WIT400M (Radford et al., 2021). Audio datasets
include AudioSet(AudSet) (Gemmeke et al., 2017).

B Visualization of Visual Grounding

We group the test data with different query lengths
from the RefCOCO dataset and random sample
five examples from each group. The results are
presented on Figure 8. The results show that
our mPLUG can handle both simple and complex
queries well. We also notice that the model gives
a wrong prediction at the second example in the
second row. It means the ability to discriminate
against similar objects can be further improved.
We also find that when the target object is partially
obscured, the model tends to frame the visible part
instead of the whole object, which results in inac-
curate prediction.
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Model Visual Encoder Text Encoder Skip-connected Network Text Decoder Total Time
mPLUGViT-B (S=1) 2.95s 0.14s 1.65s 0.32s 5.06s
mPLUGViT-B (S=6) 2.95s 0.14s 0.28s 0.32s 3.69s
mPLUGViT-S (S=1) 0.97s 0.14s 1.65s 0.32s 3.08s
mPLUGViT-S (S=6) 0.97s 0.14s 0.28s 0.32s 1.71s

Table 10: The running time of different modules on 100 samples. mPLUGViT-S has 4 transformer layers and other
parameters are consistent with mPLUGViT-B

VQA test-dev
mPLUGViT-B 79.89
w/o ITC 78.17
w/o PrefixLM 78.45
w/o ITM 79.36
w/o MLM 79.54

Table 11: Ablation tests on pre-training tasks of mPLUG
on the VQA test-dev set.

C Ablation Study and Time-consuming

Figure 3 calculates and compares the running time
of the cross-modal skip-connected module, which
is one of the most important modules. In Table 10,
we run the whole model on 1*V100-32G GPU to
calculate the running time of the total forward time
on 100 samples. The speedup is still significant for
the whole model when S=6 compared with S=1.

We have conducted the ablation study of pre-
training tasks on mPLUG with ViT-B vision en-
coder and tested the performance on VQA test-dev
set. As shown in Table 11, the ITC task and Pre-
fixLM task are the most effective and beneficial.

D Differences from BLIP/ALBEF

Below we give more detailed differences between
our mPLUG and BLIP/ALBEF technically. We
introduce a new asymmetric vision-language archi-
tecture with novel cross-modal skip-connections,
to address the problem of linguistic signal over-
whelmed by visual signal. and computation inef-
ficiency in multi-modal fusion. We first adopts an
asymmetric co-attention architecture at the first few
layers for efficiency, by removing the co-attention
on vision which is time-consuming due to long vi-
sual sequences. To keep the fused representation
from being biased towards linguistic signal and
forgetting visual signal, we then add one layer of
connected-attention, by concatenating the original
visual representation and the co-attention output
on the language side as input. In contrast, both
BLIP and ALBEF employ the asym co-attention
architecture, which leads to the fused representa-
tion biased towards linguistic signal. Moreover,

BLIP only transmits the fused text representation
to the decoder, which lacks visual information. It
is difficult for the text sequence representation to
simultaneously represent the long visual sequence
and the text sequence.

E Comparison Methods

• LXMERT (Tan and Bansal, 2019): is the pio-
neering work to pre-train a two-stream multi-
modal Transformer, which consists of an ob-
ject relationship encoder, a language encoder
and a cross-modality encoder. It is widely
used as a baseline method for VLP models.

• E2E-VLP (Xu et al., 2021a): proposes the
first end-to-end VLP method for both V+L
understanding and generation, with a unified
Transformer encoder-decoder architecture.

• VinVL (Zhang et al., 2021): pre-trains a large-
scale object-attribute detection model with
much larger amounts of supervised data on
four public object detection datasets for ex-
tracting better region-based visual feature.

• OSCAR (Li et al., 2020b): proposes to use ob-
ject tags detected in images as anchor points to
ease the learning of cross-modal alignments,
where the input to the Transformer is a com-
bination of image, text and object tags.

• LEMON (Hu et al., 2021): provides the first
empirical study on the scaling behavior of
VLP for image captioning, and achieves new
state of the arts on several major image cap-
tioning benchmarks.

• METER (Dou et al., 2021): systematically
investigates how to design and pre-train a fully
transformer-based VL model in an end-to-end
manner.

• VLMo (Wang et al., 2021b): presents a uni-
fied vision-language pretrained model that
jointly learns a dual encoder and a fusion en-
coder with a modular Transformer network.
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• BLIP (Li et al., 2022): proposes a new VLP
framework which transfers flexibly to both
vision-language understanding and generation
tasks. It effectively utilizes the noisy web data
by bootstrapping the captions.

• OFA (Wang et al., 2022b): proposes a uni-
fied multimodal pretrained model that unifies
modalities and tasks based on the encoder-
decoder architecture.

• SimVLM (Wang et al., 2021c): different from
previous VLP methods that only use limited
(4M-10M) image-text pairs for pre-training,
it proposes a simple VLP model with a sin-
gle prefix language modeling objective, which
pre-trains on a extremely large aligned cross-
modal data of about 1.8B noisy image-text
pairs. This is also a latest state-of-the-art
method on image captioning.

• Florence (Yuan et al., 2021): introduces a new
computer vision foundation model, which ex-
pands the representations from coarse (scene)
to fine (object), from static (images) to dy-
namic (videos), and from RGB to multiple
modalities (caption, depth).

• GIT (Wang et al., 2022a): proposes a gen-
erative image-to-text Transformer, to unify
vision-language tasks such as image/video
captioning and question answering.

• ALBEF (Li et al., 2021b): introduces a
contrastive loss to align the image and text
representations before fusing them through
cross-modal attention, which enables more
grounded vision and language representation
learning.

• UNITER (Chen et al., 2020): proposes an
improved single-stream VLP method, by de-
signing two new pre-training strategies: 1)
it uses conditional masking on pre-training
tasks instead of random masking strategy, 2)
it designs a new word-region alignment pre-
training task via the use of optimal transport
to explicitly encourage fine-grained alignment
between words and image regions.

• ALIGN (Jia et al., 2021): leverages a noisy
dataset of over one billion image alt-text pairs,
obtained without expensive filtering or post-
processing steps in the Conceptual Captions
dataset.

• VLBERT (Su et al., 2019): is a pioneering
work to pre-train a single-stream multi-modal
Transformer, which jointly trains both the
Transformer-based cross-modal fusion and
Fast R-CNN image feature extractor in both
pre-training and fine-tuning phases. It is
widely used as a baseline method for VLP
models.

• VL-T5 (Cho et al., 2021): proposes a uni-
fied framework that learns different tasks in
a single architecture with the same language
modeling objective.

• VILLA (Gan et al., 2020): is the first
known effort on large-scale adversarial train-
ing for vision-and-language (V+L) represen-
tation learning.

• MDETR (Kamath et al., 2021): proposes an
end-to-end modulated detector that detects ob-
jects in an image conditioned on a raw text
query, like a caption or a question.

• UNICORN (Yang et al., 2021b): proposes a
vision-language (VL) model that unifies text
generation and bounding box prediction into
a single architecture.

• CLIP (Radford et al., 2021): demonstrates
that the simple pre-training task of predicting
which caption goes with which image is an
efficient and scalable way to obtain the image
representation.

• CLIP-ViL (Shen et al., 2021): proposes to
use CLIP as the visual encoder in various VL
models, which can significantly outperforms
widely-used visual encoders trained with in-
domain annotated data.

• UNIMO (Li et al., 2020a): proposes a unified-
modal pre-training architecture with cross-
modal contrastive learning, which can effec-
tively adapt to both single-modal and multi-
modal understanding and generation tasks.
Except for limited image-text pairs, it utilizes
large amounts of single-modal data such as
text or image for pre-training.

• ViLBERT (Lu et al., 2019): proposes one of
the first work that extend the BERT architec-
ture to a multi-modal two-stream VLP model,
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which processes both visual and textual in-
puts in separate streams that interact through
co-attentional transformer layers.

• MIL-NCE (Miech et al., 2020): is capable
of addressing mis alignments inherent in nar-
rated videos.

• ALPRO (Li et al., 2021a): proposes a new
visually-grounded pre-training task, prompt-
ing entity modeling. It aims to learn fine-
grained region-entity alignment.

• VATT (Akbari et al., 2021): presents a frame-
work for learning multi-modal representations
from unlabeled data using convolution-free
Transformer architectures.

• VIOLET (Fu et al., 2021): proposes a
fully end-to-end video-language transformer,
which adopts a video transformer to explicitly
model the temporal dynamics of video inputs.

• VideoCLIP (Xu et al., 2021b): proposes a
contrastive approach to pre-train a unified
model for zero-shot video and text understand-
ing.

• VQA-T (Yang et al., 2021a): proposes to
avoid manual annotation and generate a large-
scale training dataset for video question an-
swering making use of automatic cross-modal
supervision.

• FILIP (Yao et al., 2021): achieves finer-level
alignment through a cross-modal late interac-
tion mechanism. It uses a token-wise max-
imum similarity between visual and textual
tokens to guide the contrastive objective.
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