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Abstract

End-to-end Speech Translation (ST) aims at
translating the source language speech into tar-
get language text without generating the inter-
mediate transcriptions. However, the training
of end-to-end methods relies on parallel ST
data, which are difficult and expensive to ob-
tain. Fortunately, the supervised data for auto-
matic speech recognition (ASR) and machine
translation (MT) are usually more accessible,
making zero-shot speech translation a poten-
tial direction. Existing zero-shot methods fail
to align the two modalities of speech and text
into a shared semantic space, resulting in much
worse performance compared to the supervised
ST methods. In order to enable zero-shot
ST, we propose a novel Discrete Cross-Modal
Alignment (DCMA) method that employs a
shared discrete vocabulary space to accommo-
date and match both modalities of speech and
text. Specifically, we introduce a vector quan-
tization module to discretize the continuous
representations of speech and text into a fi-
nite set of virtual tokens, and use ASR data
to map corresponding speech and text to the
same virtual token in a shared codebook. This
way, source language speech can be embedded
in the same semantic space as the source lan-
guage text, which can be then transformed into
target language text with an MT module. Exper-
iments on multiple language pairs demonstrate
that our zero-shot ST method significantly im-
proves the SOTA, and even performs on par
with the strong supervised ST baselines1.

1 Introduction

End-to-end Speech Translation (ST) aims at de-
signing a single model to directly learn the map-
ping between source language speech and target
language text, and has attracted much attention

∗Work was done while at Alibaba DAMO Academy.
†Corresponding author.

1Our code is available at https://github.com/
ZNLP/zero-shot-st
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Figure 1: The key of zero-shot speech translation is to
learn an appropriate shared semantic space for source
language speech and text.

recently due to its advantages of no error propa-
gation and lower decoding latency (Berard et al.,
2016; Liu et al., 2019; Wang et al., 2020c; Xu et al.,
2021). However, the training of end-to-end mod-
els requires large-scale and high-quality parallel
ST data, which are expensive and difficult to ob-
tain. Public datasets such as MUST-C (Gangi et al.,
2019a) and CoVoST (Wang et al., 2020a) are quite
limited in scale and languages. In contrast, the
datasets for automatic speech recognition (ASR)
and machine translation (MT) are easier to access
in practice. Therefore, zero-shot ST, which learns
an end-to-end model using only ASR and MT data,
is a direction worth exploring.

As illustrated in Figure 1, the key of zero-shot
ST is to learn an appropriate shared semantic space
for source language speech and text, after which
the model can translate from the common space
using an MT module without relying any ST data.
There are some attempts to achieve zero-shot ST us-
ing multi-task learning that implicitly aligns speech
and text (Escolano et al., 2021; Dinh, 2021). Due
to the lack of supervised objective functions for
cross-modal alignment, the speech and text repre-
sentations cannot be well aligned in these methods
and the results lag behind supervised settings by
a significant margin. Inspired by recent research
on learning shared semantic space for speech and
text (Alinejad and Sarkar, 2020; Liu et al., 2020;
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Han et al., 2021), we aim to design a supervised
cross-modal alignment task that explicitly maps
speech and text into a common feature space.

However, our preliminary study indicates that
the existing cross-modal alignment methods that
bridge the gap between speech and text in a con-
tinuous space do not work well in the zero-shot
ST task because in this condition, it is difficult to
completely align two modalities to the same dis-
tribution in a high-dimensional continuous space.
To address this issue, we propose a novel Discrete
Cross-Modal Alignment (DCMA) method that em-
ploys a shared discrete vocabulary space to accom-
modate and match both modalities of speech and
text. With the shared discrete vocabulary across the
two modalities, the source language speech and the
corresponding text are mapped to the same virtual
token, ensuring representational consistency.

Specifically, the ST model consists of a speech
encoder and a text decoder. We introduce a vector
quantization module between the speech encoder
and the text decoder to discretize the continuous
representations into a finite set of virtual tokens.
The ASR data are used to provide supervision that
maps the speech and its corresponding text into the
same virtual token of the shared codebook. In addi-
tion to the vector quantization module, the speech
encoder is decoupled into an acoustic encoder and
a semantic encoder. A shared memory module fol-
lowing the speech encoder is introduced to project
variable-length input features of both source lan-
guage speech and text into fix-sized ones. Ma-
chine translation is jointly trained to learn the map-
ping between the fix-sized features on the source
side and the text on the target side. To further en-
hance the speech encoder, masked language model
(MLM) and connectionist temporal classification
(CTC) are employed as auxiliary tasks in which
all parameters are shared. Experimental results on
the benchmark dataset MUST-C demonstrate that
our discrete alignment method can significantly
improve the performance of zero-shot speech trans-
lation.

The contributions of this paper are as follows:

• We propose a novel cross-modal alignment
method, DCMA, which aligns speech and text
in a shared discrete semantic space.

• We design a vector quantization module to dis-
cretize continuous representations to a finite
set of virtual tokens so that cross-modal align-
ment in discrete space can be well achieved.

• Experimental results demonstrate that our
method significantly improves the SOTA in
zero-shot ST and performs on par with the
supervised models.

2 Related Work

Data Scarcity in End-to-End ST Berard et al.
(2016); Duong et al. (2016) give the first proof of
potential for end-to-end ST models, which have
become popular recently (Inaguma et al., 2020;
Wang et al., 2020b). However, the performance of
the end-to-end methods is heavily dependent on
large-scale and high quality parallel data, which
are difficult to collect on a large scale (Gangi et al.,
2019a; Wang et al., 2020a). Many techniques,
such as pretraining (Berard et al., 2018; Bansal
et al., 2018, 2019; Wang et al., 2020d; Zheng et al.,
2021), multi-task learning (Chuang et al., 2020;
Xu et al., 2021; Tang et al., 2021a,b), knowledge
distillation (Liu et al., 2019; Gaido et al., 2020;
Inaguma et al., 2021), multilingual translation (In-
aguma et al., 2019; Gangi et al., 2019b; Le et al.,
2021), and data augmentation (Jia et al., 2019; Ba-
har et al., 2019; Wang et al., 2021) are applied
to utilize the data from related tasks. Zero-shot
scenario has attracted attention in recent years, but
there still remains a significant performance gap be-
tween zero-shot and supervised methods (Escolano
et al., 2021; Dinh, 2021). One contributing factor
is the lack of explicit cross-modal alignments.

Cross-modal Alignment in End-to-End ST
Cross-modal alignment aims at aligning representa-
tions of speech and text to extract common features.
Some recent works have pointed out that the repre-
sentation gap between speech and text is a major
obstacle to speech translation. There are many
proposals to bridge the gap, including introducing
an alignment task (Alinejad and Sarkar, 2020; Liu
et al., 2020; Tang et al., 2021a; Han et al., 2021),
mixup strategy (Fang et al., 2022) and multimodal
pretraining (Zheng et al., 2021; Bapna et al., 2021;
Ao et al., 2021; Babu et al., 2021; Bapna et al.,
2022). Additionally, some more sophisticated mod-
ules such as adaptive feature selection (Zhang et al.,
2020), shrink mechanism (Liu et al., 2020) and
shared memory module (Han et al., 2021) have
been proposed to address the length inconsistency
problem. These methods align the representations
of two modalities in continuous feature space. Al-
though these methods work effectively in super-
vised settings, our preliminary study indicates that
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Figure 2: Overview of our model DCMA. The speech encoder is decoupled into acoustic encoder and semantic
encoder. We adopt a shared memory module to project feature sequence into a fixed length and a vector quantization
module to perform cross-modal alignment in discrete space. The text decoder is used to translate from the discrete
common space output by vector quantization module. The part above the dashed line illustrates the data flow of the
MT task from source language text into target language text. The ASR data is employed to design the cross-modal
alignment loss. The data flow of the bottom part can be used to perform the ST task.

the alignments in continuous space do not work
well under zero-shot scenario because it is diffi-
cult to match two continuous distributions without
strong supervision.

3 Method

3.1 Problem Definition

We attempt to train an end-to-end model with only
ASR and MT corpora, achieving zero-shot speech
translation. We denote the ASR corpus and the MT
corpus as DASR = {(s,x)} and DMT = {(x′,y)}
respectively, where s is the audio wave sequence,
x is the corresponding transcripts, x′ is the source
language text and y is the corresponding translation
in the target language.

3.2 Model Architecture

Our DCMA model follows the encoder-decoder
framework, as shown in Figure 2. In addition to
the conventional speech encoder and text decoder,
we also introduce a shared memory module and
a shared vector quantization module between the
encoder and the decoder.

Speech Encoder The speech encoder consists of
an acoustic encoder and a semantic encoder to en-
courage information sharing between tasks (Wang
et al., 2020c; Tang et al., 2021a; Xu et al., 2021).

For speech input, we use the pretrained wav2vec2.0
(Baevski et al., 2020b) as the acoustic encoder to
extract speech representations from the original
waveform, which has been shown effective in su-
pervised ST (Ye et al., 2021; Fang et al., 2022).
Since the speech feature sequence can be very long,
we add two additional one-dimensional convolu-
tion layers with stride 2 to shrink the length by a
factor of 4. The speech representations are then
fed into the shared semantic encoder to obtain the
semantic representations. For text input, only the
shared semantic encoder is employed. The seman-
tic encoder follows Transformer (Vaswani et al.,
2017), and its output is denoted as H ∈ Rl×d.

In order to enhance the semantic encoder so that
it can embed both acoustic and textual features,
we apply the Connectionist Temporal Classifica-
tion (CTC) (Graves et al., 2006) on the contex-
tual features of speech and the Masked Language
Model (MLM) (Devlin et al., 2019) on the contex-
tual features of text. The softmax vocabulary and
paramters are shared across the two tasks to en-
courage implicit alignment between the speech and
text representations learnt by the semantic encoder
(Bapna et al., 2022). Specifically, the text in source
language from DMT follows the same mask pol-
icy as BERT (Devlin et al., 2019), and the model
is required to predict the correct masked tokens.
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Figure 3: The detailed calculation process of the vec-
tor quantization module in one group. This process is
performed G times in parallel, and the selected code
vectors from G groups are concatenated to get the final
output.

The CTC loss is applied on the speech input from
DASR, using token-level transcription as the target.

Shared Memory Module Since the semantic en-
coder outputs representations in different lengths
for speech and text, making it difficult to per-
form cross-modal alignment, we introduce a shared
memory module (Han et al., 2021) to project the
contextual features from two modalities with dif-
ferent lengths into fix-sized M . In calculating the
attention, this module keeps M learnable, modality-
independent memory queries, while the contextual
features are used as keys and values as shown be-
low:

Q = M ∈ RM×d (1)

K = V = H ∈ Rl×d (2)

O = MultiHead(Q,K,V) ∈ RM×d (3)

where M denotes the trainable memory queries and
H denotes the output contextual features of the se-
mantic encoder. O = [o1, . . . , oM ] are the output
of the memory module, in which om is the seman-
tic representation extracted by the m-th memory
query.

Vector Quantization Module This is the core
module of our DCMA model. Inspired by vq-
wav2vec (Baevski et al., 2020a), we discretize the
semantic memory om to a finite set of virtual tokens
via a quantizer, so that we can perform cross-modal
alignment in discrete space. A codebook is a vo-
cabulary that contains V virtual tokens, each of
which is represented by a vector e ∈ Rd′ like word
embedding. The vector quantization module aims
to select one entry from the codebook as the output.

As illustrated in Figure 3, given a semantic mem-
ory om, we first apply a linear layer, followed by

GELU and another linear layer to map it into log-
its lm ∈ RV , which is the score of each virtual
token. Second, we adopt Gumbel softmax (Mad-
dison et al., 2014; Jang et al., 2017) to choose the
discrete entries in a differentiable way. The proba-
bilities for selecting the j-th entry are

pm,j =
exp(lm,j + nj)/τ∑V
k=1 exp(lm,k + nk)/τ

(4)

where n = − log(− log(u)) and u are sampled
from the uniform distribution U(0, 1). The j-th
entry is chosen by j = argmaxj pm,j during the
forward pass, denoted as ôm = ej . The quantiza-
tion module updates the original semantic memory
om with ôm, and performs the same operation for
all semantic memories to obtain the outuput code
vectors Ô ∈ RM×d. During the backward pass,
the gradient of selecting one entry is estimated by
the gradient of the true Gumbel softmax output.

Since a codebook contains a limited discrete
space of size V , we increase the representation ca-
pability of the discrete space by increasing the num-
ber of codebooks. Suppose there are G groups with
V entries, this module selects one entry from each
group and concatenate them to obtain ôm ∈ RG×d′ ,
where we set d′ = d/G. The grouping operation
can theoretically yield V G different outputs, which
means we can increase the size of the discrete space
exponentially. The codebooks are shared across se-
mantic memories extracted by different memory
queries, and are also shared across two modalities.

Let (s,x) be an ASR training sample, the quan-
tization module is expected to select the same code-
book entries for the speech and the corresponding
text, so that the representations of both modali-
ties are aligned in the discrete space. First, the
softmax function is applied to convert the logits
of i-th group lm,i ∈ RV into distribution across
codebooks.

p̂modal
m,i,j =

exp(lmodal
m,i,j )∑V

k=1 exp(l
modal
m,i,k )

,modal ∈ {s,x}

(5)

Then we treat the distribution of text as target and
encourage the module to make the same choices
for the corresponding speech.

Lalign(s,x) =
1

G

M∑
m=1

G∑
i=1

V∑
j=1

−sg(p̂xm,i,j) log p̂
s
m,i,j

(6)
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where M ,G,V are the number of memory queries,
codebook groups and entries respectively, and sg(·)
means the stop gradient operation.

Text Decoder The text decoder also follows the
basic network structure of the Transformer, which
takes the fixed-length code vectors Ô as input, and
generates the target translation conditioned on the
discrete representations. The code vectors from
the text are used in training while those from the
speech are used in inference.

The decoder module is trained using parallel text
data. Let (x′,y) be an MT training example, the
objective function of the MT task can be calculated
by cross-entropy loss as in:

LMT (x
′,y) = −

|y|∑
i=1

log p(yi|y<i,x
′) (7)

3.3 Training Process
We train our model in the pretrain-finetune manner.
We first train the semantic encoder, shared memory
module, shared vector quantization module and the
text decoder with the MT task and the MLM task. It
helps to make the training more stable and enriches
the codebook entries with semantic information. In
the finetune stage, we optimize the entire model
with all the relevant tasks as shown below:

L =E(s,x)∈DASR
[Lalign(s,x) + αLCTC(s,x)]

(8)

+ E(x′,y)∈DMT
[LMT (x

′,y) + βLMLM (x′)]

We optimize Lalign and LCTC in the ASR batches,
and alternately optimize the LMT and LMLM in
the MT batches. Note that no end-to-end ST data
are involved in the training process.

4 Experiments

4.1 Datasets
ASR Datasets MUST-C (Gangi et al., 2019a)
is one of the largest multilingual speech transla-
tion datasets. MUST-C contains the English (En)
speech, the corresponding transcription, and the tar-
get translation in 8 different languages, including
German (De), French (Fr), Russian (Ru), Spanish
(Es), Romanian (Ro), Italian (It), Portuguese (Pt),
and Dutch (Nl). During training, we use only the
speech and its transcription as ASR dataset. During
inference, we use the dev set for validation and the
tst-COMMON set for test.

En→ ASR MT
hours #sentences name #sentences

De 408 234K WMT14 4.5M
Fr 492 280K WMT14 5.4M*

Ru 489 270K WMT14 1.0M
Es 504 270K WMT14 3.8M
Ro 432 240K WMT16 0.6M
It 465 211K OPUS100 1.0M
Pt 385 211K OPUS100 1.0M
Nl 442 253K OPUS100 1.0M
* We only use europarl v7, commoncrawl and news com-

mentary subsets of WMT14 En-Fr.

Table 1: The detailed statistics of all datasets.

MT Datasets We use MT datasets in various do-
mains different from the ASR dataset. Specifically,
we use WMT 20142 for En-De, En-Fr, En-Ru and
En-Es, WMT 20163 for En-Ro, and OPUS1004

for En-It, En-Pt and En-Nl. The transcription and
its translation in MUST-C can serve as in-domain
MT data to further investigate the performance of
zero-shot ST5. The detailed statistics are shown in
Table 1.

4.2 Experimental Settings

Pre-processing For speech input, we use the 16
kHZ raw audio waves and normalize the wave se-
quences by a factor of 215 to the range of [−1, 1].
In order to utilize the GPU more efficiently, we
filter out speech-transcription pairs whose audio
frames exceed 1M.

For the text input, capitalization and punctuation
are preserved. We filter out MT samples whose
number of source or target tokens is over 250 and
whose length ratio is outside the [2/3, 3/2] interval.
For each language pair, we use a unigram senten-
cepiece6 model to learn a 10K vocabulary from the
text portion of MUST-C, and apply it to segment
other text data into subword units. The vocabulary
is shared across both source and target languages.

Model Configuration We use wav2vec2.0
(Baevski et al., 2020b) as the acoustic encoder,
which follows the base configurations and is pre-
trained on the unlabeled audio data from Lib-

2http://www.statmt.org/wmt14/
translation-task.html

3https://www.statmt.org/wmt16/
translation-task.html

4http://opus.nlpl.eu/opus-100.php
5Our method leverages MT batches and ASR batches al-

ternately, so the source language text overlap brought by intro-
ducing in-domain MT data will not cause data leakage.

6https://github.com/google/
sentencepiece
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Methods Training Data BLEU

Speech ASR MT ST En-De En-Fr En-Ru En-Es En-Ro En-It En-Pt En-Nl

Previous state-of-the-art for zero-shot ST

MultiSLT (Escolano et al., 2021) × ✓ ✓ × 6.8 10.9 - 6.8 - - - -

Previous cross-modal alignment methods

Chimera* (Han et al., 2021) ✓ ✓ ✓ × 13.5 22.2 8.3 15.3 8.5 12.6 16.9 13.1

Supervised baselines on MUST-C

Fairseq ST (Wang et al., 2020b) × ✓ × ✓ 22.7 32.9 15.3 27.2 21.9 22.7 28.1 27.3
Espnet ST (Inaguma et al., 2020) × ✓ ✓ ✓ 22.9 32.8 15.8 28.0 21.9 23.8 28.0 27.4
W2V2-Transformer** ✓ × ✓ ✓ 24.1 35.0 16.3 29.4 23.1 24.8 30.0 28.9

This work

DCMA ✓ ✓ ✓ × 22.4 29.7 11.8 24.6 16.8 18.4 24.2 22.0
+ in-domain MT data ✓ ✓ ✓ × 24.0 33.1 16.0 26.2 22.2 24.1 29.2 28.3

Table 2: BLEU scores on the tst-COMMON set in 8 language pairs in MUST-C. “Speech” means speech self-
supervised pretraining using unlabeled audio data. ASR data is leveraged for speech recognition task or for
cross-modal alignment. * is reproduced under zero-shot scenario, which is a strong baseline of performing cross-
modal alignment in continuous space. ** from Fang et al. (2022) is a baseline model by combining wav2vec 2.0
(Baevski et al., 2020b) and a Transformer.

riSpeech (Panayotov et al., 2015). Two additional
1-dimensional convolution layers are used to shrink
the length of the speech features, with stride size
2, kernel size 5, padding 2, and hidden dimension
1024.

For the semantic encoder, we use a 6-layer Trans-
former encoder. The memory queries are 64 512-
dimensional vectors. The vector quantization mod-
ule consists of G = 128 groups of codebook with
V = 50 entries in each group, which can pro-
duce 50128 possible codewords. A linear layer, fol-
lowed by GELU and another linear layer are used
to project the semantic memory into G · V = 6400
logits with 1024 hidden units. The Gumbel soft-
max produces a one-hot vector for each group. The
temperature τ decays exponentially from 2 to 0.5
with a factor of 0.999995 and then keeps constant
at 0.5. The text decoder consists of 6 transformer
layers. Each of the layers in the semantic encoder
and text decoder module has 512-dimensional hid-
den sizes, 8 attention heads, and 2048 feed-forward
hidden units. A 512-dimensional word embedding
layer is shared across the semantic encoder and the
text decoder.

Training Details We train our model following
the pretrain-finetune strategy. During pretraining,
we train the model with the MT and MLM tasks.
The learning rate is 7e-4 with 4K warm-up up-
dates. We pretrain the model up to 150K updates,
with at most 1152 sentence pairs per batch. In
the stage of zero-shot finetune, we adopt multi-
task training as described in Section 3.3. We set

both α and β in Equation (8) to 1.0. The learning
rate is set to 1e-4 with 10K warm-up updates. We
finetune the model up to 150K updates, with at
most 16M audio frames per batch. In both the pre-
train and the finetune stages, the model is trained
by Adam optimizer (Kingma and Ba, 2015) with
β1 = 0.9, β2 = 0.98. An inverse square root sched-
ule algorithm is adopted for the learning rate. Both
the dropout and label smoothing rate are set to 0.1
for regularization. The whole training process is
carried out on two Nvidia Tesla-V100 GPUs.

During inference, we average the model parame-
ters of the last 5 checkpoints. We use beam search
with a beam size of 5. The performance is eval-
uated with case-sensitive BLEU (Papineni et al.,
2002) calculated by SacreBLEU7 (Post, 2018).

5 Results and Analysis

5.1 Main Results

Comparison with zero-shot methods We com-
pare our DCMA method with MultiSLT (Escolano
et al., 2021), which is the previous SOTA for zero-
shot speech translation. As shown in Table 2, our
method achieves remarkable improvements. We
also notice that introducing in-domain MT data can
further improve the performance and is more use-
ful when the MT data size is small (Ru, Ro, It, Pt
and Nl)8. To demonstrate the advantages of dis-
crete alignment, we implement the Chimera (Han
et al., 2021), a continuous alignment method, to

7https://github.com/mjpost/sacrebleu
8This can be further demonstrated in Appendix A
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perform zero-shot ST, which has a similar model
architecture as our DCMA and is trained under
the same conditions. The difference is that it does
not have the vector quatization module and instead
aligns the representations of speech and text with
the continuous contrastive loss. Our method signif-
icantly outperforms Chimera on all language pairs,
demonstrating the potential of discrete space for
cross-modal alignment in zero-shot ST9.

Comparison with supervised methods We com-
pare our zero-shot DCMA method with the super-
vised baselines Fairseq ST (Wang et al., 2020b),
Espnet ST (Inaguma et al., 2020), and W2V2-
Transformer, which also adopt the pretrain-finetune
procedure but are finetuned on the parallel ST
data. W2V2-Transformer utilizes a speech self-
supervised learning model, combining the pre-
trained wav2vec 2.0, a 6-layers transforemr en-
coder and a 6-layers transforemr decoder. As
shown in Table 2, our DCMA method achieves
competitive performance compared to the super-
vised baselines when in-domain MT data are
used. This demonstrates that the zero-shot DCMA
method can learn an effective end-to-end ST model
without using end-to-end ST data, as well as the
possibility of projecting speech and text into a
shared space. Although our zero-shot method uses
more MT data than the supervised baselines, our
method does not use any end-to-end ST data, mak-
ing it widely useful in low-resource scenarios.

Comparison with cascaded system and data syn-
thesis method We compare our zero-shot DCMA
method with those that also do not use parallel ST
data, namely the cascade system and data synthetic
method (Jia et al., 2019). For the cascade ST sys-
tem, the ASR part is the W2V2-Transformer, and
the MT part follows the basic Transformer config-
uration. The cascaded system first translates the
speech into source language text, and then trans-
lates the transcription into the target translation.
For generating synthetic data, we first leverage the
MT model in cascaded system to translate the tran-
scriptions in ASR dataset into the target transla-
tion. The ST model W2V2-Transformer is initial-
ized with the MT model and finetuned with the
synthetic data. As shown in Table 3, our DCMA
method achieves comparable performance to those
of other methods. However, cascaded system faces

9We conduct some analyses of the representations learnt
by continuous alignment and discrete alignment in Appendix
B

Methods WER(↓) MT BLEU ST BLEU

Cascaded ST 11.1 28.6 23.5
+ in-domain MT data 11.1 32.4 26.7

Synthetic Data - 28.6 23.3
DCMA - - 22.4

+ in-domain MT data - - 24.0

Table 3: Comparison with zero-resource methods on
MUST-C En-De corpus. We report the Word Error Rate
(WER) of speech-transcription pairs for ASR models,
the MT BLEU scores of transcription-translation pairs
for MT models, and the ST BLEU scores of speech-
translation pairs for ST models.

Parameter Sharing Discrete Alignment BLEU

✓ ✓ 22.4
✓ × 1.3
× ✓ 21.8
× × 0.1

Table 4: Ablation studies on the MUST-C En-De cor-
pus. “Parameter sharing” means sharing the softmax
vocabulary and parameters across MLM and CTC.

the problem of high decoding latency, and generat-
ing synthtic data is a time-consuming process. In
Section 5.5, we show that our method can outper-
form the cascade system on well-aligned subsets.

5.2 Ablation Studies
We share the softmax vocabulary and parameters
across the two training objectives, LMLM and
LCTC , to encourage implicit alignment between
the speech and text representations learnt by the
semantic encoder. To better evaluate the contribu-
tion of the sharing strategy and our proposed dis-
crete alignment model, we conduct ablation studies
on the MUST-C En-De corpus. As shown in Ta-
ble 4, implicit alignment between speech and text
through the sharing strategy is beneficial to im-
prove the performance. However, the proposed
discrete alignment method is the most important
and indispensable (performance degradation from
22.4 to 1.3 without it).

5.3 Effect of the Size of Codebooks
The shared vector quantization module discretizes
the continuous vectors to a finite set of virtual to-
kens, so we can perform cross-modal alignment in
the shared discrete space. An important question
arises that how big codebooks are needed so that
the vectors can be discretized without losing repre-
sentation ability. Given G groups of codebook with
V entries, the number of theoretically possible out-
puts is V G, so that we can exponentially increase
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Methods V G MT BLEU ST BLEU

Transformer - - 28.6 -
DCMA 50 2 4.5 -
DCMA 50 4 19.6 -
DCMA 50 8 25.0 -
DCMA 50 16 25.7 -
DCMA 50 32 26.7 18.5
DCMA 50 64 27.4 21.5
DCMA 50 128 28.0 22.4
DCMA 50 256 27.8 19.8

Table 5: MT BLEU scores and ST BLEU scores on
the tst-COMMON set of MUST-C En-De corpus with
different size of codebooks. The number of theoretically
possible outputs is V G.
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Figure 4: Curve of BLEU scores against the size of ASR
data size on MUST-C En-De corpus.

the size of codebooks by increasing G. We vary
the setting of G and report the MT BLEU scores of
transcription-translation pairs and the zero-shot ST
BLEU scores of speech-translation pairs. We ob-
serve that when the discrete space is small (e.g. row
2), the quantization operation loses a great deal of
representational power, but when the discrete space
becomes larger the MT performance gets better and
better. However, continuing to increase the size of
codebooks (e.g. when G is 256) does not improve
the performance. Our proposed DCMA method
achieves the best performance when the number of
groups is set to G = 128.

5.4 Effect of the Size of ASR Data

The key part of our method is to use ASR data to
learn a discrete shared semantic space. Therefore,
the ASR data size is an important factor. We ran-
domly sample different amount of ASR data from
the MUST-C En-De corpus. As shown in Figure
4, we observe a continuous improvement of BLEU
scores with the increase of ASR data size.
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Figure 5: The tst-COMMON set of MUST-C En-De cor-
pus is divided into 5 subsets according to sentence-level
alignment accuracy. The histogram represents the size
of each subset. Red circles are the ST BLEU scores of
DCMA, green squares are the ST BLEU scores of cas-
caded system, and orange triangles are the transcription-
translation BLEU scores of MT model. Our method is
comparable to cascaded system and text translation on
the well-aligned subsets.

5.5 Can Our Method Achieve Cross-modal
Alignment?

To evaluate whether our model can project the
speech and text with the same semantic to the same
virtual tokens, we conduct some analyses of the
alignment accuracy. Let (s,x,y) be an ST test
sample. The speech input s can be discretized into
Zs = [zs1, . . . , z

s
M], where zsi = [zsi1, . . . , z

s
iG] is

the code vector ids selected when discretizing the
features extracted by the i-th memory query and
zsij is the code vector id selected in the j-th group.
The M and G are the number of memory queries
and the number of codebook groups respectively.
We do the same operation for text input x to ob-
tain Zx, and define the sentence-level accuracy

sent_acc =
∑M

i=1

∑G
j=1 1{zsij=zxij}
M ·G . The test set is

divided into 5 subsets according to the sentence-
level alignment accuracy, and we calculate the MT
BLEU scores and ST BLEU scores for each subset.
As shown in Figure 5, most of speech utterances
are discretized with over 40% alignment accuracy,
which indicates the ability of our model to align
speech and text into shared discrete codebooks.
We also observe a continuous improvement of ST
BLEU scores with the increase of sentence-level
alignment accuracy. The performance of the zero-
shot ST is comparable to that of text translation
or better than that of the cascade system on the
well-aligned subsets. It indicates the big potential
of our method that the zero-shot ST will achieve
much better performance if we can design better
cross-modal alignment method.
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6 Conclusion

In this paper, we propose a novel alignment method
DCMA to enable zero-shot ST. The key part of our
approach is to discretize the continuous vectors to a
finite set of virtual tokens and use ASR data to map
the corresponding speech and text to the same vir-
tual token in the shared codebook. Our experiments
demonstrate that our method can learn an effective
end-to-end ST model without any parallel ST data.
It significantly improves the existing SOTA and
achieves competitive performance compared to the
supervised models.

7 Limitations

In this paper, we propose a zero-shot ST method,
which eliminates reliance on end-to-end ST data,
allowing end-to-end models to be trained on the
same data conditions as cascade systems. The
performance of the cascade systems can benefit
from both the pretrained speech models (such as
wav2vec 2.0) and the pretrained text models (such
as BART and T5). However, since our method in-
troduces additional modules between the encoder
and the decoder, the pretrained text model cannot
be directly integrated into the architecture. Exper-
iments show that our method can outperform the
cascade system and obtain comparable results to
those of text translation on the well-aligned subsets.
However, on the examples with low alignment ac-
curacy, our method is not as robust as the cascade
system. How to improve projections onto discrete
units is an issue that our future work will explore.
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A MT BLEU Scores after Pretraining

To evaluate the domain gap between MUST-C and
the MT datasets (WMT and OPUS), we report MT
BLEU scores after pretraining.

En→ DCMA + in-domain MT data ∆

De 28.0 31.2 +3.2
Fr 39.3 43.2 +3.9
Ru 14.5 19.6 +5.1
Es 31.6 35.7 +4.1
Ro 21.1 29.1 +8.0
It 23.3 30.8 +7.5
Pt 29.5 36.6 +7.1
Nl 27.3 35.0 +7.7

Table 6: MT BLEU scores on transcription-translation
pairs of MUST-C tst-COMMON set.

B Discrete vs. Continuous Alignment

To explore the benefits of discrete alignment, we
conduct some analyses of representations learnt
by continuous alignment and discrete alignment.
Let (si,xi) be an ASR test sample. The fixed-
length representations produced by the encoder
are denoted as Os

i = [osi1, . . . , o
s
iM ] and Ox

i =
[oxi1, . . . , o

x
iM ], where M is the number of memory

queries. We define the sentence embedding in each
modality Ōs

i = 1
M

∑M
j=1 o

s
ij , Ō

x
i = 1

M

∑M
j=1 o

x
ij .

Then we calculate the average memory-level and
sentence-level cosine similarity on subsets with dif-
ferent alignment accuracy, as described in Section
5.5.

sim_memory =
1

N ·M

N∑
i=1

M∑
j=1

cos(osij , o
x
ij)

sim_sentence =
1

N

N∑
i=1

cos(Ōs
i , Ō

x
i )

As shown in Table 7, our discrete alignment method
significantly improves the sentence-level cosine
similarity over the continuous alignment, though
both alignments are performed in memory level.
We believe it is because that the discrete alignment
aligns the corresponding speech and text semanti-
cally, rather than just minimizing the distance gap
between memories. Our method can also get better
memory-level cosine similarity on the well-aligned
subsets.

Acc DCMA Chimera
memory sentence memory sentence

[0.8, 1.0] 0.92 0.94 0.87 0.70
[0.6, 0.8) 0.84 0.89 0.81 0.63
[0.4, 0.6) 0.69 0.80 0.71 0.56
[0.2, 0.4) 0.48 0.67 0.58 0.47
[0.0, 0.2) 0.28 0.57 0.38 0.36

[0.0, 1.0] 0.73 0.82 0.74 0.58

Table 7: Comparison of memory-level and sentence-
level representation similarity on different subsets.
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