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Abstract
Extracting attribute-value information from un-
structured product descriptions continue to be
of a vital importance in e-commerce applica-
tions. One of the most important product at-
tributes is the brand which highly influences
customers’ purchasing behaviour. Thus, it is
crucial to accurately extract brand information
dealing with the main challenge of discover-
ing new brand names. Under the open world
assumption, several approaches have adopted
deep learning models to extract attribute-values
using sequence tagging paradigm. However,
they did not employ finer grained data repre-
sentations such as character level embeddings
which improve generalizability. In this paper,
we introduce OpenBrand, a novel approach
for discovering brand names. OpenBrand is
a BiLSTM-CRF-Attention model with embed-
dings at different granularities. Such embed-
dings are learned using CNN and LSTM archi-
tectures to provide more accurate representa-
tions. We further propose a new dataset for
brand value extraction, with a very challenging
task on zero-shot extraction. We have tested
our approach, through extensive experiments,
and shown that it outperforms state-of-the-art
models in brand name discovery.

1 Introduction

Brand name plays a very important role in influenc-
ing customers’ behaviour (Chovanová et al., 2015;
Shahzad et al., 2014). Typically, as customers are
aware of the brand, they can deduce knowledge
about other product attributes. Let us take the ex-
ample of the toy shown in Figure 1. The brand
of this product is “Gentle Monster”. By know-
ing the brand, customers would have some kind
of associations, like this toy would be of “a soft
and smooth wood”, have “bright colors”, and con-
tain “small pieces which is suitable for older kids".
So, when shopping for toys, they would pick a
particular brand based on the attributes they find
important. Such correlations between brands and

Figure 1: An example of a product description.

product attributes make it crucial for e-commerce
applications to accurately extract brand names from
product descriptions.

Retrieving brand names is addressed in the liter-
ature within the general problem of attribute-value
extraction from product descriptions (Kovelamudi
et al., 2011; Vandic et al., 2012; Ghani et al., 2006;
Kozareva et al., 2016; Zheng et al., 2018; Xu et al.,
2019). Early approaches rely on rule-based tech-
niques which use domain-specific knowledge to
identify attributes and values (Kovelamudi et al.,
2011; Vandic et al., 2012; Ghani et al., 2006). Such
approaches adopt a closed world assumption requir-
ing the possible set of values to be known before-
hand by mean of dictionaries or hand-crafted rules.
Consequently, they are not suitable for discovering
unseen values such as newly emerging brands. To
tackle this problem, most recent approaches model
the extraction task as sequence tagging (Kozareva
et al., 2016; Zheng et al., 2018; Xu et al., 2019)
and solve it using deep learning models such as
BiLSTM enhanced by Conditional Random Field
(CRF) and Attention layers. These new approaches
achieve promising results, however, they limit the
representation of their data to word embeddings
which can capture context but penalizes generaliz-
ability to new brands.

In this paper, we propose to use character level
embeddings in sequence tagging models for dis-
covering brand names. In addition to word embed-
dings, character level embeddings were employed
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in Named Entity Recognition (NER) tasks (Lam-
ple et al., 2016) to handle out-of-vocabulary words.
The problem of unseen words is particularly em-
phasized in brands because of sub-branding, brand
fragmentation, or simply emerging businesses. Un-
seen brand names can be completely new, like in
brand fragmentation where new brands share the
same parent brand maintaining minimal links be-
tween the new and the existing identities. For ex-
ample, “Audi” and “Porsche” do not have any sim-
ilarity although they have the same parent brand

“Volkswagen”. By contrast, sub-branding would
maintain stronger links between existing brands
and the new generated ones, which can be reflected
by similarities in brand names. Examples include

“Uber” and “UberPool”, “McDonalds” and “Mc-
Cafe”, or “Samsung” and “Samsung Evo”. Thus,
the use of character level embedding is crucial for
capturing variations in brand names and the occur-
rence of unseen brands.

We summarize the main contributions of this
work as follows:

1. We propose OpenBrand, a BiLSTM-CRF-
Attention model that combines word embed-
dings with character level word embeddings.
In contrast to previous approaches, we learn
character level embeddings based on CNN
and LSTM architectures to obtain specific rep-
resentations of our data.

2. We provide a large real world dataset1 fo-
cusing on brand names to have a thorough
analysis of the impact of character level em-
beddings. We experimentally show that our
dataset is challenging on brand name extrac-
tion, especially those zero-shot brand values.

3. We empirically demonstrate significant im-
provements in F1 score over several state-
of-the-art baselines on brand name extrac-
tion. Additionally, we show that OpenBrand
guarantees a better generalizability over new
brands and deals more effectively with com-
pound brand names.

2 Problem Statement

In this section, we formally define the problem
of open brand value extraction. Given a product
title, represented as an unstructured text data, and a

1Data is available at https://github.com/
kassemsabeh/open-brand.

Input Kids Adult Families Gentle Monster Wooden Blocks Toys
Output O O O B-Brand I-Brand O O O

Table 1: Example of an input/output {B,I,O} tag se-
quence for the brand of a product description.

target attribute (eg. brand), our goal is to extract the
appropriate values for the corresponding attribute
from the product title. In this context, we want to
discover new values that have not been encountered
before. We formalize the attribute-value extraction
as per the following definition:

Definition Given a product title X . The title
X is represented as a sequence of tokens Xt =
{x1, ..., xT }, where T is the sequence length. Con-
sider a target attribute A. Attribute-value extrac-
tion automatically identifies a sub-sequence of to-
kens from Xt as applicable attribute-value pair.
Av = {xi, xi+1, ..., xk}, for 1 ≤ i ≤ k ≤ T .

For example, consider the title for the product
given in the example of Figure 1:

X = "Wooden Stacking Board Games 54 Pieces
for Kids Adult and Families, Gentle Monster
Wooden Blocks Toys for Toddlers, Colored Build-
ing Blocks - 6 Colors 2 Dice."

The tokenization of X yields: Xt =
{x1, x2, ..., x25} = {"Wooden", "Stacking",
"Board", .., "Dice"}, where T = 25. For the target
attribute: A = {"Brand"}. We want to extract:
Brand = {x12, x13} = {"Gentle", "Monster"}.

In order to identify these sub-sequences, the se-
quence of tokens Xt need to be tagged to capture
sequential and positional information. For this pur-
pose, we adopt the sequence tagging model and
associate a tag from a given tag-set to the sequence
of input tokensXt. We experimented with different
tagging strategies and, inline with previous work
in the literature (Xu et al., 2019), we found that the
{B,I,O} tagging scheme produced the best results,
where "B", "I", and "O" represent the beginning,
inside, and outside of an attribute, respectively. (A
sequence of "O" tags corresponds to the absence
of an attribute). Table 1 shows an input/output
example of the {B,I,O} tagging strategy.

3 OpenBrand Model

To address the open brand value extraction prob-
lem, we propose a BiLSTM-CRF-Attention model
with character level embeddings. Figure 2 shows
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Figure 2: OpenBrand Architecture: BiLSTM-CRF-
Attention with character level representations.

our OpenBrand model architecture, which is com-
posed of three main layers: an embedding layer
that encodes the input sequence, a contextual layer
that captures complex relationships among the in-
put sequence, and an output layer that produces the
output labels.

3.1 Embedding Layer

In the embedding layer, we map every word in
the product description into a d-dimensional em-
bedding vector. The embeddings of the words are
obtained by concatenating the word embeddings
and character level embeddings. Word embeddings
are obtained from the pre-trained GloVe (Penning-
ton et al., 2014) word representations, which are
trained over large unlabeled corpus. Pre-trained
word embeddings, such as GloVe and Word2Vec
(Mikolov et al., 2013), offer a single representation
for each word, which is not useful in the case where
words have different meanings depending on the
context. To allow our model to learn different repre-
sentations of embeddings depending on the context,
we learn and generate different representations of
tokens in the input sequence. For this reason, the
weights of our embedding layer are considered to
be learnable parameters and not fixed.

An important distinction of our approach, com-
pared to previous work on attribute-value extrac-
tion, is that we learn character level features in
our model. For character level embeddings, we use
two different architectures: CNN-based and LSTM-
based character level representations. Learning
character level embeddings has the advantage of
learning task-specific representations. Convolu-
tional Neural Networks (CNN) are designed to
discover position-invariant features and they are
highly effective in extracting morphological infor-

mation (ex. prefix or suffix of words) (Chiu and
Nichols, 2016). On the other hand, LSTMs are
capable of encoding long sequences, and are thus
capable of extracting position dependent charac-
ter features. These features are crucial to model
the relationships between words and their charac-
ters. Given a token of our input sequence xt, the
embedding layer maps xt in to the vector:

et = [wt; ct],

where wt and ct are the word and character level
representations of xt, respectively. The embed-
ding representation of the whole input sequence
Xt would be {e1, e2, ..., eT }. Figure 3 illustrates
the two architectures used to encode the character
representations. These character representations
are then concatenated with the word embeddings
and fed as input to our contextual layer.

3.2 Contextual Layer
The contextual layer captures contextualized rep-
resentations for every word in the input sequence.
In our model, the input sequence to the contextual
layer is the concatenation of the character level rep-
resentations and word embeddings, both mapped
by the underlying embedding layer. In this stage,
we employ a BiLSTM contextual layer followed
by a self-attention layer.

Long Short Term Memory Networks (Hochreiter
and Schmidhuber, 1997) address the vanishing gra-
dient problems of Recurrent Neural Networks and
are thus capable of modeling long-term dependen-
cies between tokens in a sequence. Bidirectional
LSTM (BiLSTM) can capture both past and fu-
ture time steps jointly by using two LSTM layers
to produce both forward and backwards states, re-
spectively. Given the input et (embedding of a
token xt), the hidden vector representations from
the backward and forward LSTMs (

−→
ht and

←−
ht) is:

ht = ∆([
−→
ht ;
←−
ht ])

where ∆ denotes a non-linear transformation. The
hidden representation of the whole input sequence
Xt is Ht = {h1, h2, ...., hT }.

In reality, not all hidden states generated by the
BiLSTM layer are equally important for the label-
ing decisions. A mechanism that allows the output
layer to be aware of the important features of the
sequence can improve the prediction model. This
is exactly what attention does. Attention mecha-
nisms have achieved great success in Natural Lan-
guage Processing (NLP) and were first introduced
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Figure 3: Architecture of character level encoders.

in the Neural Machine Translation task (Bahdanau
et al., 2015). In the contextual layer, we use a
self-attention mechanism to highlight important
concepts in the sequence rather than focusing on
everything. The model learns to attend to the im-
portant parts of the input states based on the output
produced so far. We first compute the similarity
between all hidden states representations to obtain
an attention matrix A ∈ RT×T where

αt,t′ = σ(wαgt,t′ + bα)

is the element of matrix A representing the mutual
interaction between hidden states ht and ht′ . σ is
the element-wise sigmoid function, and

gt,t′ = tanh(W1ht +W2ht′ + bg)

where W1, W2, wα are trainable attention matrices,
and bg, bα are trainable biases. The contextualized
hidden states can be computed as

h̃t =
T∑

t′=1

αt,t′ · ht′

The contextualized hidden state of the whole
input sequence Xt is H̃t = {h̃1, h̃2, ...h̃T }.

3.3 CRF Layer
In sequence labeling tasks, it is important to con-
sider the dependencies between output tags in a
neighborhood. Conditional Random Fields (CRF)
allow us to capture the correlation between labels
and model their sequence jointly. For example, if
we already know the tag of a token is I, then this
increases the probability of the next token to be I or
O, rather than being B. We feed the contextualized
hidden states H̃t = {h̃1, h̃2, ...h̃T } to our output
CRF layer to get the sequence of labels with high-
est probabilities. The joint probability distribution

of a tag y given the hidden state h̃t and previous
tag yt−1 is given by

Pr(y|x;ψ) ∝
T∏

t=1

exp

(
K∑

k=1

ψkfk(yt−1, yt, h̃t)

)

where ψk is the corresponding learnable weight,
fk is the feature function, and K is the number of
features. The final output label is the label with the
highest conditional probability, given as

y∗ = argmaxyPr(yi|xi;ψ)

where y∗ ∈ {B, I,O} is the output tag.

In Section 5.2, we will study in detail the
effect of the attention and CRF layers on the
discovery of brands in comparison with the
embeddings layer.

4 Experimental Setup

This section presents the experimental settings of
our empirical approach for comparing state-of-the-
art models on the task of brand value extraction.

4.1 Dataset
To evaluate the effectiveness of OpenBrand, we
have collected a dataset that contains information
about products from Amazon. Our dataset is de-
rived from a public product collection - the Amazon
Review Dataset (Ni et al., 2019) 2. The categories
of the collected dataset contained a large amount
of overlapping brands, which might bias the results
of the experiments. Thus, we have selected a sub-
set to have a diverse set of brands with minimal
overlapping across categories. We also processed

2https://nijianmo.github.io/amazon/
index.html
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Category Train Val Test
Grocery & Gourmet Food 15679 2239 4479
Toys & Games 44314 6330 12660
Sports & Outdoors 37951 5421 10842
Electronics 33512 4787 9574
Automotive 45132 6447 12894
Total 176588 25224 50449

Table 2: Statistics of AZ-base dataset with five cate-
gories.

the dataset to handle noise, and removed samples
with empty values. This led to a dataset comprising
over 250k product titles with more than 50k unique
values, which we refer to as AZ-base dataset in
our experiments. The AZ-base dataset contains in-
formation about products in five main categories:
Grocery & Gourmet Food, Toys & Games, Sports
& Outdoors, Electronics and Automotive. We ran-
domly sample 70% of the data for training, 10%
for validation, and 20% for testing. Table 2 shows
the statistical details of the AZ-base dataset.

To further examine the generalization ability of
our model, we divide the AZ-base dataset into an-
other training and test split with no overlapping
brand values. In other words, none of the values
in the test set are encountered during training. We
refer to this data split as AZ-zero-shot, as it is de-
signed for evaluating zero-shot extraction. The test
set of AZ-zero-shot contains more than 8k new and
unique brand values.

In addition, we have also chosen another subset
of products from our collected data with another set
of categories. The purpose of this dataset is to test
the models capabilities in detecting brand values
across different category domains. The dataset
contains information about products in three new
categories as shown in Table 3. We refer to this
dataset as AZ-new-cat, as it is designed to evaluate
the model on a new set of product categories.

4.2 Models Under Comparison

We implemented and compared three state-of-the-
art baseline models on attribute-value extraction.

BiLSTM (Hochreiter and Schmidhuber, 1997)
which uses word embeddings from pretrained
GloVe (Pennington et al., 2014) for word level rep-
resentation, then applies BiLSTM to produce the
contextual embeddings.

BiLSTM-CRF (Huang et al., 2015) which ex-
tends the BiLSTM model by adding a CRF layer

Category Samples
Clothing, Shoes & Jewelry 85068
Pet Supplies 10868
Cell Phones & Accessories 78564
Total 174500

Table 3: Number of samples in AZ-new-cat dataset.

on top to model the tagging decisions jointly. This
model is considered state-of-the-art sequence tag-
ging model for NER.

OpenTag (Zheng et al., 2018) which adds a self
attention mechanism between the contextual BiL-
STM layer and the CRF decoding layer. OpenTag
is considered the pioneer sequence tagging model
for attribute-value extraction.

We compare the above baseline models with the
OpenBrand models we proposed in Section 3.

OpenBrand-LSTM In this approach, character
level information is obtained by applying a BiL-
STM encoder on the sequence of characters in each
word. This character level information is used in
combination with word-level embeddings as input
to the BiLSTM-CRF-Attention model.

OpenBrand-CNN This approach is similar to
the above model, but CNNs are used instead of
LSTMs to encode character level information in
the word sequences.

We use precision P , recall R and F1 score as
evaluation metrics based on the number of true
positives (TP), false positives (FP), and false nega-
tives (FN). We use Exact Match criteria (Rajpurkar
et al., 2016), in our evaluation, with either full or
no credit. The implementation details are provided
in the Appendix.

P =
TP

TP + FP
R =

TP

TP + FN
F1 = 2× P ×R

P +R

5 Results and Discussion

We conducted a series of experiments on AZ-base,
AZ-zero-shot, and AZ-new-cat datasets under vari-
ous settings to evaluate the performance of Open-
Brand.

5.1 Baseline Performance Comparison
In the first experiment, we compare the perfor-
mance of OpenBrand with the three state-of-the-art
baselines mentioned in Section 4.2 for identify-
ing brand values from product descriptions. Table
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Category Models P R F1

Grocery
& Gourmet Food

BiLSTM 70.4 65.9 68.1
BiLSTM-CRF 74.9 66.0 70.2
OpenTag 76.0 65.4 70.3
OpenBrand-LSTM 75.9 77.5 71.8
OpenBrand-CNN 77.5 75.4 76.4

Toys & Games

BiLSTM 73.7 69.1 71.3
BiLSTM-CRF 78.9 70.5 74.5
OpenTag 79.1 70.3 74.5
OpenBrand-LSTM 80.2 72.4 76.1
OpenBrand-CNN 81.3 72.0 76.4

Sports & Outdoors

BiLSTM 80.3 75.8 78.0
BiLSTM-CRF 84.1 75.4 79.5
OpenTag 84.9 75.0 79.6
OpenBrand-LSTM 85.7 76.8 81.0
OpenBrand-CNN 86.1 77.3 81.5

Electronics

BiLSTM 86.2 80.4 83.2
BiLSTM-CRF 87.8 81.5 84.5
OpenTag 89.2 79.6 84.2
OpenBrand-LSTM 89.1 80.8 84.8
OpenBrand-CNN 89.7 80.5 84.9

Automotive

BiLSTM 88.5 84.3 86.4
BiLSTM-CRF 90.9 85.0 87.9
OpenTag 91.6 84.6 87.9
OpenBrand-LSTM 91.7 85.0 88.2
OpenBrand-CNN 91.8 85.4 88.5

Table 4: Performance comparison between different
models on AZ-base dataset.

4 reports the comparison results of our two mod-
els (OpenBrand-LSTM and OpenBrand-CNN) and
three baselines across all categories in the AZ-base
dataset. From these evaluation results, we can ob-
serve that our models substantially outperform the
other compared models in all categories. Open-
Brand with LSTM character level and CNN char-
acter level embeddings are consistently ranked the
best over all competing baselines. The overall im-
provement in F1 score is up to 6.1% as compared to
OpenTag. The main reason for this result is that our
model learns both character and word embeddings
during training, thus allowing to learn more effec-
tive contextual embeddings that are more suitable
for the task of extracting brand values.

5.2 Impact of Character level Representations

To understand the effect of character level repre-
sentations on brand-value extraction, we extend all
baseline models with character level embeddings
and test them on the AZ-base dataset. Table 5
shows the average F1 score of baseline models on
the AZ-base dataset after adding character level
representations. The results show that character
level embeddings significantly improve the overall

Model Base LSTM-char CNN-char
BiLSTM 78.56 79.71 79.73
BiLSTM-CRF 80.37 81.11 81.52
OpenTag 80.51 81.62 81.85

Table 5: Effect of character embeddings on the perfor-
mance of the models (F1 score).

performances of all models. An interesting obser-
vation is that character level embeddings improve
the model much more effectively than CRF or atten-
tion layers. For example, and as shown in the last
two rows of Table 5, adding a CNN-representation
to a BiLSTM-CRF model improves the model by
1.15%, while adding an attention layer only im-
proves the model by 0.14%.

The experiments also show that using either
CNN-char or LSTM-char both lead to an improve-
ment with comparable overall F1 score. However,
CNNs have less training complexity as compared to
LSTM models under similar experimental settings.
In our experiments, the average training time of
models with LSTM-char increased by 59% relative
to the baseline BiLSTM-CRF-Att model, while it
only increased by 22% with CNN-char, as detailed
in Table 6. CNN-char also produces better per-
formances than LSTM-char as shown in Table 5.
We conclude that CNN character representations
are preferable to LSTM based representations for
brand-value extraction.

Model
Average Training Time
per Epoch (seconds)

Difference (∆%)

BiLSTM-CRF-Att 63 0
+LSTM-char 100 +59%
+CNN-char 77 +22%

Table 6: Average training time of our BiLSTM-CRF-Att
models computed on a TPU.

5.3 Discovering New Brand Values

We conduct zero-shot extraction experiment to eval-
uate the generalization ability of our models on
unseen brand values. Table 7 reports the zero-shot
extraction results. It can be seen that our model
achieves better performance than OpenTag on un-
seen data. This is because our model can leverage
the sub-sequence level similarities in brand names
between the train set and test set, through the char-
acter level embeddings. However, it is clear that
the overall performance of all models is worse as
compared to the results in Table 4, which is inline
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Model P R F1
OpenTag 53.80 33.82 41.53
OpenBrand-LSTM 56.17 35.14 43.23
OpenBrand-CNN 55.61 35.46 43.44

Table 7: Zero-shot extraction results on AZ-zero-shot
dataset.

with our expectations as there are no training sam-
ples for the zero-shot brand values. This indicates
that it is truly a difficult zero-shot extraction task.

To further examine the ability of OpenBrand in
discovering brand values in new categories, we
train the models on the AZ-base dataset, and test
them on the AZ-new-cat dataset introduced in Sec-
tion 4.1. Table 8 reports the results across three
different categories in the AZ-new-cat dataset. It is
clear that OpenBrand achieves much better perfor-
mance with gains up to 2.7% in F1 score as com-
pared to OpenTag. This indicates that our model
has good generalization and is able to transfer to
other domains. Also, the results are much better
than zero-shot extractions. This is because some
data in the training set are semantically related to
the brand values in AZ-new-cat and thus they pro-
vide hints that guide the extraction. For example,
many of the brands in Cell Phones & Accessories
category (eg. Samsung Galaxy) are sub-brands of
products in Electronics category (eg. Samsung).

Category Models P R F1

Clothing, shoes,
& Jewelry

BiLSTM 52.6 44.3 48.1
BiLSTM-CRF 58.5 42.2 49.0
OpenTag 60.3 43.5 50.5
OpenBrand-LSTM 63.8 44.7 52.6
OpenBrand-CNN 64.5 45.2 53.2

Pet Supplies

BiLSTM 49.1 39.4 43.7
BiLSTM-CRF 55.0 37.3 44.5
OpenTag 53.9 38.9 45.2
OpenBrand-LSTM 57.3 39.8 47.0
OpenBrand-CNN 58.2 38.5 46.3

Cell Phones
& Accessories

BiLSTM 81.2 63.8 71.5
BiLSTM-CRF 80.1 68.0 73.5
OpenTag 78.3 67.4 72.4
OpenBrand-LSTM 83.3 70.7 76.5
OpenBrand-CNN 85.2 67.8 75.5

Table 8: Performance comparison between models on
the AZ-new-cat dataset.

5.4 Impact of Brand Entities

We also conducted experiments to explore the rela-
tionship between the number of entities that consti-
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Figure 4: Impact of number of entities on the model
performance.

tute the brand and the performance of the models.
Since we use Exact Match criteria in our evalua-
tions, detecting brand values with more than one
entity becomes very challenging in general. We
divide the test set of our AZ-base dataset into four
subsets according to the number of entities inside
a brand (see Figure 4). While OpenTag achieves
good overall F1 performance with brand values
consisting of single entities (88%), it is much worse
on brand values with three or more entities (67%
and 61% respectively). OpenBrand, on the other
hand, still performs well even on brands with two
or more entities (71% and 65% respectively).

5.5 Discussion

Our experimental results show that, for the task of
extracting brand values, OpenBrand outperforms
baseline approaches by a significant margin. Be-
sides the general F1 score, the gains can be seen
in both precision and recall which go up to 2.2%
and 11.5%, respectively. This means that character
embeddings do not only help discover more brand
values but they also improve the accuracy of the
extracted information. Furthermore, the gains in
recall are also high for the AZ-new-cat and AZ-
zero-shot datasets, reaching 3.3% and 1.46% of
improvement respectively. Thus, OpenBrand per-
forms particularly well for unseen data which con-
firms our initial claim that character embeddings
enhance model generalizability.

Another important finding of our study is that the
performance of OpenBrand depends on the product
category. We can observe that, for the Automo-
tive category, the gain in precision is 0.2% while
it goes up to 2.2% for the Toys & Games category.
This is mainly due to an ambiguity problem in the
product descriptions of the Automotive category.
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Some product descriptions might contain values
of other brands other than the one that needs to be
detected. Let us take the following product descrip-
tion: “Honda Shadow 750 Aero Cobra Saddlebag
Guards Supports". This is about a “Saddlebag
Guards Supports" that is compatible for “Honda"
cars. The brand of this product is “Cobra" but the
presence of “Honda" in the description can be con-
fusing for the model leading to wrong extractions.

We additionally observe that compound brand
values are best handled by OpenBrand. This is
due to the fact that the combination of character
and word embeddings contributes to more mean-
ingful representations. The results also show that
OpenBrand-LSTM tends to perform worse, as com-
pared to OpenBrand-CNN. This is inline with prior
observations (Bradbury et al., 2017) that LSTM can
be difficult to apply on long sequences of input.

6 Related Work

There has been significant research on the task of
attribute-value extraction from product descriptions
(Wong et al., 2009). Initial approaches (Vandic
et al., 2012) formulated the problem as a classifica-
tion task relying on supervised learning techniques.
(Ghani et al., 2006) use a Naive Bayes classifier to
extract values that correspond to a predefined set
of product attributes. (Putthividhya and Hu, 2011)
focus on annotating brands in product listings of ap-
parel products on eBay. (Kovelamudi et al., 2011)
propose a domain independent supervised system
that can automatically discover product attributes
from user reviews using Wikipedia. Similarly,
(Ling and Weld, 2012) propose an automatic la-
beling process of entities by making use of anchor
links from Wikipedia text. Other approaches ex-
ploited unsupervised learning techniques like (Shin-
zato and Sekine, 2013) in their task of extracting
attribute-values from e-commerce product pages.
Following a similar line, (Charron et al., 2016) use
consumer patterns to create annotations for data-
driven products. (Bing et al., 2016) focus on the
discovery of hidden patterns in costumer reviews to
improve attribute-value extraction. The above ap-
proaches provide promising results, however they
poorly handle the discovery of new values due to
their closed world assumption.

The most recent approaches (Kozareva et al.,
2016; Zheng et al., 2018; Xu et al., 2019) make
instead an open world assumption using sequence
tagging models, similarly to NER tasks (Ma and

Hovy, 2016; Huang et al., 2015). (Kozareva et al.,
2016) use a BiLSTM-CRF model to tag several
product attributes for brands and models with hand-
crafted features. (Zheng et al., 2018) develop an
end-to-end tagging model utilizing BiLSTM and
CRF without using any dictionary or hand-crafted
features. After that, (Xu et al., 2019) adopted only
one global set of BIO tags for any attributes to
scale up the semantic representation models of
product titles. In this context, (Karamanolakis et al.,
2020) proposed a taxonomy aware knowledge ex-
traction model that takes advantage of the hierarchi-
cal relationships between product categories. The
latest approaches extend the open world assump-
tion also to attributes and use question answering
(QA) models (Wang et al., 2020) to scale to a larger
number of attributes. Sequence tagging approaches
are the most relevant to our work since extracting
brand names does not require scalability. How-
ever, these models did not exploit character level
embeddings which are crucial for improving gener-
alizability. In our work, we enhance such models
using different granularities of embeddings.

7 Conclusion

In this paper we have addressed the problem of
extracting brand values from product descriptions.
Previous state-of-the-art sequence tagging meth-
ods faced the challenge of discovering new val-
ues that have not been encountered before. To
tackle this issue we proposed OpenBrand, a novel
attribute-value extraction model with the integra-
tion of character level representations to improve
generalizability. We presented experiments on real-
world datasets in different categories which show
that OpenBrand outperforms state-of-the-art ap-
proaches and baselines. By exploiting character
level embeddings, OpenBrand is capable of learn-
ing accurate representations to discover new brand
values. Our experiments also show that CNN based
representations outperform LSTM based represen-
tations in both performance and computation.

A natural extension of this work is to deal with
the problem of disambiguation discussed in Section
5.5. To this end, we need to have more training data
which helps understating the patterns in a better
way. Moreover, we need to extend the tagging
model to capture ambiguous product descriptions.
This extension can be very important when brand
values need to be extracted from other data sources
other than concise product descriptions.
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A Appendix

A.1 Implementation Details
Our models are implemented with Tensorflow3 and
Keras4, and they are trained using TPUs on the

3https://www.tensorflow.org/.
4https://keras.io/.

Hyper-parameter Value
LSTM Units {64, 128, 256}
Character Embedding Size {10, 30, 50, 100}
Window Size {3, 5, 10}
Number of Filters {10, 30, 50}
Trainable Parameters 36420

Table 9: Hyper-parameters for OpenBrand-CNN model.

Hyper-parameter Value
LSTM Units {64, 128, 256}
Character Embedding Size {10, 30, 50, 100}
Character LSTM Units {10, 30, 50, 100}
Trainable Parameters 526170

Table 10: Hyper-parameters for OpenBrand-LSTM
model.

cloud. We used the validation set of AZ-base to
select the optimal hyper-parameters of our model,
while the test set was used to report the final results.
During training, optimization is performed with
Adam optimizer (Kingma and Ba, 2015) using a
1e−3 initial learning rate. For all models, we em-
ployed pre-trained 100-dimensional word vectors
from GloVe (Pennington et al., 2014). All models
use a dropout layer (Srivastava et al., 2014) of size
0.3 both before and after the BiLSTM layer. The
minibatch size is fixed to 128. The BIO tagging
scheme is adopted. In the training process, we used
the loss score on the validation set to assess model
improvement. The models were trained for a to-
tal of 100 epochs, and early stopping was applied
if there was no improvement for a period of 10
epochs. The average training time for each epoch
was also recorded.

Tables 9 and 10 show the selected hyper-
parameters in the CNN-based and LSTM-based
models respectively, based on the performance on
the validation set. These include the character em-
beddings dimension. The tables also show the total
number of trainable parameters for each model.
The difference in number of trainable parameters
shows that CNNs have less training complexity as
compared to LSTM models under similar experi-
mental settings.
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