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Abstract

Hierarchical text classification (HTC) is a key
problem and task in many industrial applica-
tions, which aims to predict labels organized in
a hierarchy for given input text. For example,
HTC can group the descriptions of online prod-
ucts into a taxonomy or organizing customer re-
views into a hierarchy of categories. In real-life
applications, while Pre-trained Language Mod-
els (PLMs) have dominated many NLP tasks,
they face significant challenges too—the con-
ventional fine-tuning process needs to modify
and save models with a huge number of param-
eters. This is becoming more critical for HTC
in both global and local modelling—the latter
needs to learn multiple classifiers at different
levels/nodes in a hierarchy. The concern will
be even more serious since PLM sizes are con-
tinuing to increase in order to attain more com-
petitive performances. Most recently, prefix
tuning has become a very attractive technology
by only tuning and saving a tiny set of parame-
ters. Exploring prefix turning for HTC is hence
highly desirable and has timely impact. In this
paper, we investigate prefix tuning on HTC in
two typical setups: local and global HTC. Our
experiment shows that the prefix-tuning model
only needs less than 1% of parameters and can
achieve performance comparable to regular full
fine-tuning. We demonstrate that using con-
trastive learning in learning prefix vectors can
further improve HTC performance.

1 Introduction

Hierarchical text classification (HTC) is a key task
in many industrial applications. Typically, a large
number of labels are defined and organized in a
taxonomic tree. How to accurately and efficiently
predict texts into label paths in the label hierar-
chies is an important capacity in high demand. For
example, many e-commerce applications need to
assign an online product to a path in the label hi-
erarchy, e.g., beverage→coffee→instant coffee or
beverage→tea→oolong tea. Identifying these la-

bel paths allows the information to be easily ac-
cessed by down-stream applications and human
users.

In the past few years, Pre-trained Language Mod-
els (PLMs) have become a dominant solution for
most natural language processing (NLP) applica-
tions. However, PLM models often contain a very
large number of parameters, and the model sizes
keep increasing, which can put a heavy burden
on HTC applications. As an example, HTC often
benefits from building a number of local models
to fully utilize label hierarchies. Instead of train-
ing one model as in global HTC modelling, local
HTC models rely on and leverage several inner
classifiers (Peng et al., 2018). Figure 1 shows that
when building a local HTC model for separating
various types of drinks into the beverage category,
the model sizes dramatically increase along with
the increase of hierarchy levels. (More discussion
about local and global HTC models can be found
in Section 2).

Most recently, prefix tuning (Li and Liang, 2021;
Lester et al., 2021) has become a very attractive
technology by only tuning and saving a tiny set
of parameters compared that of a fully fine-tuned
model. Exploring prefix turning for HTC is hence
highly desirable and has timely impact. In this pa-
per, we investigate prefix tuning on HTC in two
typical setups: local and global HTC. Our experi-
ment shows that the prefix-tuning model only needs
less than 1% of parameters and can achieve per-
formance comparable to regular full fine-tuning.
We demonstrate that using contrastive learning in
learning prefix vectors can further improve HTC
performance.

In brief, our contributions are summarized as
follows:

• To the best of our knowledge, this is the first
systematic study to develop prefix-tuning for
HTC
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Figure 1: An illustration to show that local HTC model will face a size issue when using PLM models to be
classifiers.

• Following local HTC modelling, we exam-
ine different architectures to leverage prefix
vectors learned at different levels of label hi-
erarchies and provide results about our best
practice.

• In the global HTC strategy, we propose to
add a self-training step built on a contrastive
learning (CL) loss and this shows to improve
performance.

• We provide detailed results on two HTC
datasets and the analyses to show how the
models work.

2 Related work

There are two major means of handling label hier-
archies for HTC, i.e., the local and global approach
(Zhou et al., 2020). The local approach builds a
number of classifiers on different label levels or
on many internal nodes in a label hierarchy but
the global approach develops a single classifier to
predict all labels that are flattened from the label
hierarchy.

Shimura et al. (2018) developed convolution neu-
ral network (CNN) based local models at each
level of label hierarchies and proposed to use the
trained CNN at the higher level to initialize the
CNN at a lower level. This transferring approach
that considers inter-connections among the CNN
models in a hierarchy showed to improve HTC per-
formance. Regarding the global HTC, a straight-
forward method is flattening labels’ hierarchical
structure into a flat list and modelling the HTC sim-
ply to a multi-label classification task. Recently,
a trending method is utilizing a structure encoder
to retain the label hierarchy to better utilize mu-
tual information among labels. (Zhou et al., 2020)

used a structure encoder, either a tree LSTM or
a graph convolution network (GCN), to consider
labels’ prior hierarchy information when learning
label representations. PLMs have become a foun-
dational paradigm on building various NLU tasks.
For example, BERT (Devlin et al., 2019) has been
applied to tackle the HTC task (Chen et al., 2021;
Wang et al., 2022).

In parallel, contrastive learning (CL) has been
found to be effective in providing high-quality en-
coders in a simple self-learning way. For example,
in computer vision, SimCLR (Chen et al., 2020)
uses the consistence between an anchor image and
its transformed version and the in-consistence be-
tween the anchor and other instances in a batch (in-
batch negative instances) to guide encoder training.
Inspired by the success of SimCLR in computer vi-
sion, CL-based textual representation learning has
become a hot research topic in NLP. SimCSE (Gao
et al., 2021) uses dropout operations existing in
Transformer (Vaswani et al., 2017) to provide self-
augmentation and can learn effective text represen-
tations.

The CL training has been applied on the HTC
task. (Chen et al., 2021) embeds both text inputs
and labels (in a hierarchy) into an unified seman-
tics space and solving the HTC via vector match-
ing. When training the text encoder, a CL setup
is used and it considers label hierarchy informa-
tion when forming contrastive pairs. (Wang et al.,
2022) uses a CL setup to train a high-quality text
encoder. Label hierarchy is firstly encoded by a
Graphormer (Ying et al., 2021) and the encoded
label information is used to generate text variations
for providing positive pairs in the CL.

Although fine-tuning PLM models enable
many down-stream natural language understand-
ing (NLU) tasks to achieve high performance, this
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paradigm faces a challenge in real deployment com-
pared to other light weight models, e.g., CNN. Also,
PLMs contain a large number of parameters and
the model sizes have been exploding in recent years
for reaching more competitive performance and the
trend is continuing. When deploying the fine-tuned
PLM models, all model parameters (updated in the
fine-tuning process) need be stored. When many
such PLM models need be stored, for example, for
local HTC modelling, the required models sizes
can be very large. To use PLMs in a more space-
efficient way, previous efforts, such as fine-tuning
only several top layers in a PLM or fine-tuning
an adapter, are proposed (He et al., 2022). Unlike
them, prefix-tuning (Li and Liang, 2021; Lester
et al., 2021) only learns prefix vectors to trigger a
PLM, which is frozen and cannot be tuned, to out-
put the text representations fitting to the targeted
domain better. In addition, (Liu et al., 2022) ex-
tended the prefix-tuning on NLU tasks by using
prefix vectors on each PLM layer and dropped sev-
eral components in a conventional prompt-tuning,
e.g., verbalizer.

3 Exploring Effective Prefix Tuning for
Hierarchical Classification

Let x denote the text input, Y a label hierarchy and
y a specific category label path in Y . HTC aims to
solve a multi-label categorization task: given tex-
tual input x, HTC learns to predict possible label
paths y in the hierarchy Y . As discussed above,
when developing HTC in industrial applications,
PLM-based models face model-size issues, which
is becoming more serious as PLM sizes are con-
tinuing to increase. To tackle the challenge, we in-
vestigate soft prefix prompt (SPP) tuning on HTC.
We propose to explore the models in two typical
approaches. In Section 3.1 below, we explore a
transferring approach to better train SPP vectors
among different label levels in the local HTC mod-
elling. Section 3.2 explores global HTC models in
which we propose to add a CL-based self-training
step.

3.1 SPP tuning considering hierarchical
information

Figure 2 depicts two approaches of fine-tuning a
PLM model for text classification. The left subfig-
ure shows the conventional [CLS]-tuning, in which
the [CLS] token is appended in front of the input
text x. The entire text sequence goes through mul-

tiple Transformer layers in a PLM model. Built on
that, the hidden output h[CLS] at the final layer
serves as the representation for x. The h[CLS]

passes through a linear classifier layer (denoted
as CLF in Figure 2) to make predictions. Using
the fine-tuning data, losses can be fed back into the
model and all parameters in both the classifier head
and the PLM model are accordingly tuned. Unlike
that, the right subfigure highlights the process of
(SPP) tuning (Liu et al., 2022), in which the entire
PLM model is frozen and will not be updated dur-
ing fine-tuning. For the embedding layer and each
of PLM layers, tunable SPP vectors, which have
a much smaller sizes compared to the PLM, are
tuned to trigger the frozen PLM to output a more
informative h[CLS] for prediction.

When using the SPP-tuning, the HTC model
focuses on a set of SPP vectors. In the local
HTC model, these SPP vectors on different loca-
tions/layers in a hierarchy may have some inter-
constraints and therefore training them by consid-
ering their topological relationship in the hierarchy
is our first consideration.

Specifically, Figure 3 depicts how we perform
SPP-tuning on adjacent hierarchy layers. Subfigure
(a) shows a basic solution in which SPP vectors
on different levels of the hierarchy are trained in-
dependently without considering any inter-level
connections. However, subfigure (b) shows that
the trained SPP vector at a higher level is used
to initialize a part of SPP vector at a lower level.
The motivation is that knowledge learned in the
upper layer prefix can help inform the low layer
decision. In our study, we propose to assign lower-
level SPP vectors longer than the SPP vectors at
a higher level since the former needs handle more
labels. In addition, we propose and investigate the
architecture in subfigure (c) where the SPP vector
at the higher level is transformed to a longer vector
to initialize the lower-level SPP vector by using a
fully-connected neural network.

3.2 Global model using contrastive learning
when doing SPP-tuning

The other typical setup is investigating global HTC
models. As shown in the right subfigure of Figure 2,
when training SPP vectors, the loss after the clas-
sifier layer is used in supervised learning. Unlike
the local modelling, here we do not transfer prefix
among different layers. When develop the model,
inspired by the success of using self-learning to
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Figure 2: (a) shows conventional [CLS]-tuning for using PLM models. Note that all of parameters in a PLM need
tuning and are shown in a light yellow color. In a contrast, (b) shows Soft Prefix Prompt (SPP) tuning, in which a
frozen PLM model is used and only small-sized SPP vectors (on embedding input and each PLM layer) are tuned.
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Figure 3: When solving HTC using a local model strategy, there are several ways to train prefix vectors for local
models on each label level. (a) shows that vectors from upper and lower levels can be trained separately, (b) shows
that lower level vectors can be initialized based on trained vectors at an upper level, and (c) shows that lower level
vectors can be initialized based on the trained vectors at an upper level and go through a neural network (NN)
transformation. Rectangles at the two levels refer to SPP vectors, from being initialized (enclosed in dash lines) to
being fine-tuned (enclosed in solid lines).

learn proper representations, contrastive learning
is found to be beneficial when being applied with
SPP in the global modelling.

Specifically in our SPP-tuning setup, we follow
the SimCSE (Gao et al., 2021) contrastive approach
to feed inputs into a PLM model twice to obtain a
data anchor and its positive pair.

For a text title x, we append the SPP vector
(Vspp) to [CLS]. Then we obtain a text representa-
tion t with a BERT encoder BERT (∗, d) where
d is a dropout mask, and a projection function
g, which uses a simple multiple layer perception
(MLP) structure.

t = g(BERT (Vspp : [CLS] : x, d)) (1)

To obtain a positive pair, SimCSE runs the same
text title throughout the Transformer encoder
pipeline with a different dropout mask d+.

t+ = g(BERT (Vspp : [CLS] : x, d+)) (2)

For the ith text title, the training objective of

SimCSE is as follows:

Li = −log
exp(sim(ti, t

+
i )/τ)∑N,j ̸=i

j=1 exp(sim(ti, tj)/τ)
(3)

For a mini-batch of N text titles, where
sim(∗, ∗) represents a similarity computation and
τ is the temperature. The total loss computed by
SimCSE, LsimCSE , is an average among all text
titles in the mini-batch,

∑N
i=1 Li/N . By running

an optimization to keep reducing LsimCSE , the
SPP vectors on multiple layers of the BERT model
can be tuned prior to applying the supervised fine-
tuning. To the best of our knowledge, this is the
first work to apply CL pre-training on an NLU task
in SPP-tuning.

4 Experiments

4.1 Datasets and Evaluation
We perform our study on the widely used Web of
Science (WoS) (Kowsari et al., 2017) and Ama-
zon review dataset (McAuley et al., 2015; He and
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Dataset levels Train size Dev size Test size classes
WoS 2 33,070 7,518 9,397 141

Amazon Beauty 5 116,240 29,061 62,273 241

Table 1: Our experiments use both academic benchmark data set, WoS, which has been widely used in previous
HTC research (Chen et al., 2021; Wang et al., 2022), and also an industry data from Amazon review dataset.

McAuley, 2016), focusing on the Beauty category
for comparison and analysis. WoS contains ab-
stracts of published papers from Web of Science
and Amazon review contains titles of online prod-
ucts. For each instance in WoS, there is only a
single label path. However, for each instance in
Amazon Beauty, there could be more than one pos-
sible label paths. Regarding these two datasets,
more statistic details are reported in Table 1. Simi-
lar to previous works, we measure the experimen-
tal results by using micro-F1 (denoted as mi-F1)
and macro-F1 (denoted as ma-F1) to value perfor-
mances per instance and per label respectively.

4.2 HTC models

We consider a variety of HTC models:

• CLS-tuning: A global model using a binary
cross entropy (BCE) loss to train a HTC model
as a multi-label text classifier.

• Local SPP-tuning: A local model consist-
ing of two multi-label text classifiers trained
with SPP. Between SPP vectors at the top and
bottom label levels, there are three ways to
train: (a) non-transferring refers to the ba-
sic strategy described in Section 3.1, training
two sets of SPP vectors independently, (b)
copy-transferring refers to using the trained
SPP vector at the top level to initialize the
corresponding portion in the longer SPP vec-
tor at the bottom level, and (c) transform-
transferring refers to using a neural network
to transform the SPP vector at the upper level
to longer vector to initialize the SPP vector at
lower level. Since the label hierarchy in the
WoS data contains exactly two levels, we built
local models on each level.

• Global SPP-tuning: a global model trained
by using the SPP-tuning, and the BCE loss is
used to train the SPP vectors

• Global SPP-tuning with CL: before training
SPP vectors by the BCE loss, as described in

Section 3.2, a contrastive learning (CL) self-
learning step is used to better initialize SPP
vectors.

For the PLM model, we used BERT-base
provided in the Hugging Face’s Transformer li-
brary (Wolf et al., 2020). The batch size is set
to be 48. The optimizer is Adam with a learning
rate of 1e−2 for the SPP-tuning and the learning
rate of 2e−5 for CLS-tuning1. We implemented
all above-mentioned models based on the source
code2 provided by (Liu et al., 2022) in PyTorch.
We trained these models in an end-to-end way on
the training set for up to 40 epochs and use an
early stop if there was no any performance gain
for consecutive 5 epochs on the development set.
SPP vector length is an important hyper-parameter
controlling SPP-tuning performance. Typically for
simple NLU tasks, short SPP vectors, e.g., shorter
than 20, could work sufficiently. Hence, we did a
grid search among SPP vector lengths from 5 to 40
and found optimal SPP vector lengths for local and
global models respectively. When conducting CL
pre-training, we set the batch size to be 64 to main-
tain enough in-batch negative samples and used
a temperature (τ ) of 0.1. We conducted the CL
pre-training for 10 epochs.

4.3 Results

Table 2 reports the result of comparing the three
training strategies for building HTC models built
on SPP-tuning. When using SPP-tuning to train a
global model on the WoS data, we can find that by
only using 0.46% of model parameters as used in
CLS-tuning, we can achieve a performance even
higher than that obtained by using the CLS-tuning.
Among the three local HTC models based on SPP-
tuning, the non-transferring approach yields the
lowest performance, even worse than the result
of using CSL-tuning. The transform-transferring
approach works better than non-transferring and

1(Liu et al., 2022) uses higher learning rate than what is
used by CLS-tuning. We found this choice makes our SSP-
tuning work.

2https://github.com/THUDM/P-tuning-v2

https://github.com/THUDM/P-tuning-v2
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Model Detail Mi-F1 Ma-F1 Parameters(%)
CLS-tuning global, BCE 85.89 79.22 100%
SPP-tuning global, BCE, |Vspp| = 30 86.84 79.77 0.46%
SPP-tuning local, non-transferring, |V top

spp | = 10 |V bottom
spp | = 20 86.84 79.12 0.46%

SPP-tuning local, transform-transferring, |V top
spp | = 10

|V bottom
spp | = 20

86.93 79.33 0.46%

SPP-tuning local, copy-transferring, |V top
spp | = 10 |V bottom

spp | = 20 87.24 79.98 0.46%
SPP-tuning local, copy-transferring, |V top

spp | = 10 |V bottom
spp | = 30 87.34 80.09 0.66%

Table 2: HTC models on WoS dataset. By using a BERT-base, various fine-tuning methods, i.e., CLS-tuning, global
model using SPP-tuning, and local models using SPP-tuning, are compared.

WoS Amazon Beauty
Model Detail Mi-F1 Ma-F1 Parameters (%) Mi-F1 Ma-F1 Parameters (%)

CLS-tuning BCE 85.89 79.22 100.00% 87.49 63.38 100.00%
SPP-tuning BCE 86.84 79.77 0.46% 88.00 61.36 0.50%
SPP-tuning CL→BCE 87.55 80.07 0.46% 88.14 62.07 0.50%

Table 3: Global HTC models on both WoS and Amazon datasets. When training by SPP-tuning, we proposed
adding a CL pre-training stage and this turns out to improve HTC performance.

the best performance is from copy-transferring ap-
proach. When keep increasing V bottom

spp from 20 to
30, the performance can be improved further. It
shows that SPP vectors trained at a higher level
need be used intact when initializing SPP vectors
at lower levels. Also, both transferring approaches
work better than non-transferring.

Table 3 reports the results of comparing the two
types of training losses when training a global
model based on SPP-tuning. We can see that on
the two data sets, WoS and Amazon Beauty, the
SPP-tuning only using the BCE loss is worse than
the proposed model that leverages CL pre-training.

Note that when only using 0.5% of the param-
eters used in CLS-tuning, on the Amazon Beauty
data with 241 labels, the SPP-tuning model has a
performance comparable to CLS-tuning. A slight
gain is actually observed on micro-F1, although
macro-F1 has some drop from 63.38% to 61.36%.
We show that after adding CL self-training prior
to fine-tuning SPP vectors, macro-F1 is still lower
than what we can obtain when using CLS-tuning.
This is worth more investigations to evaluate SPP-
tuning approach comprehensively, on labels with
both sufficient and sparse training instances.

5 Conclusions and Future Work
HTC is a key task in many industrial applications.
The conventional fine-tuning process needs to mod-
ify and save models that have a large number of
parameters. This has become a more significant

concern as PLM sizes are continuing to increase in
the foreseeable future. In this paper, we investigate
prefix tuning on HTC in two typical setups: local
and global HTC. To the best of our knowledge,
this is the first systematic study towards developing
prefix-tuning for HTC in these typical architec-
tures.

In local HTC modelling, we examine different
architectures to leverage prefix vectors learned at
different levels of label hierarchies and provide
results about our best practice. We found that SPP
vectors trained at a higher level can be utilized to
initialize a portion of SPP vectors at a lower level of
the hierarchy and such a vector transferring strategy
is beneficial. For SPP vectors, using them intact
works better than using their transformed version.
In the global HTC strategy, we propose to add a
self-training step built on a contrastive learning
(CL) loss. On both WoS and Amazon datasets,
such a CL pre-training is found to be helpful on
improving model performance.

For future work, we will extend the current work
to study long-tailed labels which is very common
in many applications. Also, how to use labels’
hierarchical information that can be represented
by structural encoders is worth studying in SPP-
tuning.
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