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Abstract

The rapidly growing market demand for auto-
matic dialogue agents capable of goal-oriented
behavior has caused many tech-industry lead-
ers to invest considerable efforts into task-
oriented dialog systems. The success of these
systems is highly dependent on the accuracy
of their intent identification – the process of
deducing the goal or meaning of the user’s re-
quest and mapping it to one of the known in-
tents for further processing. Gaining insights
into unrecognized utterances – user requests
the systems fail to attribute to a known intent
– is therefore a key process in continuous im-
provement of goal-oriented dialog systems.

We present an end-to-end pipeline for process-
ing unrecognized user utterances, deployed in
a real-world, commercial task-oriented dialog
system, including a specifically-tailored clus-
tering algorithm, a novel approach to clus-
ter representative extraction, and cluster nam-
ing. We evaluated the proposed components,
demonstrating their benefits in the analysis of
unrecognized user requests.

1 Introduction

The development of task-oriented dialog systems
has gained much attention in both the academic and
industrial communities over the past decade. Com-
pared with open-domain dialog systems aimed at
maximizing user engagement (Huang et al., 2020),
task-oriented (also referred to as goal-oriented) di-
alog systems help customers accomplish a task in
one or multiple domains (Chen et al., 2017). A
typical pipeline system architecture is divided into
several components, including a natural language
understanding (NLU) module, which is responsible
for classifying the first user request into potential
intents, performing a decisive step that is required
to drive the subsequent conversation with the vir-
tual assistant in the right direction.

Goal-oriented dialog systems often fail to rec-
ognize the intent of natural language requests due

Figure 1: Natural language understanding (NLU) mod-
ule. Based to the intent classifier’s confidence level,
first user utterances are ‘recognized’ and associated
with an execution flow, or stored in an unhandled pool.

to system errors, incomplete service coverage, or
insufficient training (Grudin and Jacques, 2019;
Kvale et al., 2019).1 In practice, these cases are
normally identified using intent classifier uncer-
tainty. Here, user utterances that are predicted to
have a level of confidence below a certain thresh-
old to any of the predefined intents, are identified
and reported as unrecognized or unhandled. Fig-
ure 1 presents the NLU module from a typical task-
oriented dialog system: the user utterance is either
transformed into an intent with an appropriate flow
of subsequent actions, or labeled as unrecognized
and stored in the unhandled pool (Figure 1).

Unhandled utterances often carry over various
aspects of potential importance, including novel
examples of existing intents, novel topics that may
introduce a new intent, or seasonal topical peaks
that should be monitored but not necessarily mod-
eled within the system. In large deployments, the
number of unhandled utterances can reach tens of
thousands on a daily basis. Despite their evident
importance for continuous bot improvement, tools
for gaining effective insights into unhandled utter-
ances have not been developed sufficiently, leaving
a vast body of knowledge, as well as a range of

1In most virtual assistants, a user utterance is considered
unhandled by the system’s NLU module either by design
(often referred to as “out-of-domain”), or due to the system’s
failure to attribute the utterance to one of its existing intents.
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potentially actionable items, unexploited.
Gaining insights into the topical distribution of

unrecognized requests can be achieved using unsu-
pervised text analysis tools, such as clustering or
topic modeling. Indeed, identifying clusters of se-
mantically similar utterances can surface topics of
interest to a conversation analyst. We show that tra-
ditional clustering algorithms result in sub-optimal
performance due to the unique traits of unhandled
utterances in dialog systems: an unknown number
of expected clusters and a very long tail of outliers.
Consequently, we propose and evaluate a radius-
based variant of the k-means clustering algorithm
(Lloyd, 1982), that does not require a fixed number
of clusters and tolerates outliers gracefully. We
show that it outperforms its out-of-the-box counter-
parts on a range of real-world customer, as well as
public datasets. The algorithm has recently been
evaluated on the task of intent discovery in the
context of large-scale, production chatbot, being
ranked first (out of 4) at coverage metrics, and sec-
ond at utterance partitioning (Gretz et al., 2022).

We propose an end-to-end pipeline for surfac-
ing topical clusters in unhandled user requests, in-
cluding utterance cleanup, a designated clustering
procedure and its extensive evaluation, a novel ap-
proach to cluster representatives extraction, and
cluster naming. We approach this task in a real-
world setting of commercial task-oriented dialog
systems, and demonstrate the benefits of the sug-
gested approach on multiple publicly available, as
well as proprietary, datasets.

2 Clustering of Unrecognized Requests

Consider a virtual assistant aimed to attend to pub-
lic questions about Covid-19. The rapidly evolving
situation with the pandemic means that novel re-
quests are likely to be introduced to the bot on a
daily basis. As such, changes in international travel
regulations would entail requests related to PCR
test availability, and the decision to offer booster
shots for seniors might cause a spike in questions
about vaccine appointments for elderly citizens.
Monitoring and prompt detection of these topics
are fundamental for continuous bot improvement.

2.1 Clustering Utterances

Here we describe the main clustering procedure
followed by an optional single merging step.

2.1.1 Main Clustering Procedure
Clustering requirements Multiple traits make
up an effective clustering procedure in our scenario.
First, the number of clusters is unknown, and has
to be discovered by the clustering algorithm. Sec-
ond, the nature of data typically implies several
large and coherent clusters, where users repeatedly
introduce very similar requests, and a very long
tail of unique (often noisy) utterances that do not
have similar counterparts. While the latter are of
somewhat limited importance, they can amount to
a significant ratio of the input data. There is an
evident trade-off between the size of the generated
clusters, their density or sparsity, and the number
of outliers: smaller and denser clusters entail larger
amounts of outliers. The decision regarding the
precise outcome granularity may vary according to
domain and bot maturity. Growing deployments,
with a high volume of unrecognized requests, could
benefit from surfacing large and coarse topics that
are subject to automation. That said, mature deploy-
ments are likely to focus on fine-grained coherent
clusters of utterances, introducing enhancements
into the existing solution. Our third requirement
is, therefore, a configurable density of the outcome
clusters, which can be set up prior to the clustering
procedure. Figure 2 illustrates a typical outcome
of the clustering process; identified clusters are de-
picted in color, while the outliers, which constitute
approximately half of the instances, appear in grey.

Existing clustering solutions can be roughly cat-
egorized across two major dimensions in terms of
functional requirements: those requiring a fixed
number of output clusters (1.a) and those that do
not (1.b); those forcing cluster assignment on the
entire dataset (2.a) and those tolerating outliers
(2.b). Our clustering solution should accommodate
(1.b) and (2.b): the number of clusters is deter-
mined by the clustering procedure, allowing for out-
liers. DBSCAN (Ester et al., 1996) and its descen-
dant variants constitute a popular family of cluster-
ing solutions that satisfies these requirements; we,
therefore, evaluate our algorithm against implemen-
tations of DBSCAN and its hierarchical version
HDBSCAN (McInnes et al., 2017).

Data representation Given a set of m unhan-
dled utterances U=(u1,u2, ...,um), we compute
their vector representations E=(e1,e2, ...,em) using
a sentence encoder. Multiple available encoders
were evaluated for this purpose, considering both
effectiveness and efficiency (see Section 2.2.1).

https://vaxchat.org/


230

Figure 2: t-SNE projection of a sample of unrecognized
user requests in a production task-oriented dialog sys-
tem. Identified clusters are in color, outliers – in grey.

Radius-based clustering (RBC) We introduce a
variant of the popular k-means clustering algorithm,
complying with our clustering requirements by (1)
imposing a strict cluster assignment criterion and
(2) eventually omitting points that do not constitute
clusters exceeding a predefined size.

Specifically, we iterate over randomly-ordered
vectors in E, where each utterance vector can be
assigned to an existing cluster if certain conditions
are satisfied; otherwise, it initiates a new cluster. In
order to join an existing cluster, the utterance is re-
quired to surpass a predefined similarity threshold
min_sim with the cluster’s centroid,2 implying its
placement within a certain radius from the centroid.
If multiple clusters satisfy the similarity require-
ment, the utterance is assigned to the cluster with
the highest proximity i.e., the cluster with the high-
est semantic similarity to its centroid. Additional
iterations over the utterances are further performed,
re-assigning them to different clusters if needed,
until convergence, or until a pre-defined number
of iterations is exhausted.3 The amount of clusters
generated by the final partition is controlled by the
min_size value: elements that constitute clusters
of small size (in particular, those with a single item)
are considered outliers. Algorithm 1 presents the
algorithm’s pseudo-code.

2.1.2 Cluster Merging
Cluster merging has been extensively used as a
means to determine the optimal clustering out-
come in the scenario where the ‘true’ number of

2Following the k-means notation, we compute a cluster’s
centroid as the arithmetic mean of its member vectors.

3Contrary to k-means, our algorithm is not sensitive to
its (random) initialization, since we are not required to se-
lect K centroids; utterance processing order has shown only
negligible effect on the final outcome.

Algorithm 1: Radius-based Clustering
input: E (e1, e2, ... en) /* elements */
input: min_sim /* min similarity */
input: min_size /* min cluster size */

C ← ∅
while convergence criteria are not met do

for each element ei∈E do
if the highest similarity of ei to any existing

cluster exceeds min_sim then
assign ei to its most similar cluster c
re-calculate the centroid of c

else
create a new cluster c′ and assign ei to it
set the centroid of c′ to be ei
add c′ to C

/*clusters with fewer elements than
the predefined min_size are
considered outliers */

return: each c∈C of size exceeding min_size

partitions is unknown (Krishnapuram, 1994; Kay-
mak and Setnes, 2002; Xiong et al., 2004). These
start with a large number of clusters and iteratively
merge compatible partitions until the optimization
criteria is satisfied. Beginning with fine-grained
partitioning, we perform an (optional) single step
of cluster merging, combining similar clusters into
larger groups. A similar outcome could poten-
tially be obtained by relaxing the min_sim simi-
larity threshold and thereby, generating more het-
erogeneous flat clusters in the first place. However,
a single step of cluster merging yielded results that
outperform flat clustering on a range of datasets
(see Table 3 and Section 2.2.2 for details). Clas-
sical agglomerative hierarchical clustering (AHC)
algorithms merge pairs of lower-level clusters by
minimizing the agglomerative criterion: a similar-
ity requirement that has to be satisfied for a pair of
clusters to be merged. Similar to AHC, we seek
to merge clusters exhibiting high mutual similarity.
In contrast to AHC, our approach is not pair-wise,
rather it constitutes a subsequent invocation of the
RBC that takes embeddings of the flat cluster cen-
troids as its input.

Formally, given a set of clusters C of size k=|C|,
identified by the algorithm, we compute the set
of cluster centroid vectors Ec=(ec1,ec2, ...,eck); these
vectors are assumed to reliably represent the seman-
tics of their corresponding clusters. Ec is further
used as an input to subsequent invocation of the
RBC algorithm, where the min_sim parameter can
possibly differ from the previous invocation.
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cluster name: difference covid flu (28) cluster name: covid pregnancy (17)
is covid the same as the flu? (4) covid 19 and pregnancy (10)
how is covid different from the flu? (3) covid risks for a pregnant woman (4)
what is the difference between covid 19 and flu? what is the risk of covid for pregnant women?
what’s the difference between covid and flu is covid-19 dangerous when pregnant?
is the covid the same as cold? 7 months pregnant and tested positive for covid, any risks?
covid vs flu vs sars covid 19 during pregnancy

Table 1: Example clusters of user requests generated by the RBC algorithm when applied on the Covid-19 dataset.
Only a partial list of cluster members is presented in the table; the number in parenthesis denotes a cluster size.

Example Clustering Result Table 1 presents
two example clusters generated from user requests
to the Covid-19 bot. We applied the main RBC
clustering procedure and a single subsequent merge
step. Semantically related utterances are grouped
together, where the number beside an utterance re-
flects its frequency in the cluster. As a concrete
example, ‘is covid the same as the flu?’ was asked
four times by different users.

2.2 Evaluation

We performed a comparative evaluation of the pro-
posed clustering algorithm and HDBSCAN4, using
common clustering evaluation metrics. The nature
of the topical distribution of unrecognized utter-
ances is probably most closely resembled by dialog
systems intent classification datasets, where seman-
tically similar training examples are grouped into
classes, based on their intent. We used these classes
to simulate cluster partitioning for the purpose of
evaluation. We make use of three publicly avail-
able intent classification datasets (Liu et al. (2019),
Larson et al. (2019) and Tepper et al. (2020)), as
well as three datasets from real-world task-oriented
chatbots in the domains of telecom, finance and
retail. Table 2 presents the datasets details.

dataset intents examples mean STD
Liu et al. (2019) 46 20849 453.23 896.34
Larson et al. (2019) 150 22500 150.00 0.00
Tepper et al. (2020) 57 844 14.80 14.16
telecom 167 6364 38.10 26.74
finance 142 2301 16.20 25.28
retail 103 1714 16.64 11.42

Table 2: Datasets details: the number of intents, total
training examples, mean and STD of the num of ex-
amples. We excluded out-of-scope examples from the
Larson et al. (2019) dataset for the sake of evaluation.

4DBSCAN resulted in outcomes systematically inferior to
HDBSCAN; hence, it was excluded from further experiments.

2.2.1 Evaluation Approach

The main approaches to clustering evaluation in-
clude extrinsic methods, which assume a ground
truth, and intrinsic methods, which work in the
absence of ground truth. Extrinsic techniques com-
pare the clustering outcome to a human-generated
gold standard partitioning. Intrinsic techniques
assess the resulting clusters by measuring charac-
teristics such as cohesion, separation, distortion,
and likelihood (Pfitzner et al., 2009). We employ
two popular extrinsic and intrinsic evaluation met-
rics: adjusted random index (ARI, (Hubert and
Arabie, 1985)) and Silhouette Score (Rousseeuw,
1987). We vary the parameters of the RBC algo-
rithm: merge type with none vs. single step (see
Section 2.1.2); the encoder used for distance ma-
trix construction: the SentenceTransformer (ST)
encoder (Reimers and Gurevych, 2019) vs. the Uni-
versal Sentence Encoder (USE) (Cer et al., 2018);
min similarity threshold used as a cluster “radius”
was optimized on a held-out set of intents, per
dataset. Both ARI and Silhouette yield values in
the [-1, 1] range, where -1, 0 and 1 mean incorrect,
arbitrary, and perfect assignment, respectively. The
unique nature of our clustering requirements intro-
duces a challenge to standard extrinsic evaluation
techniques. Specifically, the min cluster size at-
tribute controls the number of outliers, by consider-
ing only clusters that exceed the minimum number
of members (see Figure 2). Aiming to mimic the
ground truth partition (i.e, the intent classification
datasets), we set the min_size attribute to the mini-
mal class size in the dataset, subject to evaluation.
As such, this attribute was set to 150 for the Larson
et al. (2019) dataset, but to 2 for the finance dataset.

Both evaluation techniques assume full partition-
ing of the input space. Therefore, for our evalua-
tion, we exclude the set outliers generated by our
clustering algorithm altogether: only the subset of
instances constructing the outcome clusters (e.g.,
instances depicted in color in Figure 2) was used to
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compute both ARI and Silhouette. For complete-
ness, we also report the ratio of a dataset utterances
covered by the generated partition (‘% clst’ in Ta-
ble 3), where the higher, the better.

2.2.2 Evaluation Results
Table 3 presents the results of our evaluation.
Clearly, the RBC algorithm outperforms HDB-
SCAN across the board for both ARI and Silhou-
ette scores, with the exception of the retail dataset,
where the second best ARI score (0.37) is obtained
by RBC along with over 80% of clustered utter-
ances (compared to only 49.79% by HDBSCAN).
HDBSCAN also outperforms RBC in terms of the
ratio of clustered utterances for Liu et al. (2019)
and the telecom dataset. However, these results are
achieved by a nearly arbitrary partition of the input
data, as mirrored by the extremely low ARI and
Silhouette scores. We conclude that RBC outper-
forms its out-of-the-box counterpart on virtually
all datasets in this work. The ratio of clustered
examples (‘% clst’) exhibits considerable variance
among the datasets; this result is indicative of the
varying levels of semantic coherence of the un-
derlying intent classes, which are typically con-
structed manually by a bot designer. As such, over
87% of all training examples were covered by the
clustering procedure for the retail dataset, but only
33.90% for Larson et al. (2019).

The extremely poor results obtained for the tele-
com dataset by HDBSCAN stem from its clustering
outcome that only contains two clusters: (1) a small
group of unique examples and (2) all the rest.

Runtime and Memory Due to its nearly polyno-
mial complexity, the proposed clustering algorithm
may entail efficiency considerations for a very large
amount of data. As such, with pre-computed re-
quest embeddings, clustering 20K unhandled re-
quests results in less than 10 seconds, while clus-
tering 85K requests takes 82 seconds with over
850MB of RAM consumption. All experiments
were conducted on a server with 8 CPUs.

3 Selecting Cluster Representatives

Contemporary large-scale deployments of virtual
assistants must cope with increasingly high vol-
umes of incoming user requests. A typical large
task-oriented system can accept over 100K requests
(i.e., user utterances) per day, where the amount
of conversations that pass the initial step of intent
identification varies between 40% and 80%. Con-

algo RBC HDBSCAN
merge type no merge single step —
encoder USE ST USE ST USE ST

L
iu

ARI 0.42 0.40 0.74 0.44 0.42 0.03
Silhouette 0.47 0.42 0.67 0.50 0.39 0.09
% clst 12.12 12.03 12.12 16.09 12.69 38.36

L
ar

so
n ARI 0.89 0.86 0.68 0.76 0.49 0.69

Silhouette 0.47 0.50 0.48 0.50 0.39 0.47
% clst 16.29 32.60 16.29 33.90 24.92 32.98

Te
pp

er ARI 0.66 0.65 0.73 0.52 0.69 0.67
Silhouette 0.45 0.49 0.51 0.37 0.45 0.46
% clst 79.68 85.12 79.68 88.18 58.31 60.15

te
le

co
m ARI 0.32 0.54 0.63 0.38 0.00 0.00

Silhouette 0.17 0.20 0.18 0.11 0.00 0.00
% clst 25.18 46.87 25.18 59.78 83.24 97.90

fin
an

ce ARI 0.40 0.42 0.45 0.56 0.45 0.49
Silhouette 0.37 0.39 0.35 0.32 0.34 0.35
% clst 47.59 63.26 47.59 74.28 23.46 36.22

re
ta

il ARI 0.28 0.37 0.31 0.24 0.37 0.38
Silhouette 0.24 0.28 0.22 0.27 0.23 0.32
% clst 68.19 80.43 68.19 87.18 37.55 49.79

Table 3: Clustering evaluation results; ‘% clst’ denotes
the ratio of clustered examples out of total; the best
result in a row is boldfaced.

sequently, tens of thousands of requests can be
identified as unrecognized on a daily basis. Cluster-
ing these utterances would result in large clusters
that are often impractical for manual processing.
Providing conversation analysts with a limited set
of cluster representatives is a fundamental step to-
ward extracting value from the unrecognized data.

3.1 Representative Characteristics

A plausible set of representative cluster utterances
has to satisfy two desirable properties: utterance
centrality and diversity. We define an utterance
centrality to be proportional to its frequency in a
cluster: requests with higher frequency should be
boosted, since they are typical of the way people
express their needs to the bot. The diversity of the
utterance set mirrors the subtle differences in the
phrasing and meaning of utterances; these reflect
the various ways people can express the same need.

Sampling randomly from a cluster may result
in a sub-optimal set of representatives, in terms of
both centrality and diversity. Consider the example
where no ‘covid 19 and pregnancy’ requests (Table
1, right) are selected as representatives (low central-
ity), or both ‘what is the difference between covid
19 and flu?’ and ‘what’s the difference between
covid and flu’ (Table 1, left) are selected (low di-
versity). Contrary to these examples, the set {‘is
covid the same as the flu?’, ‘is the covid the same
as cold?’, ‘covid vs flue vs sars’} contains utterance
of high centrality (the first utterance), and compre-
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hensive coverage of the entire cluster semantics.

3.2 Selecting Representatives

To ensure diversity and centrality among the se-
lected representatives, we use determinantal point
process (DPP). Specifically, we consider a re-
stricted class of DPPs known as L-ensembles.
Given a set of items, S , L-ensembles define a prob-
ability distribution over the power set of S . Equiv-
alently, L-ensembles define a probability distribu-
tion over binary vectors of length |S|, where the
ith entry in the vector indicates if the ith item in S
was included in the subset or not. These indicator
variables are negatively correlated where the cor-
relations are governed by a positive semidefinite
matrix K. L-ensembles ensure that the more simi-
lar two items are, as indicated by the corresponding
entry in the kernel matrix, the less likely are they
to occur in the same sampled subset. Thus, it is an
excellent model for ensuring diversity among the
selected representatives.

Given a positive semi-definite kernel matrix
K, the probability of A⊂S is governed in an L-
ensemble as P (A) ∝ det(KA), where KA is the
restriction of K to the indices present in the subset
A. We construct the kernel matrix to ensure that
samples from the L-ensemble have high centrality
while also being diverse. To achieve this, we first
project the embeddings of the utterances within the
cluster onto a unit sphere. We further take into
consideration the factor of centrality by scaling the
vectors’ length based on their frequency in the clus-
ter. Given the resultant embeddings E, where the
embedding of the ith entry is the ith row vector
in E, the kernel matrix is obtained by K=EET.
Thus, the (i, j)th entry of the kernel corresponds
to the angle between the ith and jth vector scaled
by the frequency of occurrence of those vectors.
We make use of the freely available DPPy Python
package for sampling a subset of representatives,
given the above kernel matrix.

Evaluation Using the clustering approach in Sec-
tion 2 we extracted 50 clusters of varying sizes of
unhandled user requests from a large-scale produc-
tion system. A set of three cluster representatives
was extracted using the technique described in this
section, along with two baselines: (1) three ran-
dom cluster members, (2) three unique most fre-
quent cluster members. Three in-house annotators
labeled their preferred alternative, satisfying cen-
trality and diversity properties in the best way. The

majority vote was obtained in 47 out of 50 cases,
with 37 out of 47 (79%) choices preferring the
centrality-diversity approach. The mean pairwise
Cohen’s Kappa between the annotators was 0.44.

4 Cluster Naming

Assigning cluster with names, or labels, is an es-
sential step toward their consumability. Common
approaches to this task resort to simple but reliable
techniques based on word n-gram extraction, such
as tf-idf ; many of these techniques made their way
into the first large-scale information retrieval (IR)
systems (Ramos et al., 2003; Aizawa, 2003). Here,
we distinguish between the task of cluster naming
(extracting a coherent phrase reliably reflecting a
cluster’s content) and the task of keyword extrac-
tion (providing a sequence of one or more words
for a compact representation of a document).

Common approaches to cluster naming include
extracting one of the cluster’s members to reflect
the cluster’s content; extracting such a member
can be done by by naively selecting the most fre-
quent member in the cluster or by choosing a mem-
ber satisfying maximum cosine similarity to the
cluster’s centroid (Alicante et al., 2016). In other
cases, a good name may not occur directly as one
of the cluster’s members, and hence requires differ-
ent handling. Some works were trying to investi-
gate the contribution of external knowledge-bases
for cluster naming, by incorporating Wikipedia
pages’ meta-data corresponding to the cluster’s
content (Carmel et al., 2009), while others were
trying to generate clusters’ queries, as a mixture
of cluster-internal and differential labeling (Hagen
et al., 2015). Contemporary large pretrained large
language models can also be used for the task of
keyword extraction. Here we make use of Key-
BERT – an approach based on BERT (Devlin et al.)
– for identifying key phrases in a cluster, and evalu-
ate the outcome against tf-idf.

Cluster Labeling with tf-idf We treat all
utterances in individual clusters from a set
C=(c1, c2, ..., ck) as distinct documents. We first
applied lemmatization to these documents using
the spacy toolkit (Honnibal and Montani, 2017),
excluded stopwords, and further ranked all ngram
token sequences of length N (for N∈(1, 2, 3)) by
their tf-idf score. The ngram with the highest score
was selected as the cluster name.

https://github.com/guilgautier/DPPy
https://github.com/guilgautier/DPPy
https://spacy.io/
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Cluster Labeling with KeyBERT Treating
each cluster as a document, we first extract
document-level representation using a pretrained
BERT language model.5 We further extract ngram
representations for all unique word ngrams in the
document, and compute semantic similarity be-
tween each ngram’s embedding and that of the
document. Ngram with the highest cosine similar-
ity to the document is selected as the cluster name.6

Evaluation Adhering to the same evaluation
paradigm as Section 2.2, we use the six intent clas-
sification datasets for assessing the quality of clus-
ter naming techniques. A common practice for
building an intent training dataset involves assign-
ing each class in the training set with a meaningful
name, typically mirroring the semantics of the class.
As such, an intent class grouping example requests
about Covid-19 testing information in Tepper et al.
(2020), is named ‘testing information’. For each
class in the intent training set, we compare the au-
tomatically extracted class name to that assigned to
the class by the dataset creator, where the similar-
ity is obtained by encoding the two phrases – the
original class name and the candidate one – and
computing their cosine similarity.

Table 4 presents the results for the two methods.
Neither approach systematically outperforms the
other, and the only significant difference in favor
of the tf-idf approach is found for Liu et al. (2019).
We, therefore, conclude that the two approaches
are roughly comparable and adhere to the faster
tf-idf method in our pipeline solution.

dataset tf-idf KeyBERT
Liu et al. (2019) 0.718* 0.626
Larson et al. (2019) 0.555 0.489
Tepper et al. (2020) 0.481 0.460
telecom 0.437 0.470
finance 0.438 0.426
retail 0.375 0.393

Table 4: Cluster naming evaluation: for each dataset,
the mean pairwise similarity between the predefined in-
tent name and the assigned keyphrase is presented. ‘*’
denotes significant difference at p-val<0.01 using the
Wilcoxon (Mann–Whitney) ranksums test.

5 Conclusions and Future Work

Analyzing unrecognized user requests is a funda-
mental step toward improving task-oriented dia-

5We use ‘all-MiniLM-L6-v2’ model in our experiments.
6We make use of the freely available KeyBERT package.

log systems. We present an end-to-end pipeline
for clustering, representatives selection, and cluster
naming – procedures that facilitate the effective and
efficient exploration of utterances unrecognized by
the NLU module. We propose a clustering variant
of the popular k-means algorithm, and show that
outperforms its out-of-the-box alternatives on mul-
tiple metrics. We also suggest a novel approach to
extracting representative utterances while simulta-
neously optimizing their centrality and diversity.

Our future work includes the evaluation of our
clustering approach with additional datasets, explo-
ration of additional approaches to representative set
selection, and advanced techniques for cluster nam-
ing. Leveraging clustering results to automatically
identify actionable recommendations for conversa-
tion analyst is another venue of significant practical
importance, we plan to pursue.

6 Ethical Considerations

Cluster representative sets (Section 3) were anno-
tated by in-house workers who were compensated
with above minimum wages. To protect user pri-
vacy, no personally identifiable information (e.g.,
name, address) were presented to the annotators.
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