
Proceedings of EMNLP 2022 Industry Track, pages 29–62
December 9–11, 2020. ©2022 Association for Computational Linguistics

29

Augmenting Operations Research with Auto-Formulation of
Optimization Models From Problem Descriptions

Rindra Ramamonjison1† Haley Li∗ Timothy Yu†

Shiqi He∗ Vishnu Rengan∗ Amin Banitalebi-Dehkordi†

Zirui Zhou† Yong Zhang†

Abstract

We describe an augmented intelligence system
for simplifying and enhancing the modeling
experience for operations research. Using this
system, the user receives a suggested formu-
lation of an optimization problem based on
its description. To facilitate this process, we
build an intuitive user interface system that en-
ables the users to validate and edit the sug-
gestions. We investigate controlled generation
techniques to obtain an automatic suggestion
of formulation. Then, we evaluate their effec-
tiveness with a newly created dataset of linear
programming problems drawn from various
application domains. Code and data are availa-
ble at https://github.com/nl4opt/nl4opt-competition

1 Introduction

Many real-world decision-making problems can
be formulated and solved as mathematical opti-
mization problems. The field of operations re-
search (OR) has seen success in applications rang-
ing from increasing bike-share ridership and effi-
ciency (Beairsto et al., 2021; Ma et al., 2016), man-
aging wastewater collection and treatment systems
(Tao et al., 2020), to finding a revenue-maximizing
pricing strategy (Bitran and Caldentey, 2016). In
fact, optimization solvers can tackle different types
of problems as they are powered by efficient algo-
rithms such as the simplex method (Nash, 2000) or
interior-point methods (Karmarkar, 1984).

However, modeling a problem into a proper for-
mulation is a complex and time-consuming process.
First, a domain expert must describe the problem
and identify its variables, parameters, objective and
constraints. Then, an OR expert needs to translate
this problem description into a precise formulation
using a modeling language, thus making the pro-
cess inefficient and limits the accessibility of the
solvers to non-experts (Hürlimann, 2013).

1 rindranirina.ramamonjison@huawei.com
† Huawei Technologies Canada
∗ University of British Columbia, Vancouver

We propose an augmented intelligence system
to simplify and enhance the modeling process. We
partially automate the process using NLP models
to suggest a formulation that the users can validate
or edit the suggestions using an intuitive interface.
Partial automation avoids the manual writing of the
formulation by using a modeling language, thereby
reducing the time and expertise to build optimiza-
tion models. The intuitive interface also makes
solvers more accessible to non-technical users.

From an NLP perspective, there are many chal-
lenges to parsing an optimization problem’s formu-
lation from its natural language description:

• Limited dataset. The strenuous nature of mod-
eling makes the cost of creating and labeling a large
dataset prohibitive. Thus, efficient few-shot seman-
tic parsers must be trained in a low-resource setting.
Therefore, the solution must be built leveraging
methods that excel on a limited training dataset.

• Document-level input. Most semantic parsers
operate primarily at the sentence level. In contrast,
long paragraph inputs describe the many variables,
parameters, and constraints of optimization prob-
lems. Also, the parsing task involves a high level
of compositionality and ambiguity.

• Context-free output. The outputs of most se-
mantic parsing tasks share some contextual infor-
mation with the inputs (e.g. database table or col-
umn names in SQL queries). In contrast, our task
has a context-free tabular format, which makes it
difficult to align the input-output pair.

• Domain-agnostic parsing. Finally, OR can
tackle a diverse range of applications (Williams,
2013). Hence, the semantic parser must generalize
well not only to new problem instances but also
new application domains.

In this paper, we describe the underlying system
that addresses these challenges and that enables

https://github.com/nl4opt/nl4opt-competition

30

Figure 1: Augmented modeling platform.

the augmented modeling application. Our contribu-
tions are:

1. A novel augmented intelligence application that
simplifies and enhances the modeling process.

2. New controllable generation methods for pars-
ing the formulation of optimization problems
from its natural language description.

3. The first dataset on linear programming word
problems, with which we test and analyze the
effectiveness of the methods for this emerging
application.

2 Related Work

Augmented intelligence systems. Augmented
intelligence systems use AI to assist (and not re-
place) the users in performing certain tasks. These
systems could improve the experience or creativity
of users in artistic applications such as story writ-
ing (Clark et al., 2018), music composition (Huang
et al., 2020), poetry composition (Uthus et al.,
2022), and sketching (Fan et al., 2019). This ap-
proach has also seen success in more task-oriented
applications by helping teachers to grade home-
work efficiently (Malik et al., 2021), salespeople
to summarize sales calls (Asi et al., 2022), and
improving pneumonia diagnostic accuracy (Patel
et al.). We adopt a similar approach for OR and
focus on improving the modeling process.

Semantic parsing and generation. Semantic
parsing maps natural language utterances into
a machine-interpretable representation (Kamath
and Das, 2019). This mapping has been exten-
sively studied for output representations such as

SQL queries (Gan et al., 2020), Unix commands
(Bharadwaj and Shevade, 2021), or logical forms
for querying a knowledge base (Dong and Lap-
ata, 2016). We tackle a different and challenging
semantic parsing task as explained in Section 1.

Building on the success of attention models in
sequence-to-sequence tasks (Sutskever et al., 2014;
Luong et al., 2015), encoder-decoder architectures
have been adopted for designing semantic parsers
(Dong and Lapata, 2016, 2018; Wang et al., 2020).
We propose using an intermediate representation
(IR) that serves as a bridge between natural lan-
guage and the canonical output format. Our two-
stage mapping strategy is different from (Dong and
Lapata, 2018), which initially generates a sketch of
the query and then fills out the slots. In contrast to
prior methods of constrained decoding (Hokamp
and Liu, 2017; Scholak et al., 2021), our approach
uses a simple beam search and leverages a prompt-
guided generation and copying mechanism to guide
the decoding.

Datasets on Mathematical World Problems
(MWP). Recent works have studied the use of
NLP models to automatically solve MWP (Wang
et al., 2017; Ughade and Kumbhar, 2019) Most
existing MWP datasets have focused on returning
the solutions of elementary arithmetic problems
(Roy and Roth, 2015; Koncel-Kedziorski et al.,
2016) and algebra problems (Kushman et al., 2014;
Huang et al., 2016). More challenging benchmarks
have been recently proposed such as SVAMP (Pa-
tel et al., 2021), MATH (Hendrycks et al., 2021)
and GSM8K (Cobbe et al., 2021). In contrast, we
build the first linear programming word problems
(LPWP) dataset and evaluate methods of generating

31

objective: Max 0.07*x+0.02*y

constraint: x >= 0.15*(x+y)
Entity
Tagger

Your client has $60,000 LIMIT available

CONS_DIR to invest for a one-year term. The

money can be placed in a trust VAR yielding a

7% PARAM return OBJ_NAME or in a savings

account VAR yieldinga 2% PARAM return OBJ_NAME.

Based on your client's investment goals, you

advise her that at least CONS_DIR 15% LIMIT of

the investment be placed in the trust VAR.

Given her risk profile, she also requests that

the money placed in savings VAR should not

exceed CONS_DIR 60% LIMIT of her total

investment. How much should your client

allocate to each asset so as to maximize

OBJ_DIR her return OBJ_NAME?

Formulation
Generator

Problem
description

Formulation
suggestions

Edit operationsTagged problem description

Final optimization model

constraint: x+y <= 60000

constraint: y <= 0.6*(x+y)

Figure 2: System diagram for augmented modeling framework.

the formulations as inputs to optimization solvers
which can efficiently return an optimal solution.

3 Augmented Modeling Interface

We present an interactive system that enables users
to model an optimization problem in collaboration
with an AI system. To use this application, the
user first describes the problem using natural lan-
guage. Then, the system will suggest to the user
the formulation of the optimization model includ-
ing the decision variables, objective, and problem
constraints. The system suggests the components
of the formulation one at a time allowing the users
to accept, reject, or edit the suggestions.

An example scenario of a portfolio optimization
problem is shown in Figure 1. Here, the system sug-
gested the formulation of a balance constraint given
the description “savings should not exceed 60% of
her total investment”. Had the system presented
an incorrect formulation (e.g. an upper bound con-
straint), the user can change the type using the in-
terface and the system reformulates the constraint
expression automatically. The user can also edit the
description, which will be stored as metadata of the
model. In the same fashion, the user can add vari-
ables or constraints manually or edit the problem
description to update the model. When the user is
satisfied with the formulation, the system forwards
it to an optimization solver, which then returns ei-
ther an optimal solution of the problem to the user
or warnings for some infeasible constraints.

Figure 2 shows an overview of the underlying
auto-formulation system. It consists of an entity
tagger, a formulation generator, and an augmented
modeling interface. Given a problem description,
the entity tagger labels the keywords that indicate
the components of the optimization problem. For
example, “return” and “at least” are tagged as an
objective name and constraint direction, respec-
tively. Then, the formulation generator uses the
text description and the corresponding tagged enti-
ties to generate the formulation suggestions, which

are then presented to the user by the augmented
modeling interface. In our implementation (experi-
mental settings in the Appendix), we used an XLM-
RoBERTa pre-trained transformer and fine-tuned it
for entity recognition using the dataset described
in Section 5.2.

4 OptGen: Controllable Generation of
Optimization Formulation

Here, we present the methods behind our model
OptGen, for generating the suggested formulation.

4.1 Two-stage mapping approach

It is difficult to directly map the problem descrip-
tion p to the formulation f due to the character-
istics of the input-output pair (p, f) as mentioned
in Section 1. First, the input document p can be
unstructured and ambiguous especially when it de-
scribes many constraints of different types. From
the input, we must precisely extract the canonical
representation f of an optimization formulation.

As shown on the right of Figure 3, this canonical
representation is a context-free table in which the
column header is either a variable symbol or a con-
straint’s right-hand-side (rhs) limit. Each table row
contains the parameters of the objective function
or constraint. As a result, the canonical formula-
tion f is context-free since it abstracts away the
contextual information of p.

Instead, we adopt a two-stage mapping p 7→
r 7→ f to bridge the gap between the natural lan-
guage input and context-free formulation.

Text-to-IR mapping. We first define an inter-
mediate representation (IR) r of the problem to
simplify the parsing. As illustrated in Figure 3, a
Text-to-IR mapping model generates a set of entity-
typed declarations {Di}ni=1 defined in an extended
markup format to simplify its parsing. Note that
other formats can be used for the IR (e.g. a format
defined by a context-free grammar). Each decla-
ration Di is a sequence of tokens that represents

32

 <DECLARATION>
 <OBJ_DIR> maximize </OBJ_DIR>
 <OBJ_NAME> return </OBJ_NAME> [is]
 <VAR> trust </VAR> [times] <PARAM> 7% </PARAM> [plus]
 <VAR> savings </VAR> [times] <PARAM> 2% </PARAM>
 </DECLARATION>

 <DECLARATION>
 <CONST_DIR> total <CONST_DIR><LIMIT> 60000 </LIMIT>
 <OPERATOR> LESS_OR_EQUAL </OPERATOR>
 <CONST_TYPE> [SUM_CONSTRAINT] </CONST_TYPE>
 </DECLARATION>

 <DECLARATION>
 <CONST_DIR> at least <CONST_DIR><LIMIT> 15%</LIMIT>
 <OPERATOR> GREATER_OR_EQUAL </OPERATOR>
 <CONST_TYPE> [RATIO_CONSTRAINT] </CONST_TYPE> [for]
 <VAR> trust </VAR>
 </DECLARATION>

 <DECLARATION>
 <CONST_DIR> should not exceed <CONST_DIR><LIMIT> 60%</LIMIT>
 <OPERATOR> LESS_OR_EQUAL </OPERATOR>
 <CONST_TYPE> [RATIO_CONSTRAINT] </CONST_TYPE> [for]
 <VAR> savings </VAR>
 </DECLARATION>

Intermediate Representations of
Objective and Constraint Declarations

Tagged
problem

description
Text-to-IR
Mapping

IR Parser

IR Parser

IR Parser

IR Parser

Canonical output format

0.007 0.002

1.0 60000

- 0.085 0.015 0

- 0.6 0.4 0

1.0

var_0 var_1 rhs

objective

constraint_0

constraint_1

constraint_2

n/a

 <DECLARATION>
 <OBJ_DIR> maximize </OBJ_DIR>
 <OBJ_NAME> return </OBJ_NAME> [is]
 <VAR> trust </VAR> [times] <PARAM> 7% </PARAM> [plus]
 <VAR> savings </VAR> [times] <PARAM> 2% </PARAM>
 </DECLARATION>

 <DECLARATION>
 <CONST_DIR> total <CONST_DIR><LIMIT> 60000 </LIMIT>
 <OPERATOR> LESS_OR_EQUAL </OPERATOR>
 <CONST_TYPE> [SUM_CONSTRAINT] </CONST_TYPE>
 </DECLARATION>

 <DECLARATION>
 <CONST_DIR> at least <CONST_DIR><LIMIT> 15%</LIMIT>
 <OPERATOR> GREATER_OR_EQUAL </OPERATOR>
 <CONST_TYPE> [RATIO_CONSTRAINT] </CONST_TYPE> [for]
 <VAR> trust </VAR>
 </DECLARATION>

Figure 3: Overview of our formulation generation approach.

a typed and structured representation of either the
optimization objective or a constraint. Each Di is
defined based on a predefined template of the differ-
ent objective and constraint types. The tokens defin-
ing each declaration are wrapped in special tags.
For example, <OBJ_DIR> maximize </OBJ_DIR>

and <OBJ_NAME> return </OBJ_NAME> define the
direction and the name of the objective. Since these
tokens are derived from the input description, the
IR preserves the context of the problem. We de-
scribe the grammar of the IR in the Appendix.

IR parsing. An IR parser converts each IR dec-
laration to the canonical format. We use an XML
parser and apply simple transformations to convert
numerical words to decimal numbers and to fol-
low the following conventions. First, the canon-
ical format always "minimize" a cost function.
When the objective direction is "maximize," we
instead change the sign of each objective param-
eter. Similarly, each inequality constraint must
have a LESS_OR_EQUAL operator and convert each
inequality constraint to the form a>x ≤ b.

4.2 Prompt-guided generation model
We use an autoregressive model that is built upon
the BART language model (Lewis et al., 2020). A
prompt-guided generation is proposed to improve
the accuracy of the Text-to-IR mapping. The idea
is to decode the declarations of the IR one by one
by using a declaration prompt to focus the gen-
eration. A declaration prompt is a prefix of the
IR declaration of an objective or a constraint. For
an objective, the prompt is composed of the en-
tity tokens of the objective’s direction and name.
Similarly, the prompt for a constraint is defined by
the entity tokens of the constraint direction. These
tokens are obtained from the output of the Entity
Tagger model shown in Figure 2. The declaration

prompt is added to the input text of the encoder.
The role of the prompt is to provide contextual trig-
gers for the decoder to focus on the relevant parts
of the declaration to be generated. As illustrated
in Figure 4, the model is trained to generate the IR
of the declaration based on the declaration prompt
and the problem description.

One key requirement of the Text-to-IR mapping
is the ability to extract the variable names and data
parameters from the descriptions and copy these im-
portant mentions from the input description into the
output IR of the decoder. To augment the capabil-
ity of BART encoder-decoder model, we leverage
a copy mechanism that computes the probability
distribution Pcopy over the input tokens using cross-
attention scores. The copy distribution is calculated
at each time step t by taking the mean of the de-
coder’s cross-attention scores across all attention
heads as follows:

et,i =
(Wsst)

T Whhi√
dk

αt,i = softmax (et,i)

Pcopy =
1

nH

∑
i

αt,i

where Ws and Wh are the projection matrices for
the encoder and decoder. Then, st, hi, and nH are
the decoder hidden state at time step t, the encoder
hidden state for the attention head i, and the number
of heads respectively.

We add the special tokens of the IR into the
BART target vocabulary and mask out any vocabu-
lary words that are not present in the source input.
Following (See et al., 2017), we use a soft switch
pgen ∈ [0, 1] to choose between generating a word
from the vocabulary by sampling from Pvocab, or
copying a word from the input sequence by sam-
pling from Pcopy. Thus, the final probability distri-

33

<s><OBJ_DIR> maximize </OBJ_DIR>
<OBJ_NAME> return </OBJ_NAME></s><s>Your
client has $60,000 available to invest for a one-year
term. The money can be placed in a trust yielding a
7% return or in a savings account yielding a 2%
return. Based on your client's investment goals, you
advise her that at least 15% of the investment be
placed in the trust. Given her risk profile, she also
requests that the money placed in savings should not
exceed 60% of her total investment. How much
should your client invest in each so as to maximize
her return?<tab><tab><tab><tab></s>

</s><s><DECLARATION>
<OBJ_DIR> maximize </OBJ_DIR><OBJ_NAME>
return </OBJ_NAME>

</s><s><DECLARATION><OBJ_DIR> maximize </OBJ_DIR>
<OBJ_NAME> return </OBJ_NAME> [is] <VAR> trust </VAR> [times]
<PARAM> 7% </PARAM> [plus] <VAR> savings </VAR> [times]
<PARAM> 2% </PARAM></DECLARATION></s>

Input
Embedding

Declaration PromptEncoder input Decoded IR

Input Text
Encoder IR Decoder

Encoder input Declaration Prompt

Figure 4: Description of prompt-guided generation method.

bution of a word w is given by:

P (w) = pgenPvocab (w) +
(
1− pgen

)
Pcopy (w)

and is used to compute the loss for timestep t as the
negative loglikehood of the target word yt for that
timestep during training. Then, we average the loss
over all time steps. As a result, the model is trained
to produce tokens from either the IR vocabulary or
the input problem description.

5 Experiments

5.1 Dataset
Dataset description. We curated a first-ever
LPWP dataset1 and use it to train and evaluate
our methods. The dataset contains a collection of
LP problems of the form:

min
x∈Rn

c>x s.t. a>i x ≤ bi, i = 1, . . . ,m

where c and ai represent the parameters of the ob-
jective and the i-th constraint, respectively. bi is the
right-hand-side (rhs) limit, and the goal is to find x
that minimizes the objective value. The objective
and constraint functions are linear with respect to
variables in the LP problems. Each example has
a text description of the problem and is annotated
with the IR, math representation, and canonical
formulation as shown in Figure 3. Table 1 sum-
marizes the statistics of the dataset. More details
and examples of the dataset are provided in the
Appendix.

The dataset contains 1101 LP problems from
the source domain (advertising, investment, sales)
and target domain (production, science, transporta-
tion). The train, dev, and test splits contain 713, 99,
and 289 samples, respectively. The training split
is comprised of solely of samples from the source
domain whereas the dev and test splits contain sam-
ples from both source and target domains with a
source-to-target domain ratio of 1:3.

1We plan to release this dataset and open-source the code
to the research community for future research.

Number of Problems 1101
Number of Declarations 4216
Number of Constraint Types 6
Average Number of Variables 2.08
Average Number of Constraints 2.83

Table 1: Summary statistics of the LPWP dataset.

Dataset creation and quality control. The
dataset was created from scratch and annotated in-
ternally by a team of 20 researchers and engineers
with different levels of expertise in OR/NLP. The
process included 3 stages: (1) problem creation,
(2) NER annotation, and (3) REL annotation and
declaration generation. Each stage was followed
by rigorous quality checks and verification. The
creation process is described in Figure 5.

Additional details of the dataset including the
creation process, examples of the problem and their
corresponding math formulation and IR, exclusion
criteria, and inter-annotator agreement score, etc,
are reported in the Appendix.

5.2 Results and Discussions
Baseline and metrics. We conducted experi-
ments using the dataset described in Section 5.1.
We use BART model (Lewis et al., 2020) as base-
line for the two-stage mapping approach. In ad-
dition, we adopt the Text-to-Table (T2T) model
(Wu et al., 2021) as a baseline for the direct ap-
proach that directly produces the canonical form.
An example of its output is shown in Table 3 in the
Appendix.

For evaluation, we measure the declaration-level
mapping accuracy on the canonical formulation
defined as:

Acc = 1−
∑N

i=1min {FPi + FNi, Di}∑N
i=1Di

,

where for a given problem i, Di is the number
of ground-truth declarations, false positives FPi is
the number of non-matched predicted declarations,
and false negatives FNi is the number of excess un-
matched ground-truth declarations. In other words,

34

Quality
Control

NER
Annotation

NER
Verification

Relation
Annotation

REL
Validation

Convert to
Declarations

Declaration
Verification

Problem
Creation

LPWP
Dataset

Problem
Specifications

Domains
Templates
...

Figure 5: Overview of dataset creation.

FNi is only non-zero when there are more ground-
truth declarations than predicted declarations. The
min is to prevent negative accuracy and overpenal-
ization on single problems.

Main Results. Table 2 summarizes our results on
the source and target domains. The BART baseline
achieved the worst performance on all domains. In
fact, BART hallucinated by producing too many
constraints or many wrong parameters. Next, the
direct mapping approach of T2T model achieved
the highest accuracy of 88% on the Source domain
but generalized poorly on out-of-domain (Target)
test set. While it seemed to learn the task, T2T
overfit to the Source training data. In contrast, our
proposed OptGen achieved an absolute +18% ac-
curacy improvement over direct mapping (T2T) on
the Target domain. It was able to generalize better
than the other models and produced the fewest er-
rors on the problem structure and parameters. Our
two-stage approach helped in this regard while the
T2T must directly learn to convert to the canonical
form. A detailed error analysis can be found in
Figures 8 and 9 in the Appendix.

Ablation study. We also analyzed the impor-
tance of the individual methods used in our model
in Table 2. It shows that the copy mechanism is
important for accurately mapping the description to
the equivalent formulation. Without the copy mech-
anism, we see significant accuracy drops of about
5% and 30% on Source and Target respectively.
We show a qualitative comparison of generated IR
formulations for two LP problems in Tables 12
and 13 in the Appendix. While our model could
perfectly generate the correct representations, the
model without copy mechanisms produced many
errors. For example, it hallucinated the wrong con-
straint limits or detected the wrong constraint types.
The prompt-guided generation method also led to
slightly better performance on the Target domain.
Finally, we noticed +6% improvement for T2T on
the target domain when using contextual prompts.

These results show the importance of using con-
trolled generation techniques for learning the syn-
tax and grammar of the target IR language and for

Method Source Target Sci Prod Trans

T2T 0.83 0.39 0.46 0.37 0.37
T2T + Prompt 0.88 0.45 0.49 0.46 0.40
BART 0.52 0.20 0.21 0.19 0.20
OptGen w/o copy 0.55 0.34 0.38 0.32 0.33
OptGen w/o prompt 0.58 0.61 0.64 0.63 0.57
OptGen 0.60 0.63 0.60 0.66 0.64

Table 2: Results for each model on the declaration-level
mapping accuracy metric. Source consists of samples from
the source domain test split. Target is a weighted mean (by
number of declarations) of the science (Sci), production (Prod),
and transportation (Trans) target domains test split.

accurately mapping the input description to the IR
formulation.

Limitations and future works. Our preliminary
results show the potential and the importance of
controllable generation methods for enabling the
augmented modeling system. While the proposed
OptGen generation model was shown to generalize
better than baseline models, its accuracy perfor-
mance should still be enhanced further by improv-
ing the decoding method or by using edit-based
models (Malmi et al., 2022) to automatically cor-
rect the erroneous parts of the formulation. As
future work, we will conduct human evaluation of
the augmented system by measuring the efficiency
improvement perceived by real users. As the cur-
rent dataset only covers LP problems, we will also
expand it to cover other types of problems such
as mixed-integer programs, which have different
types of constraints. Other directions can also be
explored to build more data-efficient methods.

6 Conclusion

We introduced an augmented modeling platform, in
which users enter the descriptions of optimization
problems and interact with an AI system to effi-
ciently model their formulations. To this end, we
described the underlying system for this emerging
application and proposed controllable generation
methods to enable it. We also created a training
dataset of linear programming word problems to
evaluate the effectiveness of the proposed methods.
Our findings showed that the design of generation
models and methods can have significant impact
on the accuracy of the system’s suggested formula-

35

tions and that the system should help the users to
validate and edit the suggestions.

7 Ethics Statement

This augmented intelligence system is intended
to parse the formulation of optimization problems
from its natural language description to aid stake-
holders in their decision-making. The dataset was
created taking special care to exclude samples with
inappropriate language or names of real people,
products or companies. The harm to users result-
ing from incorrect parsing is limited. However,
depending on the application, the system may be
used in sensitive or critical applications, such as a
power grid, flights scheduling, etc. In such cases,
the solver should be used with caution and the mod-
eling process should be validated by the domain
expert. Finally, operations research has historically
been applied in tactical military operations. We
must understand the potential negative impact of
misusing this technology for society at large and
the users must seriously consider the ethical con-
cerns related to military applications.

References
Abedelkadir Asi, Song Wang, Roy Eisenstadt, Dean

Geckt, Yarin Kuper, Yi Mao, and Royi Ronen. 2022.
An end-to-end dialogue summarization system for
sales calls. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies: Industry Track, pages 45–53, Hybrid:
Seattle, Washington + Online. Association for Com-
putational Linguistics.

Jeneva Beairsto, Yufan Tian, Linyu Zheng, Qunshan
Zhao, and Jinhyun Hong. 2021. Identifying loca-
tions for new bike-sharing stations in glasgow: an
analysis of spatial equity and demand factors. An-
nals of GIS, 0(0):1–16.

Shikhar Bharadwaj and Shirish Shevade. 2021. Ex-
plainable natural language to bash translation using
abstract syntax tree. In Proceedings of the 25th Con-
ference on Computational Natural Language Learn-
ing, pages 258–267, Online. Association for Compu-
tational Linguistics.

Gabriel R. Bitran and René A. Caldentey. 2016. An
overview of pricing models for revenue manage-
ment. IEEE Engineering Management Review,
44:134–134.

Elizabeth Clark, Anne Spencer Ross, Chenhao Tan,
Yangfeng Ji, and Noah A. Smith. 2018. Creative
writing with a machine in the loop: Case studies on
slogans and stories. 23rd International Conference
on Intelligent User Interfaces.

Karl Cobbe, Vineet Kosaraju, et al. 2021. Training ver-
ifiers to solve math word problems. arXiv preprint
arXiv:2110.14168.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany. Association for Computa-
tional Linguistics.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 731–742, Melbourne, Australia. Association
for Computational Linguistics.

Judith E. Fan, Monica Dinculescu, and David Ha.
2019. Collabdraw: An environment for collabo-
rative sketching with an artificial agent. In Pro-
ceedings of the 2019 on Creativity and Cognition,
page 556–561, New York, NY, USA. Association for
Computing Machinery.

Yujian Gan, Matthew Purver, and John R. Woodward.
2020. A review of cross-domain text-to-SQL mod-
els. In Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 10th International Joint
Conference on Natural Language Processing: Stu-
dent Research Workshop, pages 108–115, Suzhou,
China. Association for Computational Linguistics.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1535–1546,
Vancouver, Canada. Association for Computational
Linguistics.

Cheng-Zhi Anna Huang, Hendrik Vincent Koops,
Ed Newton-Rex, Monica Dinculescu, and Carrie J.
Cai. 2020. Ai song contest: Human-ai co-creation
in songwriting.

Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin,
and Wei-Ying Ma. 2016. How well do comput-
ers solve math word problems? large-scale dataset
construction and evaluation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
887–896, Berlin, Germany. Association for Compu-
tational Linguistics.

Tony Hürlimann. 2013. Mathematical modeling and
optimization: an essay for the design of computer-
based modeling tools, volume 31. Springer Science
& Business Media.

https://aclanthology.org/2022.naacl-industry.6
https://aclanthology.org/2022.naacl-industry.6
https://doi.org/10.1080/19475683.2021.1936172
https://doi.org/10.1080/19475683.2021.1936172
https://doi.org/10.1080/19475683.2021.1936172
https://doi.org/10.18653/v1/2021.conll-1.20
https://doi.org/10.18653/v1/2021.conll-1.20
https://doi.org/10.18653/v1/2021.conll-1.20
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.1145/3325480.3326578
https://doi.org/10.1145/3325480.3326578
https://aclanthology.org/2020.aacl-srw.16
https://aclanthology.org/2020.aacl-srw.16
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.48550/ARXIV.2010.05388
https://doi.org/10.48550/ARXIV.2010.05388
https://doi.org/10.18653/v1/P16-1084
https://doi.org/10.18653/v1/P16-1084
https://doi.org/10.18653/v1/P16-1084

36

Aishwarya Kamath and Rajarshi Das. 2019. A survey
on semantic parsing.

N. Karmarkar. 1984. A new polynomial-time algo-
rithm for linear programming. In Proceedings of
the Sixteenth Annual ACM Symposium on Theory of
Computing, STOC ’84, page 302–311, New York,
NY, USA. Association for Computing Machinery.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini,
Nate Kushman, and Hannaneh Hajishirzi. 2016.
MAWPS: A math word problem repository. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1152–1157, San Diego, California. Association for
Computational Linguistics.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of
the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 271–281, Baltimore, Maryland. Association
for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Yingying Ma, Xiaoran Qin, Jianmin Xu, and Xiangli
Zou. 2016. Research on pricing method of public
bicycle service: A case study in guangzhou. In IEEE
International Conference on Service Operations and
Logistics, and Informatics (SOLI), pages 156–161.

Ali Malik, Mike Wu, Vrinda Vasavada, Jinpeng Song,
Madison Coots, John Mitchell, Noah D. Goodman,
and Chris Piech. 2021. Generative grading: Near
human-level accuracy for automated feedback on
richly structured problems. In Proceedings of the
14th International Conference on Educational Data
Mining, EDM 2021, virtual, June 29 - July 2, 2021.
International Educational Data Mining Society.

Eric Malmi, Yue Dong, Jonathan Mallinson, Aleksandr
Chuklin, Jakub Adamek, Daniil Mirylenka, Felix
Stahlberg, Sebastian Krause, Shankar Kumar, and
Aliaksei Severyn. 2022. Text generation with text-
editing models.

John C Nash. 2000. The (dantzig) simplex method for
linear programming. Computing in Science & Engi-
neering, 2(1):29–31.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Bhavik N. Patel, Louis Rosenberg, Gregg Willcox,
David Baltaxe, Mimi Lyons, Jeremy Irvin, Pranav
Rajpurkar, Timothy Amrhein, Rajan Gupta, Safwan
Halabi, Curtis Langlotz, Edward Lo, Joseph Mam-
marappallil, A. J. Mariano, Geoffrey Riley, Jayne
Seekins, Luyao Shen, Evan Zucker, and Matthew
Lungren. Human–machine partnership with artifi-
cial intelligence for chest radiograph diagnosis. npj
Digital Medicine, 2(1).

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1743–1752, Lisbon, Portu-
gal. Association for Computational Linguistics.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the 27th International Confer-
ence on Neural Information Processing Systems,
NIPS’14, page 3104–3112, Cambridge, MA, USA.

Diana Qing Tao, Martin Pleau, et al. 2020. Analytics
and Optimization Reduce Sewage Overflows to Pro-
tect Community Waterways in Kentucky. Interfaces,
50(1):7–20.

Shounaak Ughade and Satish Kumbhar. 2019. Survey
on mathematical word problem solving using natu-
ral language processing. In 2019 1st International
Conference on Innovations in Information and Com-
munication Technology (ICIICT), pages 1–5.

David Uthus, Maria Voitovich, and R.j. Mical. 2022.
Augmenting poetry composition with Verse by
Verse. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies: Industry Track, pages 18–26, Hybrid: Seat-
tle, Washington + Online. Association for Compu-
tational Linguistics.

http://arxiv.org/abs/1812.00978
http://arxiv.org/abs/1812.00978
https://doi.org/10.1145/800057.808695
https://doi.org/10.1145/800057.808695
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.3115/v1/P14-1026
https://doi.org/10.3115/v1/P14-1026
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.1109/SOLI.2016.7551679
https://doi.org/10.1109/SOLI.2016.7551679
https://doi.org/10.48550/ARXIV.2206.07043
https://doi.org/10.48550/ARXIV.2206.07043
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.1038/s41746-019-0189-7
https://doi.org/10.1038/s41746-019-0189-7
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
http://arxiv.org/abs/2109.05093
http://arxiv.org/abs/2109.05093
http://arxiv.org/abs/2109.05093
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.1287/inte.2019.1022
https://doi.org/10.1287/inte.2019.1022
https://doi.org/10.1287/inte.2019.1022
https://doi.org/10.1109/ICIICT1.2019.8741437
https://doi.org/10.1109/ICIICT1.2019.8741437
https://doi.org/10.1109/ICIICT1.2019.8741437
https://aclanthology.org/2022.naacl-industry.3
https://aclanthology.org/2022.naacl-industry.3

37

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for
text-to-SQL parsers. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7567–7578, Online. Association
for Computational Linguistics.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–
854, Copenhagen, Denmark. Association for Com-
putational Linguistics.

H Paul Williams. 2013. Model building in mathemati-
cal programming. John Wiley & Sons.

Xueqing Wu, Jiacheng Zhang, and Hang Li. 2021.
Text-to-table: A new way of information extraction.

https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/D17-1088
https://doi.org/10.48550/ARXIV.2109.02707

38

8 Appendix

This section contains supplementary materials in-
cluding qualitative comparisons, examples from the
dataset, as well as additional details which were
omitted from the main paper due to space limita-
tions.

A More details on dataset description

In Table 4, we showcase the different constraint
types, along with their use in a problem, their math
formulation, and their IR. Tables 6, 7 and 8 provide
examples showing the problem description, IR and
the math formulations.

B More details on dataset creation

The LPWP dataset creation process consists of
three stages.

B.1 Stage 1: Problem creation
First, we invited 15 researchers and engineers to
create original LP problems. They created the prob-
lems following some specifications such as prob-
lem domains and templates. The problem domains
include advertising, investment, sales, agriculture,
manufacturing, transportation and health sciences.
During the creation step, 5 additional people were
tasked with performing quality control and giving
guidance to the problem creators. This included
screening for the exclusion criteria (e.g. use of
inappropriate language or names of real people,
products or companies) and making sure the pro-
duced problem followed the specified domain and
template. In fact, we used these templates to ensure
the diversity of the problem structure (e.g. number
of constraints, objectives and constraint types) in
the dataset. If a mistake was detected in the prob-
lem, the problem creator would have been asked
to fix it and the correction was verified. We made
sure that each problem was verified by at least two
people.

B.2 Stage 2: NER Annotation
At this stage, annotators were required to locate and
classify entities mentioned in the problem. There
are in total 6 types of targeted entities: variable
(VAR), parameter (PARAM), limit (LIMIT), con-
straint direction (CONST_DIR), objective direc-
tion (OBJ_DIR) and objective name (OBJ_NAME).
We used the Prodigy annotation tool to annotate the
problems. A screenshot of one annotation session
is provided in Figure 6. We asked an additional

annotator to resolve disagreements by reading the
guideline thoughtfully and asking the annotators
for clarifications if needed.

To ensure the quality of the NER annotations,
four OR/NLP experts annotated more than 10% of
the entire dataset, with an equal split between each
domain, separately to compute the inter-annotator
agreement. We measured an average pairwise
micro-averaged F1 score of 97.7% for the inter-
annotator agreement, showing the reliability of the
annotation process.

B.3 Stage 3: Relation annotation and
declaration generation

In the final stage, we annotated relations between
entities for representing the objective and constraint
declarations. Using a custom Prodigy annotation
recipe, we integrated some validation checks to
detect mistakes in the relation annotation period.
These checks ensured that the annotator corrected
all mistakes before proceeding to the next prob-
lem. Table 5 summarizes the relations required
to represent each constraint type. The validation
checks verified the number, labels, directions, and
the entity labels of all relations that represent one
constraint or objective. To increase the efficiency
of the annotation process, we also provided guide-
lines and trained annotators to annotate each type
of constraints. Similar to stage 2, we worked with
annotators to resolve complex relations. A screen-
shot of a relation annotation session is provided in
Figure 7.

After annotating the relations, we used a Python
script to automatically convert the extracted rela-
tions into optimization declarations. A team of 5
people were asked to verify the correctness of the
optimization declarations for all problems.

C Examples of target domain problems

Tables 9, 10 and 11 provide additional examples
from the target domain: production, transportation,
and sciences respectively.

D Predicted vs gold IR for target domain
examples

Table 14-20 demonstrate the predictions of our
model in comparison to the gold standard (ground-
truth) for several examples from the target domain.
We show examples for when the model produced
the gold IR formulation in Table 14 and Table 15.

39

More importantly, we illustrate and analyze dif-
ferent errors when the model was used to parse
examples from the target domain. For each exam-
ple, detailed analysis of the errors are given in the
captions of Table 16-20.

E Qualitative comparison of test
predictions

In Table 12 and 13, we qualitatively compare the
generated IR of two different optimization prob-
lems. Our model perfectly matched the gold IR for
both problems. When the copy mechanism is not
used, the model made few errors when generating
the constraint declarations. In the first example (Ta-
ble 12), the model hallucinates the wrong constraint
limits in the first two constraints. Furthermore, the
constraint type is invalid for the second constraint.
Similar errors happen in the problem of Table 13.

F Experimental settings

NER experiments. We trained the XLM-
RoBERTa transformer as the baseline model.
The training was performed as a two-step ap-
proach with a training followed by a fine-tuning
step. The training step utilized the Hugging-
Face get_linear_schedule_with_warmup func-
tion that uses a learning rate decreasing linearly
to 0 from the initial learning rate (1E-4) after a
warmup period. This step was run for a maximum
of 25 epochs on a batch of 64 samples with the
early stopping callback function set to stop training
monitoring the loss of the development split with
a patience of 5 epochs and minimum change of
0.001. A model checkpoint was also used to save
a checkpoint of the model that performed the best
on the development set. The fine-tuning step also
utilized a learning rate of 0.0001 for a maximum of
30 epochs with the same callback functions used in
the training step. To set the learning rate, we used
a grid search using a development set.

Generation experiments. We trained the BART
baseline model and our model for a total of 200
epochs, using a learning rate of 1E-06, and with a
batch size of 32. The corresponding performance
on the dev set for the best model is summarized in
Table 21. We trained the Text-to-Table for a total of
4000 updates, using a learning rate of 1E-05, and
with max-tokens of 4096. To set the learning rate,
we used a grid search using a development set.

40

Figure 6: Screenshot of NER annotation using Prodigy.

Figure 7: Screenshot of REL annotation using Prodigy.

41

Problem Description A hotel employs cleaners and receptionists. Cleaners earn $500 per
week and receptionists earn $350 per week. The hotel requires a
minimum of 100 workers of whom at least 20 must be receptionists.
To keep the hotel clean and running smoothly, the number of recep-
tionists should be at least a third of the number of cleaners. The hotel
wants to keep the weekly wage bill below $30000. Formulate a LP to
minimize the wage bill.

Text-to-Table + Prompt Form

cleaners receptionists rhs
objective 500.0 350.0
minimum -1.0 -1.0 -100.0
at least 0.0 -1.0 -20.0
at least 0.3333 -1.0 0.0
below 500.0 350.0 30000.0

Canonical Form

var_0 var_1 rhs
objective 500.0 350.0
constraint_0 -1.0 -1.0 -100.0
constraint_1 0.0 -1.0 -20.0
constraint_2 0.3333 -1.0 0.0
constraint_3 500.0 350.0 30000.0

Table 3: Text-to-Table example: Problem description, and expected output. Newline tokens have been replaced
with newline characters, indentation was added, and column dividers were omitted for readability.

42

Constraint Type Problem Description Math Formulation + IR Representation

Sum Constraint

A bike shop sells two models of a bike: a mountain bike and a road bike.
(...) The bike shop owner knows that the monthly demand will be at most
150 bikes. (...) How many bikes of each type should be stocked in order

to maximize profit?

x + y <= 150

<DECLARATION><CONST_DIR> at most </CONST_DIR><LIMIT> 150 </LIMIT>

<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [SUM_CONSTRAINT] </CONST_TYPE></DECLARATION>

Upper Bound

An ice cream bar sells vanilla and chocolate ice cream cones. (...) The
ice cream bar must make at lest 20 cones of vanilla ice cream but cannot
make more than 50 cones. (...) How many cones of each flavor should

they make to maximize profit?

x <= 50

<DECLARATION><CONST_DIR> cannot make more than </CONST_DIR><LIMIT>
50 </LIMIT><OPERATOR> LESS_OR_EQUAL </OPERATOR><CONST_TYPE>

[UPPER_BOUND] </CONST_TYPE> [for] <VAR> vanilla ice cream </VAR>
</DECLARATION>

Lower Bound

There is only 5000 grams of a rare flower extract needed to make both
youth and adult doses. (...) A minimum of 10 adult doses need to be
made. (...) How many of each dose should be prepared to maximize

profit?

y >= 10

<DECLARATION><CONST_DIR> minimum </CONST_DIR><LIMIT> 10 </LIMIT>
<OPERATOR> GREATER_OR_EQUAL </OPERATOR><CONST_TYPE>

[LOWER_BOUND] </CONST_TYPE> [for] <VAR> adult doses </VAR>
</DECLARATION>

Linear Constraint (e.g.
minimum requirement or

capacity constraint)

A smoothie store sells two types of smoothies (...). Each small smoothie
requires 2 units of ice cream and 1 unit of peanut butter. Each large
smoothie requires 3 units of ice cream and 2 units of peanut butter.

The company only has a total of 20 units of ice cream and 18 units of
peanut butter. (...) how many of each should the store sell to maximize

profit?

2x + 3y <= 20

<DECLARATION><CONST_DIR> total </CONST_DIR><LIMIT> 20 </LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR><CONST_TYPE>

[LINEAR_CONSTRAINT] </CONST_TYPE> [is] <VAR> small smoothie </VAR>
[TIMES] <PARAM> 2 </PARAM><VAR> large smoothie </VAR> [TIMES] <PARAM> 3

</PARAM></DECLARATION>

Ratio Control Constraint
A furniture store only stocks and sells dining tables and chairs. (...)

Because chairs sell in larger quantities, at least 70% of all furniture in
the store must be chairs. (...) Formulate an LP to maximize profit.

x >= 70/100 * (x+y)

<DECLARATION><CONST_DIR> at least </CONST_DIR><LIMIT> 70% </LIMIT>
<OPERATOR> GREATER_OR_EQUAL </OPERATOR><CONST_TYPE>

[RATIO_CONSTRAINT] </CONST_TYPE> [for] <VAR> chairs </VAR>
</DECLARATION>

Balance Constraint
 Type-1 : X <= B*Y

There is only 5000 grams of a rare flower extract needed to make both
youth and adult doses. (...) Demand is such that at least three times as
many youth doses are needed than the adult doses. (...) . How many

of each dose should be prepared to maximize profit?

x >= 3y

<DECLARATION><CONST_DIR> at least </CONST_DIR><OPERATOR>
GREATER_OR_EQUAL </OPERATOR><CONST_TYPE> [XBY_CONSTRAINT]

</CONST_TYPE><VAR> adult doses </VAR> [TIMES] <PARAM> three </PARAM>
[is] <VAR> youth doses </VAR></DECLARATION>

Balance Constraint
 Type-2 : X <= Y

A peanut farmer has to send his product to the city. (...) He wants to
spend at most $3000 and the number of train trips must not exceed
the number of truck trips. Formulate a LP to maximize the number of

peanut packages that can be transported.

x <= y

<DECLARATION><CONST_DIR> must not exceed </CONST_DIR><OPERATOR>
LESS_OR_EQUAL </OPERATOR><CONST_TYPE> [XY_CONSTRAINT]
</CONST_TYPE><VAR> truck trips </VAR> [is] <VAR> train trips </VAR>

</DECLARATION>

Table 4: Different types of constraints with examples from the LPWP dataset.

43

Constraint Type Problem Description Relation Annotation Examples

Sum Constraint

A bike shop sells two models of a bike: a mountain
bike and a road bike. (...) The bike shop owner knows
that the monthly demand will be at most 150 bikes.

(...) How many bikes of each type should be stocked in
order to maximize profit?

CONST_DIR -> LIMIT

Upper Bound

An ice cream bar sells vanilla and chocolate ice cream
cones. (...) The ice cream bar must make at lest 20
cones of vanilla ice cream but cannot make more

than 50 cones. (...) How many cones of each flavor
should they make to maximize profit?

CONST_DIR -> LIMIT

VAR -> LIMIT

Lower Bound

There is only 5000 grams of a rare flower extract
needed to make both youth and adult doses. (...)

A minimum of 10 adult doses need to be made. (...)
How many of each dose should be prepared to

maximize profit?

CONST_DIR -> LIMIT

VAR -> LIMIT

Linear Constraint (e.g.
minimum requirement
or capacity constraint)

A smoothie store sells two types of smoothies (...).
Each small smoothie requires 2 units of ice
cream and 1 unit of peanut butter. Each large

smoothie requires 3 units of ice cream and 2 units
of peanut butter. The company only has a total of 20
units of ice cream and 18 units of peanut butter. (...)
how many of each should the store sell to maximize

profit?

CONST_DIR -> LIMIT

VAR (X) -> PARAM

VAR (Y) -> PARAM

Ratio Control Constraint

A furniture store only stocks and sells dining tables
and chairs. (...) Because chairs sell in larger

quantities, at least 70% of all furniture in the store
must be chairs. (...) Formulate an LP to maximize

profit.

CONST_DIR -> LIMIT

VAR -> LIMIT

Balance Constraint
 Type-1 : X <= B*Y

There is only 5000 grams of a rare flower extract
needed to make both youth and adult doses. (...)

Demand is such that at least three times as many
youth doses are needed than the adult doses. (...) .

How many of each dose should be prepared to
maximize profit?

VAR (X) -> CONST_DIR

CONST_DIR-> PARAM

PARAM -> VAR (Y)

Balance Constraint
 Type-2 : X <= Y

A peanut farmer has to send his product to the city.
(...) He wants to spend at most $3000 and the number
of train trips must not exceed the number of truck

trips. Formulate a LP to maximize the number of
peanut packages that can be transported.

VAR (X) -> CONST_DIR

CONST_DIR-> VAR (Y)

<CONST_DIR> minimum </CONST_DIR> <LIMIT> 10 </LIMIT>
LOWER

<VAR> adult doses </VAR> <LIMIT> 10 </LIMIT>
LOWER

<VAR> small smoothie </VAR> <PARAM> 2 </PARAM>
LINEAR

<VAR> large smoothie </VAR> <PARAM> 3 </PARAM>
LINEAR

<CONST_DIR> at least </CONST_DIR> <LIMIT> 70% </LIMIT>
RATIO

<VAR> chairs </VAR> <LIMIT> 70% </LIMIT>
RATIO

<VAR> youth doses </VAR> <CONST_DIR> at least </CONST_DIR>
BALANCE-1

<CONST_DIR> at least </CONST_DIR> <PARAM> three </PARAM>
BALANCE-1

<PARAM> three </PARAM> <VAR> adult doses </VAR>
BALANCE-1

<VAR> train trips </VAR> <CONST_DIR> must not exceed </CONST_DIR>
BALANCE-2

<CONST_DIR> must not exceed </CONST_DIR> <VAR> truck trips </VAR>
BALANCE-2

<LIMIT> 20 </LIMIT><CONST_DIR> total </CONST_DIR>
LINEAR

<VAR> vanilla ice cream </VAR> <LIMIT> 50 </LIMIT>
UPPER

<CONST_DIR> cannot make more than </CONST_DIR>
UPPER

<LIMIT> 50 </LIMIT>

<CONST_DIR> at most </CONST_DIR>
SUM

<LIMIT> 150 </LIMIT>

Table 5: REL annotation examples for different constraint types.

44

Problem Description There is only 5000 grams of a rare flower extract needed to make both
youth and adult doses. Youth doses contain 20 grams of extract and
adult doses contain 35 grams. Demand is such that at least three times
as many youth doses are needed than the adult doses. A minimum
of 10 adult doses need to be made. Youth doses are sold for a profit
of $5 while adult doses are sold at a profit of $3. How many of each
dose should be prepared to maximize profit?

Intermediate Representation
<DECLARATION>

<OBJ_DIR> maximize </OBJ_DIR>
<OBJ_NAME> profit </OBJ_NAME> [is]
<VAR> Youth doses </VAR> [TIMES] <PARAM> 5 </PARAM>
<VAR> adult doses </VAR> [TIMES] <PARAM> 3 </PARAM>

</DECLARATION>

<DECLARATION>
<CONST_DIR> only </CONST_DIR><LIMIT> 5000 </LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [LINEAR_CONSTRAINT] </CONST_TYPE> [is]
<VAR> Youth doses </VAR> [TIMES] <PARAM> 20 </PARAM>
<VAR> adult doses </VAR> [TIMES] <PARAM> 35 </PARAM>

</DECLARATION>

DECLARATION>
<CONST_DIR> at least </CONST_DIR>
<OPERATOR> GREATER_OR_EQUAL </OPERATOR>
<CONST_TYPE> [XBY_CONSTRAINT] </CONST_TYPE>
<VAR> adult doses </VAR> [TIMES]
<PARAM> three </PARAM> [is]
<VAR> youth doses </VAR>

</DECLARATION>

<DECLARATION>
<CONST_DIR> minimum </CONST_DIR><LIMIT> 10 </LIMIT>
<OPERATOR> GREATER_OR_EQUAL </OPERATOR>
<CONST_TYPE> [LOWER_BOUND] </CONST_TYPE> [for]
<VAR> adult doses </VAR>

</DECLARATION>

Canonical Form

var_0 var_1 rhs
objective 5 3
constraint_0 20 35 5000
constraint_1 -1 3 0
constraint_2 0 -1.0 -10

Math Formulation
max 5x + 3y
subject to

20x + 35y <= 5000
x >= 3y
y >= 10

Table 6: Original dataset - Resource allocation example: problem description, intermediate representation, canoni-
cal form, and math formulation.

45

Problem Description Your client has $60,000 available to invest for a 1 year term. The
money can be placed in a trust yielding a 2% return or in a savings
account yielding a 3% return. Based on your experience, you advise
your client that at least 15% of the investment be placed in the trust and
that at most 80% of the investment be placed in the savings account.
How much should your client invest in each so as to maximize his
return on investment?

Intermediate Representation
<DECLARATION>

<OBJ_DIR> maximize </OBJ_DIR>
<OBJ_NAME> return </OBJ_NAME> [is]
<VAR> trust </VAR> [TIMES] <PARAM> 2% </PARAM>
<VAR> savings account </VAR> [TIMES] <PARAM> 3%

</PARAM>
</DECLARATION>

<DECLARATION>
<CONST_DIR> available </CONST_DIR><LIMIT> 60,000

</LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [SUM_CONSTRAINT] </CONST_TYPE>

</DECLARATION>

<DECLARATION>
<CONST_DIR> at least </CONST_DIR><LIMIT> 15%

</LIMIT>
<OPERATOR> GREATER_OR_EQUAL </OPERATOR>
<CONST_TYPE> [RATIO_CONSTRAINT] </CONST_TYPE> [for]
<VAR> trust </VAR>

</DECLARATION>

<DECLARATION>
<CONST_DIR> at most </CONST_DIR><LIMIT> 80% </LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [RATIO_CONSTRAINT] </CONST_TYPE> [for]
<VAR> savings account </VAR>

</DECLARATION>

Canonical Form

var_0 var_1 rhs
objective 0.02 0.03
constraint_0 1 1 60000
constraint_1 -0.85 0.15 0
constraint_2 -0.8 0.2 0

Math Formulation
max (2/100)*x + (3/100)*y
subject to

x + y <= 60000
x >= (15/100)*(x+y)
y <= (80/100)*(x+y)

Table 7: Original dataset - Investment allocation example: problem description, intermediate representation, canon-
ical form, and math formulation.

46

Problem Description A farmer has 500 acres of land to grow turnips and pumpkins. Turnips
require 50 minutes of watering and $80 worth of pesticide per acre.
Pumpkins require 90 minutes of watering and $50 worth of pesticide
per acre. The farmer has 40000 minutes available for watering and
$34000 available to spend on pesticide. If the revenue per acre of
turnips is $300 and the revenue per acre of pumpkins is $450, how
many acres of each should he grow to maximize his revenue.

Intermediate Representation
<DECLARATION>

<OBJ_DIR> maximize </OBJ_DIR>
<OBJ_NAME> revenue </OBJ_NAME> [is]
<VAR> turnips </VAR> [TIMES] <PARAM> 300 </PARAM>
<VAR> pumpkins </VAR> [TIMES] <PARAM> 450 </PARAM>

</DECLARATION>

<DECLARATION>
<CONST_DIR> has </CONST_DIR><LIMIT> 500 </LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [SUM_CONSTRAINT] </CONST_TYPE>

</DECLARATION>

<DECLARATION>
<CONST_DIR> available </CONST_DIR><LIMIT> 40000

</LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [LINEAR_CONSTRAINT] </CONST_TYPE> [is]
<VAR> Turnips </VAR> [TIMES] <PARAM> 50 </PARAM>
<VAR> Pumpkins </VAR> [TIMES] <PARAM> 90 </PARAM>

</DECLARATION>

<DECLARATION>
<CONST_DIR> available </CONST_DIR><LIMIT> 34000

</LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [LINEAR_CONSTRAINT] </CONST_TYPE> [is]
<VAR> Turnips </VAR> [TIMES] <PARAM> 80 </PARAM>
<VAR> Pumpkins </VAR> [TIMES] <PARAM> 50 </PARAM>

</DECLARATION>

Canonical Form

var_0 var_1 rhs
objective 300 450
constraint_0 1 1 500
constraint_1 50 90 40000
constraint_2 80 50 34000

Math Formulation
max 300x + 450y
subject to

x + y <= 500
50x + 90y <= 40000
80x + 50y <= 34000

Table 8: Original Dataset - Farming example: problem description, intermediate representation, canonical form,
and math formulation.

47

Problem Description A mining company has available a total of 100 square miles of mining
sites and considering the use of two mining techniques: heap leach-
ing and vat leaching. For each square mile of land, heap leaching
technique can have a daily production of 3 tons of rare earth oxide
per square miles but it also creates 8 tons of polluted wastewater and
requires 10 extraction machines. On the other hand, vat leaching
technique produces 5 tons of rare earth oxide per square miles per
day while creating 17 tons of polluted wastewater and requiring 20
extraction machines. There are 100 machines available and due to
environmental regulations, the amount of polluted wastewater must
be at most 90 tons daily. Find the proportion of lands that use each
mining technique in order to maximize the daily production of rare
earth oxide.

Intermediate Representation
<DECLARATION>

<OBJ_DIR> maximize </OBJ_DIR>
<OBJ_NAME> rare earth oxide </OBJ_NAME> [is]
<VAR> heap leaching </VAR> [TIMES] <PARAM> 3

</PARAM>
<VAR> vat leaching </VAR> [TIMES] <PARAM> 5 </PARAM>

</DECLARATION>

<DECLARATION>
<CONST_DIR> available </CONST_DIR><LIMIT> 100

</LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [LINEAR_CONSTRAINT] </CONST_TYPE> [is]
<VAR> heap leaching </VAR> [TIMES] <PARAM> 10

</PARAM>
<VAR> vat leaching </VAR> [TIMES] <PARAM> 20

</PARAM>
</DECLARATION>

<DECLARATION>
<CONST_DIR> at most </CONST_DIR><LIMIT> 90 </LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [LINEAR_CONSTRAINT] </CONST_TYPE> [is]
<VAR> heap leaching </VAR> [TIMES] <PARAM> 8

</PARAM>
<VAR> vat leaching </VAR> [TIMES] <PARAM> 17

</PARAM>
</DECLARATION>

<DECLARATION>
<CONST_DIR> available </CONST_DIR><LIMIT> 100

</LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [SUM_CONSTRAINT] </CONST_TYPE>

</DECLARATION>

Canonical Form

var_0 var_1 rhs
objective 3 5
constraint_0 10 20 100
constraint_1 8 17 90
constraint_2 1 1 100

48

Math Formulation
max 3x + 5y
subject to

10x + 20y <= 100
8x + 17y <= 90
x + y <= 100

Table 9: Out-of-domain dataset - Production example: problem description, intermediate representation, canonical
form, and math formulation.

49

Problem Description A shipping company need to transport packages by either truck or car.
A truck can transport 50 packages per trip while a car can transport
30 packages per trip. In addition, a truck uses 20 liters of gas per trip
while a car uses 15 liters of gas per trip. There can be at most 5 truck
trips made and at least 30% of all the trips must be made by car. The
company needs to transport at least 500 packages. How many of each
transportation should they use to minimize the total amount of gas
consumed?

Intermediate Representation
<DECLARATION>

<OBJ_DIR> minimize </OBJ_DIR>
<OBJ_NAME> amount of gas </OBJ_NAME> [is]
<VAR> truck </VAR> [TIMES] <PARAM> 20 </PARAM>
<VAR> car </VAR> [TIMES] <PARAM> 15 </PARAM>

</DECLARATION>

<DECLARATION>
<CONST_DIR> at most </CONST_DIR><LIMIT> 5 </LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [UPPER_BOUND] </CONST_TYPE> [for]
<VAR> truck </VAR>

</DECLARATION>

<DECLARATION>
<CONST_DIR> at least </CONST_DIR><LIMIT> 30%

</LIMIT>
<OPERATOR> GREATER_OR_EQUAL </OPERATOR>
<CONST_TYPE> [RATIO_CONSTRAINT] </CONST_TYPE> [for]
<VAR> car </VAR>

</DECLARATION>

<DECLARATION>
<CONST_DIR> at least </CONST_DIR><LIMIT> 500

</LIMIT>
<OPERATOR> GREATER_OR_EQUAL </OPERATOR>
<CONST_TYPE> [LINEAR_CONSTRAINT] </CONST_TYPE> [is]
<VAR> truck </VAR> [TIMES] <PARAM> 50 </PARAM>
<VAR> car </VAR> [TIMES] <PARAM> 30 </PARAM>

</DECLARATION>

Canonical Form

var_0 var_1 rhs
objective 20 15
constraint_0 1 0 5
constraint_1 0.3 -0.7 0
constraint_2 -50 -30 -500

Math Formulation
min 20x + 15y
subject to

x <= 5
y >= (30/100)*(x+y)
50x + 30y >= 500

Table 10: Out-of-domain dataset - Transportation example: problem description, intermediate representation,
canonical form, and math formulation.

50

Problem Description A patient is undergoing radiation treatment involving two beams,
Beam 1 and Beam 2. Beam 1 delivers a dose of 0.3 units of medicine
per minute to the benign area of the pancreas and 0.2 units of medicine
per minute to the benign area of the skin. Beam 2 delivers 0.2 units of
medicine per minute to the benign area of the pancreas and 0.1 units
of medicine per minute to the benign area of the skin. In addition,
beam 1 delivers 0.6 units of medicine per minute to the tumor and
beam 2 delivers 0.4 units of medicine per minute to the tumor. At
most 4 units of medicine should be received by the skin and at least
3 units of medicine should be delivered to the tumor. How many
minutes of each beam should be used to minimize the total radiation
received by the pancreas?

Intermediate Representation
<DECLARATION>

<OBJ_DIR> minimize </OBJ_DIR>
<OBJ_NAME> total radiation received by the pancreas

</OBJ_NAME> [is]
<VAR> Beam 1 </VAR> [TIMES] <PARAM> 0.3 </PARAM>
<VAR> Beam 2 </VAR> [TIMES] <PARAM> 0.2 </PARAM>

</DECLARATION>

<DECLARATION>
<CONST_DIR> At most </CONST_DIR><LIMIT> 4 </LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [LINEAR_CONSTRAINT] </CONST_TYPE> [is]
<VAR> Beam 1 </VAR> [TIMES] <PARAM> 0.2 </PARAM>
<VAR> Beam 2 </VAR> [TIMES] <PARAM> 0.1 </PARAM>

</DECLARATION>

<DECLARATION>
<CONST_DIR> at least </CONST_DIR><LIMIT> 3 </LIMIT>
<OPERATOR> GREATER_OR_EQUAL </OPERATOR>
<CONST_TYPE> [LINEAR_CONSTRAINT] </CONST_TYPE> [is]
<VAR> beam 1 </VAR> [TIMES] <PARAM> 0.6 </PARAM>
<VAR> beam 2 </VAR> [TIMES] <PARAM> 0.4 </PARAM>

</DECLARATION>

Canonical Form

var_0 var_1 rhs
objective 0.3 0.2
constraint_0 0.2 0.1 4
constraint_1 -0.6 -0.4 3

Math Formulation
min 0.3x + 0.2y
subject to

0.2x + 0.1y <= 4
0.6x + 0.4y >= 3

Table 11: Out-of-domain dataset - Health Science example: problem description, intermediate representation,
canonical form, and math formulation.

51

A furniture store only stocks and sells dining tables and chairs. The profit per dining table is $350
and the profit per chair is $75. There is 500 sq ft of space available and a dining table requires 8
sq ft of floor space while a chair requires 2 sq ft. Because chairs sell in larger quantities, at least
70% of all furniture in the store must be chairs. In terms of capital, a dining table ties up $1000 in
capital and a chair ties up $150 in capital. The company wants a maximum of $20000 worth of
capital tied up at any time. Formulate an LP to maximize profit.

OptGen w/o copy OptGen

<DECLARATION><OBJ_DIR> maximize
</OBJ_DIR><OBJ_NAME> profit
</OBJ_NAME> [is] <VAR> dining
table </VAR> [TIMES] <PARAM> 350
</PARAM><VAR> chair </VAR> [TIMES]
<PARAM> 75 </PARAM></DECLARATION>

<DECLARATION><OBJ_DIR> maximize
</OBJ_DIR><OBJ_NAME profit
</OBJ_NAME> [is] <VAR> dining
table </VAR> [TIMES] <PARAM> 350
</PARAM><VAR> chair </VAR> [TIMES]
<PARAM> 75 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> available
</CONST_DIR><LIMIT> 20000
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> dining table </VAR>
[TIMES] <PARAM> 8 </PARAM><VAR>
chair </VAR> [TIMES] <PARAM> 2
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> available
</CONST_DIR><LIMIT> 500
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> dining table </VAR>
[TIMES] <PARAM> 8 </PARAM><VAR>
chair </VAR> [TIMES] <PARAM> 2
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 200000
</LIMIT><OPERATOR> GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> dining table </VAR>
[TIMES] <PARAM> 1000 </PARAM><VAR>
chair </VAR> [TIMES] <PARAM> 150
</PARAM> </DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 70%
</LIMIT><OPERATOR> GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[RATIO_CONSTRAINT]
</CONST_TYPE> [for] <VAR> chairs
</VAR> </DECLARATION>

<DECLARATION><CONST_DIR> maximum
</CONST_DIR><LIMIT> 20000
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> dining table </VAR>
[TIMES] <PARAM> 1000 </PARAM><VAR>
chair </VAR> [TIMES] <PARAM> 150
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> maximum
</CONST_DIR><LIMIT> 20000 </LIMIT>
LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> dining table </VAR>
[TIMES] <PARAM> 1000 </PARAM><VAR>
chair </VAR> [TIMES] <PARAM> 150
</PARAM></DECLARATION>

Table 12: Qualitative comparison of model predictions with and without copy mechanism. In this example, the
model without copy mechanism produced erroneous IR declarations (highlighted in red) whereas our model pro-
duces perfect matches with the gold declarations.

52

There is only 5000 grams of a rare flower extract needed to make both youth and adult doses. Youth
doses contain 20 grams of extract and adult doses contain 35 grams. Demand is such that at least
three times as many youth doses are needed than the adult doses. A minimum of 10 adult doses
need to be made. Youth doses are sold for a profit of $5 while adult doses are sold at a profit of $3.
How many of each dose should be prepared to maximize profit?

OptGen w/o copy OptGen

<DECLARATION><OBJ_DIR> maximize
</OBJ_DIR><OBJ_NAME profit
</OBJ_NAME> [is] <VAR> Youth doses
</VAR> [TIMES] <PARAM> 5
</PARAM><VAR> adult doses </VAR>
[TIMES] <PARAM> 3
</PARAM></DECLARATION>

<DECLARATION><OBJ_DIR> maximize
</OBJ_DIR><OBJ_NAME profit
</OBJ_NAME> [is] <VAR> Youth doses
</VAR> [TIMES] <PARAM> 5
</PARAM><VAR> adult doses </VAR>
[TIMES] <PARAM> 3
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> only
</CONST_DIR><LIMIT> 200000
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> Youth doses </VAR>
[TIMES] <PARAM> 20 </PARAM><VAR>
adult doses </VAR> [TIMES] <PARAM>
35 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> only
</CONST_DIR><LIMIT> 5000
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> Youth doses </VAR>
[TIMES] <PARAM> 20 </PARAM><VAR>
adult doses </VAR> [TIMES] <PARAM>
35 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[XBY_CONSTRAINT] </CONST_TYPE><VAR>
youth doses </VAR> [TIMES] <PARAM>
three </PARAM> [is] <VAR> adult
doses </VAR></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[XBY_CONSTRAINT] </CONST_TYPE><VAR>
adult doses </VAR> [TIMES] <PARAM>
three </PARAM> [is] <VAR> youth
doses </VAR></DECLARATION>

<DECLARATION><CONST_DIR> minimum
</CONST_DIR><LIMIT> 200000
</LIMIT><OPERATOR> GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> Youth doses </VAR>
[TIMES] <PARAM> 20 </PARAM><VAR>
adult doses </VAR> [TIMES] <PARAM>
35 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> minimum
</CONST_DIR><LIMIT> 10
</LIMIT><OPERATOR> GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LOWER_BOUND] </CONST_TYPE> [for]
<VAR> adult doses
</VAR></DECLARATION>

Table 13: Qualitative comparison of model predictions with and without copy mechanism. In this example, the
model without copy mechanism produced erroneous IR declarations (highlighted in red) whereas our model pro-
duces perfect matches with the gold declarations.

53

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en

0

5

10

15

20

25

30

35

40

45

Pe
rc

en
ta

ge
 o

f P
ro

bl
em

s

Syntax Error

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en

Wrong Number of Variables

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en

Too Many Constraints

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en

Too Few Constraints

(a) Problem level errors on the Source domain

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en

0

5

10

15

20

25

30

35

40

45

Pe
rc

en
ta

ge
 o

f P
ro

bl
em

s

Syntax Error

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en

Wrong Number of Variables

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en
Too Many Constraints

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en

Too Few Constraints

(b) Problem level errors on the Target domain

Figure 8: Classification of problem level errors for each model. These errors are not mutually exclusive. Problem
level syntax errors will result in a completely incorrect problem as they cannot be parsed. On models predicting
the IR of a problem, a problem level syntax error is defined as one that cannot be parsed through an XML parser.
On the T2T models, syntax errors are defined as a mismatch between the number of columns in each row.

54

BA
RT

Op
tG

en

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 o

f D
ec

la
ra

tio
ns

Objective Syntax Error

BA
RT

Op
tG

en

Constraint Syntax Error

BA
RT

Op
tG

en

Wrong Constraint Type

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 o

f D
ec

la
ra

tio
ns

Wrong Parameters

(a) Declaration level errors on the Source domain.

BA
RT

Op
tG

en

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 o

f D
ec

la
ra

tio
ns

Objective Syntax Error

BA
RT

Op
tG

en

Constraint Syntax Error

BA
RT

Op
tG

en

Wrong Constraint Type

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en

0

10

20

30

40

50

60

70

80
Pe

rc
en

ta
ge

 o
f D

ec
la

ra
tio

ns

Wrong Parameters

(b) Declaration level errors on the Target domain.

Figure 9: Classification of declaration level errors for each model. Note that some of these error types are not
made by the T2T models, as they do not predict constraint types, and their syntax errors are all at the problem
level. The parser will skip parsing poorly formatted declarations, which are later counted as incorrect. We define
a declaration level parameter error as a declaration that contains any parameter mismatch between the prediction
and the ground truth.

55

A patient in the hospital can take two pills, Pill 1 and Pill 2. Per pill, pill 1 provides 0.2 units of pain
medication and 0.3 units of anxiety medication. Per pill, pill 2 provides 0.6 units of pain medication
and 0.2 units of anxiety medication. In addition, pill 1 causes 0.3 units of discharge while pill 2
causes 0.1 units of discharge. At most 6 units of pain medication can be provided and at least 3
units of anxiety medication must be provided. How many pills of each should the patient be given
to minimize the total amount of discharge?

Gold Pred

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> amount of
discharge </OBJ_NAME> [is] <VAR>
pill 1 </VAR> [TIMES] <PARAM> 0.3
</PARAM><VAR> pill 2 </VAR>
[TIMES] <PARAM> 0.1
</PARAM></DECLARATION>

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> total
amount of discharge </OBJ_NAME>
[is] <VAR> Pill 1 </VAR> [TIMES]
<PARAM> 0.3 </PARAM><VAR> pill 2
</VAR> [TIMES] <PARAM> 0.1
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> At most
</CONST_DIR><LIMIT> 6
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> pill 1 </VAR> [TIMES]
<PARAM> 0.2 </PARAM><VAR> pill 2
</VAR> [TIMES] <PARAM> 0.6
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> At most
</CONST_DIR><LIMIT> 6
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> pill 1 </VAR> [TIMES]
<PARAM> 0.2 </PARAM><VAR> pill 2
</VAR> [TIMES] <PARAM> 0.6
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 3
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> pill 1 </VAR> [TIMES]
<PARAM> 0.3 </PARAM><VAR> pill 2
</VAR> [TIMES] <PARAM> 0.2
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 3
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> pill 1 </VAR> [TIMES]
<PARAM> 0.3 </PARAM><VAR> pill 2
</VAR> [TIMES] <PARAM> 0.2
</PARAM></DECLARATION>

Table 14: Comparison of predicted vs. gold IR for out-of-domain example (Health Science). In this example, the
predicted IR is almost equal to the gold IR except for the extra token ("total") in the objective name declaration.

56

An international goods exporter uses ships and planes to transport goods. A ship can take 40
containers worth of goods and uses 500 liters of fuel per trip. A plane can take 20 containers worth
of goods and uses 300 liters of fuel per trip. The company needs to transport at least 500 containers
worth of goods. In addition, there can be at most 10 plane trips made and a minimum of 50% of the
trips made must be by ship. How many of each trip should be made to minimize the total amount
of fuel consumed?

Gold Pred

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> total amount
of fuel </OBJ_NAME> [is] <VAR>
ship </VAR> [TIMES] <PARAM> 500
</PARAM><VAR> plane </VAR> [TIMES]
<PARAM> 300 </PARAM></DECLARATION>

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> total amount
of fuel </OBJ_NAME> [is] <VAR>
ship </VAR> [TIMES] <PARAM> 500
</PARAM><VAR> plane </VAR> [TIMES]
<PARAM> 300 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 500
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> ship </VAR> [TIMES]
<PARAM> 40 </PARAM><VAR> plane
</VAR> [TIMES] <PARAM> 20
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 500
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> ship </VAR> [TIMES]
<PARAM> 40 </PARAM><VAR> plane
</VAR> [TIMES] <PARAM> 20
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at most
</CONST_DIR><OPERATOR>
LESS_OR_EQUAL </OPERATOR><LIMIT>
10 </LIMIT><CONST_TYPE>
[UPPER_BOUND] </CONST_TYPE> [for]
<VAR> plane </VAR></DECLARATION>

<DECLARATION><CONST_DIR> at most
</CONST_DIR><OPERATOR>
LESS_OR_EQUAL </OPERATOR><LIMIT>
10 </LIMIT><CONST_TYPE>
[UPPER_BOUND] </CONST_TYPE> [for]
<VAR> plane </VAR></DECLARATION>

<DECLARATION><CONST_DIR> minimum
</CONST_DIR><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><LIMIT> 50%
</LIMIT><CONST_TYPE>
[RATIO_CONSTRAINT] </CONST_TYPE>
[for] <VAR> ship
</VAR></DECLARATION>

<DECLARATION><CONST_DIR> minimum
</CONST_DIR><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><LIMIT> 50%
</LIMIT><CONST_TYPE>
[RATIO_CONSTRAINT] </CONST_TYPE>
[for] <VAR> ship
</VAR></DECLARATION>

Table 15: Comparison of predicted vs. gold IR for out-of-domain example (Transportation example). In this
example, the model perfectly matched the gold IR.

57

A pharmacy has 3000 mg of morphine to make painkillers and sleeping pills. Each painkiller pill
requires 10 mg of morphine and 3 units of digestive medicine. Each sleeping pill requires 6 mg of
morphine and 5 units of digestive medicine. The pharmacy needs to make at least 50 painkiller pills.
Since sleeping pills are more popular, at least 70% of the pills should be sleeping pills. How many
of each should the pharmacy make to minimize the total amount of digestive medicine needed?

Gold Pred

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> amount of
digestive medicine </OBJ_NAME>
[is] <VAR> painkiller pill </VAR>
[TIMES] <PARAM> 3 </PARAM><VAR>
sleeping pill </VAR> [TIMES]
<PARAM> 5 </PARAM></DECLARATION>

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> amount of
digestive medicine </OBJ_NAME>
[is] <VAR> painkiller pill </VAR>
[TIMES] <PARAM> 3 </PARAM><VAR>
sleeping pill </VAR> [TIMES]
<PARAM> 5 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 50
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LOWER_BOUND] </CONST_TYPE> [for]
<VAR> painkiller pills
</VAR></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 50
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LOWER_BOUND] </CONST_TYPE> [for]
<VAR> painkiller pills
</VAR></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 70%
</LIMIT><OPERATOR> GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[RATIO_CONSTRAINT]
</CONST_TYPE> [for] <VAR>

sleeping pills </VAR></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 50
</LIMIT><OPERATOR> GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LOWER_BOUND]
</CONST_TYPE> [for] <VAR> painkiller
pills </VAR></DECLARATION>

<DECLARATION><CONST_DIR> has
</CONST_DIR><LIMIT> 3000
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> painkiller pill </VAR>
[TIMES] <PARAM> 10 </PARAM><VAR>
sleeping pill </VAR> [TIMES]
<PARAM> 6 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> has
</CONST_DIR><LIMIT> 3000
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> painkiller pill </VAR>
[TIMES] <PARAM> 10 </PARAM><VAR>
sleeping pill </VAR> [TIMES]
<PARAM> 6 </PARAM></DECLARATION>

Table 16: Comparison of predicted vs. gold IR for out-of-domain example (Health Science). In this example,
our model predicted the wrong constraint type as lower bound instead of a ratio constraint. This shows that it
is sometimes hard for the model to distinguish between similar constraint types. The rest of the declaration that
follows the constraint type is also invalid.

58

A parent feeds their baby two flavors of baby food, apple and carrot, in order to meet the babies
fat and folate requirements. Each serving of apple flavored baby food contains 2 units of fat and
5 units of folate. Each serving of carrot flavored baby food contains 4 units of fat and 3 units of
folate. The baby does not like the carrot flavor, and therefore he must eat three times as many apple
flavored baby food as carrot flavored baby food. However, he must eat at least 2 servings of carrot
flavored baby food. If the baby can consume at most 100 units of folate, how many servings of
each should he eat to maximize his fat intake?

Gold Pred

<DECLARATION><OBJ_DIR> maximize
</OBJ_DIR><OBJ_NAME> fat intake
</OBJ_NAME> [is] <VAR> apple
flavored baby </VAR> [TIMES] <PARAM>
2 </PARAM> <VAR> carrot flavored
baby </VAR> [TIMES] <PARAM> 4
</PARAM></DECLARATION>

<DECLARATION><OBJ_DIR> maximize
</OBJ_DIR><OBJ_NAME> fat intake
</OBJ_NAME> [is] <VAR> apple
flavored baby food
</VAR> [TIMES] <PARAM> 5
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> must eat
</CONST_DIR><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[XBY_CONSTRAINT]
</CONST_TYPE><VAR> carrot flavored
baby </VAR> [TIMES] <PARAM> three
</PARAM> [is] <VAR> apple flavored
baby food </VAR></DECLARATION>

<DECLARATION><CONST_DIR> must eat
</CONST_DIR><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[XBY_CONSTRAINT]
</CONST_TYPE><VAR> carrot flavored
baby food
</VAR> [TIMES] <PARAM> three
</PARAM> [is] <VAR> apple flavored
baby food </VAR></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><LIMIT> 2
</LIMIT><CONST_TYPE> [LOWER_BOUND]
</CONST_TYPE> [for] <VAR> carrot
flavored baby </VAR></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><LIMIT> 2
</LIMIT><CONST_TYPE> [LOWER_BOUND]
</CONST_TYPE> [for] <VAR> carrot
flavored baby food
</VAR></DECLARATION>

<DECLARATION><CONST_DIR> at most
</CONST_DIR><LIMIT> 100
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> apple flavored baby
</VAR> [TIMES] <PARAM> 5
</PARAM><VAR> carrot flavored baby
</VAR> [TIMES] <PARAM> 3
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at most
</CONST_DIR><LIMIT> 100
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> apple flavored baby food
</VAR> [TIMES] <PARAM> 2
</PARAM><VAR> carrot flavored baby
food </VAR> [TIMES] <PARAM> 4
</PARAM></DECLARATION>

Table 17: Comparison of predicted vs. gold IR for out-of-domain example (Health Science). In this example,
the model produced an erroneous declaration in the objective and the last constraint. The wrong data parameters,
which should describe the objective function, are instead copied into the last constraint. This example illustrates
the difficulty of parsing an input document that is ambiguous.

59

A chocolate company can transport their boxes of chocolate either using their own vans or by
renting trucks. Their vans can transport 50 boxes per trip while a truck can transport 80 boxes per
trip. Since they own their vans, the cost per van trip is $30 while the cost per truck trip is $50.
The company needs to transport at least 1500 boxes of chocolate and they have a budget of $1000.
Since the vans also provide advertising, the number of trips by van must be larger than the number
of trips by trucks. How many of trip by each should be done to minimize the total number of trips?

Gold Pred

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> number of
trips </OBJ_NAME> [is] <VAR> vans
</VAR> [TIMES] <PARAM> ONE
</PARAM><VAR> trucks </VAR>
[TIMES] <PARAM> ONE
</PARAM></DECLARATION>

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> total number
of trips </OBJ_NAME> [is] <VAR>
van </VAR> [TIMES] <PARAM> ONE
</PARAM><VAR> truck </VAR> [TIMES]
<PARAM> ONE </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 1500
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> vans </VAR> [TIMES]
<PARAM> 50 </PARAM><VAR> truck
</VAR> [TIMES] <PARAM> 80
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 1500
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> vans </VAR> [TIMES]
<PARAM> 50 </PARAM><VAR> trucks
</VAR> [TIMES] <PARAM> 80
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> budget
</CONST_DIR><LIMIT> 1000
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> van </VAR> [TIMES]
<PARAM> 30 </PARAM><VAR> truck
</VAR> [TIMES] <PARAM> 50
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> budget
</CONST_DIR><LIMIT> 1000
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> van </VAR> [TIMES]
<PARAM> 30 </PARAM><VAR> truck
</VAR> [TIMES] <PARAM> 50
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> must be
larger than </CONST_DIR><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[XY_CONSTRAINT] </CONST_TYPE> <VAR>
trucks </VAR> [is] <VAR> van </VAR>
*@)</DECLARATION>

<DECLARATION><CONST_DIR> must be
larger than </CONST_DIR><LIMIT>
500 </LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> vans </VAR> [TIMES]
<PARAM> 50 </PARAM><VAR> trucks
</VAR> [TIMES] <PARAM> 80 </PARAM>
</DECLARATION>

Table 18: Comparison of predicted vs. gold IR for out-of-domain example (Transportation example). In this
example, our model detects a linear constraint instead of a balance constraint. In fact, the balance constraints are
less frequent in the training dataset whereas the linear constraints are the majority ones. This can explain this type
of error as the constraint types are imbalanced in the training dataset.

60

A toy store decides to deliver gifts using two shipping companies, a new one and an old one. The
new company can deliver 50 gifts per trip while the old company can deliver 70 gifts per trip. The
new company uses 30 liters of diesel per trip while the old company uses 40 liters of diesel per
trip. The toy store needs to deliver at least 1000 gifts. There can be at most 15 trips made by the
new company. In order to make sure that the old company does not go out of business, at least
40% of all trips must be made by the old company. How many trips should each company make to
minimize the total amount of diesel used?

Gold Pred

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> total amount
of diesel </OBJ_NAME> [is] <VAR>
new company </VAR> [TIMES] <PARAM>
30 </PARAM><VAR> old company
</VAR> [TIMES] <PARAM> 40
</PARAM></DECLARATION>

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> total amount
of diesel </OBJ_NAME> [is] <VAR>
new company </VAR> [TIMES] <PARAM>
30 </PARAM><VAR> old company
</VAR> [TIMES] <PARAM> 40
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 1000
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> new company </VAR>
[TIMES] <PARAM> 50 </PARAM><VAR>
old company </VAR> [TIMES] <PARAM>
70 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 1000
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> new company </VAR>
[TIMES] <PARAM> 50 </PARAM><VAR>
old company </VAR> [TIMES] <PARAM>
70 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at most
</CONST_DIR><LIMIT> 15
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[UPPER_BOUND] </CONST_TYPE> [for]
<VAR> new company
</VAR></DECLARATION>

<DECLARATION><CONST_DIR> at most
</CONST_DIR><LIMIT> 15
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> new company </VAR>
[TIMES] <PARAM> 50 </PARAM><VAR>
old company </VAR> [TIMES] <PARAM>
70 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 40%
</LIMIT><OPERATOR> GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[RATIO_CONSTRAINT] </CONST_TYPE>
[for] <VAR> old company
</VAR></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 1000
</LIMIT><OPERATOR> GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> new company </VAR>
[TIMES] <PARAM> 50 </PARAM><VAR>
old company </VAR> [TIMES] <PARAM>
70 </PARAM></DECLARATION>

Table 19: Comparison of predicted vs. gold IR for out-of-domain example (Transportation example). In this
example, the model incorrectly generated the expressions for the last two constraints. In fact, it detects the wrong
constraint types and produced the same invalid algebraic expression. This suggests that the generation could
be made more precise by adding additional constrain context into the declaration prompt to distinguish between
different constraints.

61

A zoo needs to transport their monkeys to the vet either by bus or by car. A bus can transport 20
monkeys per trip and takes 30 minutes. A car can transport 6 monkeys per trip and takes 15 minutes.
There can be at most 10 bus trips. In addition, since the monkeys get aggressive when there are
too many in one place at least 60% of the trips should be by car. If the zoo needs to transport 300
monkeys, how many trips of each should be done to minimize the total time required to transport
the monkeys?

Gold Pred

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> total time
</OBJ_NAME> [is] <VAR> bus
</VAR> [TIMES] <PARAM> 30
</PARAM><VAR> car </VAR> [TIMES]
<PARAM> 15 </PARAM></DECLARATION>

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> total time
</OBJ_NAME> [is] <VAR> monkeys
</VAR> [TIMES] <PARAM> 30
</PARAM><VAR> cars </VAR> [TIMES]
<PARAM> 15 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at most
</CONST_DIR><LIMIT> 10
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[UPPER_BOUND] </CONST_TYPE> [for]
<VAR> bus </VAR></DECLARATION>

<DECLARATION><CONST_DIR> at most
</CONST_DIR><LIMIT> 10
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[UPPER_BOUND] </CONST_TYPE> [for]
<VAR> bus </VAR></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 60%
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[RATIO_CONSTRAINT] </CONST_TYPE>
[for] <VAR> car
</VAR></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 60%
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[RATIO_CONSTRAINT] </CONST_TYPE>
[for] <VAR> car
</VAR></DECLARATION>

<DECLARATION><CONST_DIR> needs
</CONST_DIR><LIMIT> 300
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> bus </VAR> [TIMES]
<PARAM> 20 </PARAM><VAR> car
</VAR> [TIMES] <PARAM> 6
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> needs
</CONST_DIR><LIMIT> 300
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> bus </VAR> [TIMES]
<PARAM> 20 </PARAM><VAR> car
</VAR> [TIMES] <PARAM> 6
</PARAM></DECLARATION>

Table 20: Comparison of predicted vs. gold IR for out-of-domain example (Transportation example). In this
example, the model detects an invalid decision variable "monkeys" in the predicted objective declaration.

62

Rouge-1 Rouge-2 Rouge-L
Method Accuracy Recall Precision F1 Recall Precision F1 Recall Precision F1
OptGen 0.61 0.89 0.89 0.89 0.80 0.80 0.79 0.86 0.86 0.86

Table 21: Performance of our model on development set. Rouge scores included declaration tags to illustrate how
well the model is able to reproduce syntax.

