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Abstract
It is of great value to answer product questions
based on heterogeneous information sources
available on web product pages, e.g., semi-
structured attributes, text descriptions, user-
provided contents, etc. However, these sources
have different structures and writing styles,
which poses challenges for (1) evidence rank-
ing, (2) source selection, and (3) answer gen-
eration. In this paper, we build a benchmark
with annotations for both evidence selection
and answer generation covering 6 information
sources. Based on this benchmark, we con-
duct a comprehensive study and present a set
of best practices. We show that all sources are
important and contribute to answering ques-
tions. Handling all sources within one sin-
gle model can produce comparable confidence
scores across sources and combining multi-
ple sources for training always helps, even for
sources with totally different structures. We fur-
ther propose a novel data augmentation method
to iteratively create training samples for answer
generation, which achieves close-to-human per-
formance with only a few thousand annotations.
Finally, we perform an in-depth error analysis
of model predictions and highlight the chal-
lenges for future research.

1 Introduction

Automatic answer generation for product-related
questions is a hot topic in e-commerce applications.
Previous approaches have leveraged information
from sources like product specifications (Lai et al.,
2018a, 2020), descriptions (Cui et al., 2017; Gao
et al., 2019) or user reviews (McAuley and Yang,
2016; Yu et al., 2018; Zhang et al., 2019) to an-
swer product questions. However, these works
produce answers from only a single source. While
a few works have utilized information from mul-
tiple sources (Cui et al., 2017; Gao et al., 2019;
Feng et al., 2021), they lack a reliable benchmark
and have to resort to noisy labels or small-scaled
human evaluation (Zhang et al., 2020; Gao et al.,

2021). Furthermore, almost none of them make
use of pretrained Transformer-based models, which
are the current state-of-the-art (SOTA) across NLP
tasks (Devlin et al., 2019; Clark et al., 2020).

In this work, we present a large-scale benchmark
dataset for answering product questions from 6 het-
erogeneous sources and study best practices to over-
come three major challenges: (1) evidence ranking,
which finds most relevant information from each
of the heterogeneous sources; (2) source selection,
which chooses the most appropriate data source to
answer each question; and (3) answer generation,
which produces a fluent, natural-sounding answer
based on the relevant information. It is necessary
since the selected relevant information may not be
written to naturally answer a question, and there-
fore not suitable for a conversational setting.

Most published research on product ques-
tion answering is based on the AmazonQA
dataset (McAuley and Yang, 2016), which takes
the community question-answers (CQAs) as the
ground truth. This leads to several problems. (1)
CQAs, even the top-voted ones, are quite noisy.
Many are generic answers or irrelevant jokes (Gao
et al., 2021). (2) CQAs are based more on the opin-
ion of the individual customer who wrote the an-
swer rather than on accompanying sources such as
product reviews and descriptions. As such, CQAs
are not reliable references for judging the quality of
answers generated from these sources (Gupta et al.,
2019). (3) There are no annotations for assessing
the relevance of the information across multiple
data sources. This makes it difficult to evaluate the
evidence ranker and generator separately. Some
works collect annotations for evidence relevance,
but only for a single source and with questions for-
mulated post-hoc rather than naturally posed (Lai
et al., 2018a; Xu et al., 2019). To address these
shortcomings, we collect a benchmark dataset with
the following features: (1) It provides clear an-
notations for both evidence ranking and answer
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generation, enabling us to perform in-depth evalu-
ation of these two components separately. (2) We
consider a mix of 6 heterogeneous sources, ranging
from semi-structured specifications (jsons) to free
sentences and (3) It represents naturally-occurring
questions, unlike previous collections that elicited
questions by showing answers explicitly.

As sources differ in their volume and contents,
collecting training data covering all sources of nat-
ural questions and answers is challenging. To get
enough positive training signals for each source, we
propose filtering community questions based on the
model score of a pretrained QA ranker. Questions
are only passed for annotation when the confidence
scores of top-1 evidence lie within some certain
range. This greatly reduces annotation effort by
removing most unanswerable questions.

After collecting the data, we apply SOTA
Transformer-based models for evidence ranking
and answer generation, and present a set of data
augmentation and domain adaptation techniques to
improve the performance. We show that pretrain-
ing the model on the AmazonQA corpus can pro-
vide a better initialization and improve the ranker
significantly. For evidence ranking, we apply ques-
tion generation with consistency filtering (Alberti
et al., 2019) to obtain large amounts of synthetic
QA pairs from unannotated product sources. For
answer generation, we propose a novel data aug-
mentation algorithm that creates training examples
iteratively. By first training on this augmented data
and then finetuning on the human annotations, the
model performance can be further enhanced.

As for the model design, we homogenize all
sources by reducing them to the same form of in-
put which is fed into a unified pretrained Trans-
former model, similarly to many recent works of
leveraging a unified system for various input for-
mats (Oguz et al., 2020; Su et al., 2020; Komeili
et al., 2021). We show that combining all sources
within a single framework outperforms handling
individual sources separately and that training sig-
nals from different answer sources can benefit each
other, even for sources with totally different struc-
tures. We also show that the unified approach is
able to produce comparable scores across different
sources which allows for simply using the model
prediction score for data source selection, an ap-
proach that outperforms more complex cascade-
based selection strategies. The resulting system
is able to find the correct evidence for 69% of the

Question: how much weight will it safely hold?

Source Supporting Evidence Relevance

Attribute item_weight:{unit:
pounds,value:2.2} ✖

Bullet Point supports up to 115 pounds ✔
Description weight limit: 115 lbs. ✔

OSP if you’re looking for an inex-
pensive way to change up ... ✖

CQA we put ours on a swingset. ✖
Review it is sturdy and well made. ✖

Annotated Answer: it can support up to 115 pounds.

Table 1: Annotation example. Relevance annotation: Given
one question and evidence from heterogeneous sources, judge
if each one is relevant to the question. Answer elicitation:
annotators produce a natural-sounding answer given the ques-
tion and the evidence that was marked as relevant.

questions in our test set. For answer generation,
94.4% of the generated answers are faithful to the
extracted evidence and 95.5% of them are natural-
sounding.

In summary, our contributions are four-fold: (1)
We create a benchmark collections of natural prod-
uct questions and answers from 6 heterogeneous
sources covering 309,347 question-evidence pairs,
annotated for both evidence ranking and answer
generation. This collection will be released as open
source. (2) We show that training signals from dif-
ferent sources can complement each other. Our
system can handle diverse sources without source-
specific design. (3) We propose a novel data aug-
mentation method to iteratively create training sam-
ples for answer generation, which achieves close-
to-human performance with only a few thousand
annotations and (4) We perform an extensive study
of design decisions for input representation, data
augmentation, model design and source selection.
Error analysis and human evaluation are conducted
to suggest directions for future work.

2 Benchmark test set collection

We begin by explaining how we collect a bench-
mark test set for this problem. The benchmark
collection is performed in 4 phases: question sourc-
ing, supporting evidence collection, relevance an-
notation, and answer elicitation. An annotation
example is shown in Table 1.
Question sourcing To create a question set that
is diverse and representative of natural user ques-
tions, we consider two methods of question sourc-
ing. The first method collects questions through
Amazon Mechanical Turk, whereby annotators are
shown a product image and title and instructed to
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ask 3 questions about it to help them make hypo-
thetical purchase decisions. This mimics a scenario
in which customers see a product for the first time,
and questions collected in this way are often gen-
eral and exploratory in nature. The second method
samples questions from the AmazonQA corpus.
These are real customer questions posted in the
community forum and tend to be more specific and
detailed, since they are usually asked after users
have browsed, or even purchased, a product. We
then filter duplicated and poorly-formed questions.
This yields 914 questions from AmazonQA and
1853 questions from Mturk. These are combined
to form the final question set.
Collecting Supporting Evidence We gather “sup-
porting evidence” from 6 heterogeneous sources:
(1) Attributes: Product attributes in json format ex-
tracted from the Amazon product database 1. (2)
Bullet points: Product summaries from the prod-
uct page. (3) Descriptions: Product descriptions
from the manufacturer and Amazon. (4) On-site-
publishing (OSP): Publications about products (for
example here). (5) CQA: Top-voted community
answers. Answers directly replying to questions
in our question set are discarded and (6) Review:
User reviews written for the product.
Relevance Annotation Annotators are presented
with a question about a product and are instructed
to mark all the items of supporting evidence that are
relevant to answering the product question. Such
evidence is defined as relevant if it implies an an-
swer, but it does not need to directly address or
answer a question. For evidence items from source
1, we directly present the attribute json to annota-
tors. For sources 2∼6, we split the evidence into
sentences and present each sentence as a separate
item to be considered. There can be a very large
number of CQA and Reviews for each product.
As manual annotation of these would be impracti-
cal, we annotate only the top 40 and 20 evidence
from each collection, respectively, as determined
by a deep passage ranker pretrained on general-
domain QA. Each item of evidence is inspected
by 3 annotators and is marked as relevant if sup-
ported by at least two of them. In this way, items
of evidence are paired with questions for review
by annotators. Overall, annotators have inspected
309,347 question-evidence pairs, of which 20,233
were marked as relevant.

1We select 320 unique attributes that have diverse struc-
tures and hierarchies without standard schema.

Source #words available answerable N/P
Attribute 5.84 100% 36.10% 22.88
Bullet 12.55 100% 24.95% 5.59
Desc 12.86 98.37% 38.59% 23.97
OSP 17.75 18.98% 4.54% 11.16
CQA 13.32 99.39% 70.61% 13.85
Review 18.37 95.64% 61.16% 2.28

93.72% questions are answerable from at least 1 source.

Table 2: Benchmark statistics: average number of words
per evidence (#words), percentage of questions for which
the source is available (available), percentage of answerable
questions (answerable) and the negative-positive ratio (N/P).

Answer Elicitation In the answer elicitation stage,
annotators are presented with a question and an
item of supporting evidence that has been marked
as relevant. They are required to produce a fluent,
natural-sounding and well-formed sentence (not
short span) that directly answers the question. We
sample 500 positive question-evidence pairs from
each source for answer elicitation (if that many are
available). The annotated answers are evaluated by
another round of annotation to filter invalid ones. In
the end, we obtain 2,319 question-evidence-answer
triples for answer generation.

Table 2 shows the collection statistics. Availabil-
ity differs across sources. Only 19% of questions
have available OSP articles, but all products have
corresponding Attributes and Bullet Points. 93.72%
of questions are answerable from at least 1 out of
the 6 sources, indicating these sources are valuable
as a whole to address most user questions.

3 Training data collection

For training data collection, a complete annotation
of each set of evidence is not necessary; we need
only a rich set of contrastive examples. Therefore,
we propose to select questions for annotation based
on the confidence score of a pretrained ranker (the
same ranker we used to select top evidence for
CQA and review). We sample 50k community
questions about products in the same domain as the
testset. We first select questions whose top-1 item
of supporting evidence returned by the pretrained
ranker has a prediction score of > 0.8. In this
way the selected questions have a good chance
of being answerable from the available evidence
and the approach should also yield enough positive
samples from all sources to train the ranker. This
selection step is crucial to ensure coverage of low-
resource sources, like OSP, which otherwise might
have zero positive samples. To avoid a selection
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process that is biased towards easy questions we
further include questions whose top-1 evidence has
a score within the range of 0.4∼0.6. Intuitively
these questions will pose more of a challenge in
ranking the evidence and their annotation should
provide an informative signal.

From each out of the 6 sources, we sample 500
questions with prediction score > 0.8 and another
500 questions with scores in the range of 0.4∼0.6.
For each question, we then annotate the top-5 (if
available) evidence items returned by the pretrained
ranker. This reduces annotation cost relative to
the complete annotation that was done for the test
set. The final dataset contains 6000 questions with
27,026 annotated question-evidence pairs being an-
notated, 6,667 of which were positive. We then
submit the positive question-evidence pairs for an-
swer elicitation. After filtering invalid annotations
as was done for the benchmark collection, we ob-
tain a set of 4,243 question-evidence-answer triples
to train the answer generator. For both evidence
ranking and answer generation, we split the col-
lected data by 9:1 for train/validation.

4 Model

4.1 Evidence Ranking

Evidence ranking aims to get the best evidence
from each of the sources. We build our evidence
ranker with the Electra-base model (Clark et al.,
2020). The question and evidence are concatenated
together and fed into the model. We flatten the json
structured from the attribute source into a string
before feeding it to the encoder, whereas we split
evidence from other sources into natural sentences,
so it can be encoded as plain text (training detail
in appendix D). We present comparison studies in
Figure 1 with the best model configuration. Due
to space constraints we report only p@1 scores in
Fig 1, with full results in appendix C.
Pre-tuning on AmazonQA Pre-tuning the evi-
dence ranker on similar domains has shown to be
important when limited in-domain training data is
available (Hui and Berberich, 2017; Hazen et al.,
2019; Garg et al., 2020; Hui et al., 2022). For
our product-specific questions, the AmazonQA cor-
pus is a natural option to pre-tune the model (Lai
et al., 2018b). The corpus contains 1.4M question-
answer pairs crawled from the CQA forum. We
remove answers containing “I don’t know” and
“I’m not sure”, and filter questions of more than
32 words and answers of more than 64 words. We

Figure 1: Ablation studies of evidence ranker. From up to
down (1) effects of pre-tuning on AmazonQA, mix/separate
sources, (2) effects of linearization methods of attributes, and
(3) effects of data augmentation by question generation.

construct negative evidence with answers to differ-
ent questions for the same product. The filtered
corpus contains 1,065,407 community questions
for training. In the training stage, we first finetune
the Electra-base model on the filtered AmazonQA
corpus and then finetune on our collected training
data. As can be seen, pre-tuning on the AmazonQA
corpus improves the p@1 on all sources. The con-
clusion holds for both training on mixed sources
and individual sources separately.

Mixed sources vs split sources We investigate
whether different sources conflict with each other
by (1) training a single model on the mixed data
from all sources, and (2) training a separate model
for each individual source. For the second case, we
obtain 6 different models, one from each source.
The resulting models are tested on 6 sources indi-
vidually. We can observe that mixing all answer
sources into a single training set improves the per-
formance on each individual source. The training
signals from heterogeneous sources complement
each other, even for sources with totally different
structures. p@1 on the semi-structured attribute
improves consistently through adding training data
of unstructured text. This holds for models with
and without pre-tuning on AmazonQA.

Linearization methods In the above experiment,
we use a simple linearization method that flattens
the json-formatted attributes into a string. We also
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selector
ranker BM25 AmazonQA our best

perfect 0.4709 0.7546 0.8338
best-score 0.2880 0.5370 0.6986

highest-score 0.2696 0.5089 0.6888
cascade 1 0.2653 0.5298 0.6791
cascade 2 0.2638 0.5110 0.6715

Table 3: p@1 using different rankers and source selectors.

compare it with 3 other different linearization meth-
ods: (1) key-value pairs: Transform the hierar-
chical json format into a sequence of key-value
pairs. For example, the attribute in Table 1 will
be transformed into “item_weight unit pounds |
item_weight value 2.2”. (2) templates: Transform
the json by pre-defined templates, e.g. “The [at-
tribute_name] of it is [value] [unit]” and (3) NLG:
Transform the json into a sentence by a neural data-
to-text model. The results show that the best per-
formance is achieved by simply linearizing the json
into a string. Although applying the template or
neural data-to-text model is closer to a natural sen-
tence, this did not lead to an improvement in p@1.
Nonetheless, all these methods have rather simi-
lar performance, suggesting the model can adapt
quickly to different representations by finetuning
on limited training data and that more complex
linearization methods are unnecessary.

Question Generation Question generation has
been a popular data augmentation technique in
question-answering. We collect ∼50k unannotated
pieces of evidence from the 6 sources and apply a
question generator to generate corresponding ques-
tions. The question generator is finetuned first on
the AmazonQA corpus and then on our collected
training data. We apply nucleus sampling with
p = 0.8 to balance the diversity and generation
quality (Sultan et al., 2020). We further filter the
generated questions with our evidence ranker by
only keeping those with model prediction scores of
> 0.5, which has been shown crucial to get high-
quality augmented data (Alberti et al., 2019). We
try different finetuning methods and report the re-
sults on the bottom of Fig 1, where the “+” means
the finetuning order. As can be observed, finetuning
on the augmented data brings further improvement
to the model. A three-step finetuning to gradually
bring the model to our interested domain leads to
the best performance over all sources.

4.2 Source Selection

Source aims to select the best source to answer
after we obtain the top-1 item of evidence from
each source. We show results for the following
source selectors: (1) perfect: oracle selection of
the correct item of evidence (if any) in the top-1
pieces of evidence provided from the 6 sources.
(2) best-score: evidence item with the highest em-
pirical accuracy in its score range which should
yield the upper-bound performance for a selector
based on model prediction scores. (3) highest-
score: evidence with the highest model prediction
score. (4) cascade 1: prioritizes evidence from the
attribute/bullet sources since they have the high-
est p@1 scores. If the top-1 evidence item from
those two sources has a score of more than ϵ, it
is selected. Otherwise, the evidence item with
the highest prediction score is selected from the
remaining sources and (5) cascade 2: prioritizes
evidence from attribute, bullet, and descriptions
sources since these have better official provenance
than user-generated data sources. The selection
logic is the same as cascade 1. highest-score is the
most straightforward choice but relies on a compa-
rable score across sources. cascades 1/2 are also
commonly used to merge results from sub-systems.
For the best-score selector, we split the prediction
score range into 100 buckets and estimate the em-
pirical accuracy on the test data. For example the
prediction score of 0.924 for the top-1 evidence
from an attribute source will fall into the bucket
0.92∼0.93. In our test set, evidence items from
each source will have an empirical accuracy within
each score bin 2. This will lead to an upper-bound
approximation of a selector based on prediction
scores since we explicitly “sneak a peep” at the
test set accuracy. We combine these selectors with
3 evidence rankers: BM25, Electra-based tuned
on AmazonQA, and our best ranker (AmazonQA
+ QG + Real in Figure 1). The results are in Ta-
ble 3. The thresholds for cascade 1/2 are tuned to
maximize the p@1 on the testset.

As our best “fair” ranker, the highest-score selec-
tor performs remarkably well, with p@1 only 1%
lower than that of the best-score-based selectors. It
also outperforms the two cascade-based selectors
which prioritize official and high-precision sources.
This implies the the prediction scores across differ-

2By continuing to split the confidence range into more
buckets we can make an arbitarily exact approximation to the
perfect selector for the test set, but with significant over-fitting.
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ent sources are comparable in our model, which
might be because our model is trained on a com-
bination of all sources with the same representa-
tion. For the model tuned on AmazonQA, where
evidence comes solely from the CQA source, the
highest-score selector is not as effective as the cas-
cade selectors. For all rankers, even with the best-
score-based selector, there is still a large p@1 gap
with the perfect selector, suggesting a further im-
provement must take into account evidence content,
in addition to the prediction scores.

Figure 2: Answer source distribution as the threshold changes
when using the cascade selection. Yellow line is with highest-
score selector and red line is with a perfect selector.

In Figure 2, we visualize the distribution of se-
lected sources by varying the threshold of two
cascade-based selectors. We also show the dis-
tribution by using the highest-score selector (score)
on the left. As the threshold grows, model pre-
cision first grows and then degrades, suggesting
all sources can contribute to answering product
questions. There is no single source that dominates.
Although the cascade selection strategy underper-
forms the highest-confidence selector, it provides
us with a flexible way to adjust the source distri-
bution by threshold tuning. In practice, one may
want to bias the use of information from official
providers, even with a slight reduction in precision.

4.3 Answer Generation
After selecting an evidential item from one source,
the role of answer generation is to generate a
natural-sounding answer based on both the ques-
tion and the evidence. We build our answer genera-
tor with the Bart-large model (Lewis et al., 2020).
Similar to the evidence ranker, we take a unified
approach for all sources by concatenating both the
question and the evidence together (split by the to-
ken “|”) as the model input. The model is then fine-
tuned on the collected question-evidence-answer
(q-e-a) triples. As in training the ranker, we flatten
the json structures into strings and process them in
the same way as the other sources.

Figure 3: Ablation studies of answer generation. copy evi-
dence vs separate sources/combine sources vs our best model.

Mixed sources vs split sources We experimented
with training the generative model on each individ-
ual source separately as well as mixing the training
data from all sources and training a unified model.
We measured the BLEU scores of these systems
with results shown in Figure 3, where we also in-
clude the results of directly copying the evidence.
We can see that training a unified model to han-
dle all sources improves the performance on all
sources, as is consistent with our findings in evi-
dence ranking. This is not surprising since previous
research on data-to-text has also found that text-to-
text generative models are quite robust to different
variants of input formats (Kale and Rastogi, 2020;
Chang et al., 2021). Directly copying the evidence
as the answer leads to very low BLEU scores, espe-
cially for json-formatted attributes. This indicates
we must significantly rewrite the raw evidence to
produce a natural answer.
Conditional Back-translation (CBT) In our sce-
nario, the AmazonQA contains a large amount
of q-a pairs but these do not have corresponding
evidence. We can apply a similar idea as back-
translation (Sennrich et al., 2016) but further “con-
dition” on the question. Firstly, we train an ev-
idence generator based on our annotated q-e-a
triples. The model is trained to generate the ev-
idence by taking the q-a pairs as input. We then ap-
ply the model to generate pseudo-evidence e′ from
the q−a pairs in AmazonQA. The answer generator
is then first finetuned on the pseudo q−e′−a triples
and then finetuned further on the real q − e − a
annotations. It can be considered as a “conditional”
version of back-translation where the model is ad-
ditionally conditioned on the questions. We use nu-
cleus sampling with p=0.8 to generate the evidence
e′ since the diversity of inputs is important for back-
translation (Edunov et al., 2018; Zhao et al., 2019).
The results are displayed in Table 4. We can see
that adding the conditional back-translation step
improves the BLEU score by nearly 3 points.
Noisy Self-training (NST) Self-training is an-
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Method BLEU B-1 B-2 B-3 B-4
Copy 4.0 47.3 22.4 15.9 12.6
Bart-large 30.9 57.6 36.1 24.9 17.6
CBT 33.5 60.3 39.0 27.6 20.5
NST 32.5 59.5 37.3 26.2 19.2
NST + noise 33.2 59.8 38.0 26.9 19.9
Iteration-1 34.3 61.1 39.4 28.0 20.8
Iteration-2 34.9 61.1 39.8 28.3 21.4
Iteration-3 34.9 61.3 39.7 28.6 21.6
Iteration-4 34.7 61.3 39.8 28.5 21.3

Table 4: BLEU scores on different methods: copying the
input evidence as the answer (copy), finetuning Bart-large on
training samples (Bart-large), Bart-large + conditional back-
translation (CBT) and Bart-large + noisy self-training (NST).

other popular technique in semi-supervised learn-
ing (Scudder, 1965). It uses a trained model to
generate outputs for unlabeled data, then uses the
generated outputs as the training target. In our
scenario, however, the unlabeled input data is not
readily available since it requires positive question-
evidence pairs. We first apply the same question
generation model used for evidence ranking to cre-
ate “noisy” q′ − e pairs. The current model then
generates an answer a′ based on the q′−e pairs. We
use beam search with beam size 5 to generate the
answers as the generation quality is more important
than diversity in self-training (He et al., 2020). A
new model is then initialized from Bart-large, first
finetuned on the q′ − e− a′ triples, then finetuned
on the real training data. We also experimented
with adding noise to the input side when training
on the q′ − e − a′ triples, which has shown to be
helpful for the model robustness (He et al., 2020) 3.
As shown in Table 4, NST improves the model per-
formance by over 1 BLEU point. Adding the noise
to the input further brings slight improvement.
Iterative Training We further investigated com-
bining the proposed CBT and NST into an iterative
training pipeline. The intuition is that CBT can im-
prove the answer generator which then helps NST
to generate higher-quality pseudo answers. The
higher-quality triples from NST can in turn be used
to ‘warm up’ the evidence generator for CBT. Al-
gorithm 1 details the process. It can be considered
a variant of iterative back-translation (Hoang et al.,
2018; Chang et al., 2021) with an additional con-
dition on the question and the noisy self-training
process inserted in between. It essentially follows
a generalized EM algorithm (Shen et al., 2017; Cot-

3We apply a similar noise function as in Edunov et al.
(2018) that randomly deletes replaces a word by a filler token
with probability 0.1, then swaps words up to the range of 3.

(Inilialization) Ge = Ga = Bart-large;
for i=1 to N do

Finetune Ge on {q − a− e}real;
Generate e′ with Ge from {q − a}AmazonQA;
Finetune Ga on generated
{q − e′ − a}AmazonQA;

Finetune Ga on {q − e− a}real;
Noisy Self-training (Ga);
Generate a′ with Ga from {q′ − e}QG;
Finetune Ge on generated {q′ − a′ − e}QG;

end
Algorithm 1 (Iterative Training Process): Ge is the

evidence generator and Ga is the answer generator.

{q − a − e}real,{q − a}AmazonQA and {q′ − e}QG

indicate the data from the real annotation, AmazonQA

and question generation respectively.

Evaluated Faithfulness (%) Naturalness (%)

copied evidence - 15.44
our best 94.39 95.51

human reference 97.00 95.82

Table 5: Human evaluation results.

terell and Kreutzer, 2018; Graça et al., 2019) where
the evidence generator and the answer generator
are guaranteed to improve iteratively. We show the
results after each iteration in Table 4. As can be
seen, the iterative training pipeline further improves
generation quality. Most gains are found in the first
iteration and the model saturates at iteration 3 with
a BLEU score of 34.9.
Human Evaluation We run a human evaluation
to assess generation quality of our best generator
(iteration-3 from Table 4), human reference and the
copied evidence. We evaluate from two perspec-
tives: (1) Faithfulness: A sentence is unfaithful to
the evidence if it contains extra or contradictory
information, and (2) Naturalness: A sentence is
unnatural if it is not fluent; contains additional in-
formation that not relevant as an answer; or does
not directly reply to the question.

We show the results in Table 5. We can observe
that copying the evidence directly leads to a natu-
ralness score of only 0.15, which further confirms
that an answer generator is needed for a natural
presentation. The generations from our best model
improve the naturalness score to 0.9551 and are
faithful to the evidence in 94.39% of the cases,
only slightly lower than the human references.

4.4 Best Practices

To summarize the best practices, the attribute json
strings can be directly flattened and all sources are
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Subjectivity of Relevance

Question: what is the snow made of?
Predicted: kind of cotton like.

Noise in Attribute Value

Question: is it dark green or brown?
Predicted: color: { value:“as shown” }

Overfit to String Match

Q: what is the length of the solder?
Predicted: coil of solder is about 1-3/4 long and ...

Uncertain Evidence

Q: can it be machine washed?
Predicted: not sure if it is machine washable.

Table 6: Common errors of evidence relevance ranking.

Number accuracy

Q: what’s the size of the house?
E: item_dimensions: {width:... height:{unit:centimeters,
normalized_value:{unit:inches, value:15.35},value:39.}}
G: The house is 10.24× 30.31× 39 inches

Hallucination when Inference needed

Q: are the dolls with it?
E: included_components:{value:“my dreamy doll-
house”}
G: Yes, it comes with a doll.

Sensitivity to typographical errors

Q: for he many players?
E: ages 7 and up, 2-12 players
G: this game is for ages 7 and up.

Table 7: Common errors of answer generations.

mixed together and trained with a single unified en-
coder. The ranker is finetuned on AmazonQA, aug-
mented data obtained by question generation and
manually annotated training data in order. Source
selection can be performed based solely on the
model confidence score and the answer generator
can be trained as in Algorithm 1.

5 Error analysis

Based on the human evaluation, we identified the
following key problems that exist in the current sys-
tem. For evidence ranking, the major problems are:
(1) subjectivity of relevance: It can be subjective
to define whether a piece of evidence is enough
to answer a given question. The model will some-
times pick a somewhat relevant piece of evidence,
even though there could be other, better options that
support a more comprehensive answer. (2) noise
in attribute value: When an attribute value con-
tains uninformative data due to the noise of data
sources, the model still may choose it based on
its attribute name. (3) overfitting to string match:
The model tends to select strings similar to the ques-

tion while ignoring their fine semantics, a common
problem from the bias to ‘shortcut learning’ of neu-
ral networks (Geirhos et al., 2020). (4) uncertain
evidence: The model ranks evidence highly, even
if this evidence is an uncertain expression. This
can be viewed as a special case of over-fitting to
string match. We show examples in Table 6. We
can attempt to alleviate errors of type 1 by provid-
ing finer-grained labels in the training data instead
of only binary signals (Gupta et al., 2019). Error
types 2 and 4 could be mitigated by data augmenta-
tion, constructing negative samples by corrupting
the attribute values or making evidence uncertain.
Error type 3 is more challenging. One possible
solution is to automatically detect spurious correla-
tions and focus the model on minor examples (Tu
et al., 2020). Nevertheless, a fundamental solution
to fully avoid Error 3 is still an open question.

For answer generation, we identify the major
problems as: (1) Number accuracy: The model
cannot fully understand the roles of numbers from
the limited training examples. (2) Hallucination
if inference is needed: when it is not possible to
generate an answer by simple rephrasing, the model
can hallucinate false information. (3) Sensitivity
to typos: The model is not robust to typos in the
question. A tiny typo can easily break the system.

We provide examples of these errors in Table 7.
Error types 1 and 3 could be alleviated through data
augmentation. We can create new samples to let the
model learn to copy numbers properly and learn to
be robust to common typos. Another way to reduce
number sensitivity could to delexicalize numbers
in the inputs, a common strategy in data to text
generation (Wen et al., 2015; Gardent et al., 2017).
Error type 2 is a challenging open problem in neu-
ral text generation. Many techniques have been
proposed such as learning latent alignment (Shen
et al., 2020), data refinement with NLU (Nie et al.,
2019), etc. These could potentially be applied to
our task, which we leave for future work.

6 Conclusion

To the best of our knowledge, this work is the first
comprehensive study of product answer generation
from heterogeneous sources including both semi-
structured attributes and unstructured text. We col-
lect a benchmark dataset with annotations for both
evidence ranking and answer generation. It will be
released to benefit relevant study. We find that the
best practice is to leverage a unified approach to
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handle all sources of evidence together and further
experimented with a set of data augmentation tech-
niques to improve the model performance. Error
analysis is provided to illustrate common errors,
which we hope will lead to inspire future work.
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Figure 4: The ngram distribution of prefixes of questions.

A Collected Data

All our collected data have also been manually
verified to remove sample with private or offensive
information.

In Figure 4, we show the ngram distribution of
question prefixes i our collected data. As can be
seen, a large proportion of questions are boolean
questions starting with “is”, “does”, “can”, “are”,
“do” and “will”. The rest are mostly factual ques-
tions like “how many/tall/long ...” and “what ...”.
Most of them should be able to answer with a short
span since there are not many opinion questions
like “how is ...”, “why ...”.

B Instruction for Human Annotation

All annotators are based on the US. We first per-
form in-house annotation and then estimate the
time needed for each annotation. We then set the
payment to be roughly 15 USD per hour. The pay-
ment is decided based on the average payment level
in the US. All annotators are informed that their col-
lection will be made public for scientific research
according to the Amazon Mechanical Turk code
of rules. The data collection protocol has been
approved by an ethics review board.

B.1 Question Collection
Read the given product name and image, imagine
you are a customer and are recommended this prod-
uct. Write one question about it to decide whether
or not to purchase this product.

Examples of questions: is it energy efficient?
does it require a hub? can I watch sports on this
TV? will the plug work with an extension cord?

B.2 Evidence Selection

At the start of each task, the workflow application
will present a product, a question about the product
and a set of candidates which describe the prod-
uct. Your annotation task is to mark the proper
candidate that contains information to answer the
question from the attribute set. If none of the pro-
vided candidates contain the information, select
”None of the above”.

B.3 Answer Generation

Read the raised product question and provided in-
formation, write a natural, informative, complete
sentence to answer this question. If the provided
information cannot address the question, write
”none”. Make sure the answer is a natural, in-
formative and complete sentence. Do not write
short answers like ”Yes”, ”Right”, ”It is good”, etc.
Provide enough information to help the asker un-
derstand more about the question. If the provided
information can only partially answer the question,
only reply to the answerable part.

Good Examples:
question: what age range is this product designed

for?
Provided information: age_range_description:

value:”3 - 8 years
Answer: It is designed for the age range of 3 - 8

years old.
question: how many people can play at one time?
provided information: number_of_players:

value:”8
answer: It is designed for 8 players at one time.
Bad Examples:
question: what age range is this product designed

for?
Provided information: age_range_description:

value:”3 - 8 years
Answer: 3 - 8 years.
question: how many people can play at one time?
provided information: number_of_players:

value:”8
answer: 8.

C Full Results of Ranker

We show the full results of our best-performed
ranker in Table 8. As can be seen, different sources
have different accuracy score. The attribute and
bullet point source have the highest accuracy score
because the former is more structured, and the lat-
ter has a consistent writing style with only a few

109



Source MAP MRR NDCG P@1 HIT@5

Attribute 0.965 0.966 0.974 0.943 0.996
Bullet 0.935 0.935 0.952 0.890 0.993
Description 0.648 0.708 0.747 0.611 0.822
OSP 0.667 0.708 0.763 0.579 0.873
Review 0.796 0.860 0.875 0.778 0.966
CQA 0.643 0.750 0.766 0.636 0.897

Table 8: Performance of our best ranker on different sources.

sentences. User reviews also have a high accuracy
score. This might be because the candidates of re-
views are already the top ones selected by our pre-
trained ranker. Many of them are already relevant
and the negative-positive ratio is low. The model
does not have extreme difficulty in handling the
user reviews. The model performs worst on the de-
scription, OSP and CQA answer source. This might
result from the diversity of their writing styles and
the high negative-positive ratio, which increase the
difficulty. Moreover, these two sources usually
depend more on the context to interpret the evi-
dence than other sources. The text description is
extracted from the multi-media web page. Simply
extracting the text part might lose richer context
to interpret the extracted text. Similarly, the CQA
usually depends on the community question. If we
only extract a sentence from the answer, it might
contains references that is not self-contained.

D Training details

For both the generative Bart-large model and the
discriminative Electra-base model, we truncate the
total input length to 128 subword tokens and se-
lect the learing rate from [5e − 6, 1e − 5, 3e −
5, 5e − 5, 1e − 4]. The warm-up step is selected
from [5%, 10%, 20%, 50%] of the whole training
steps. For the discriminative model, we choose the
best configuration based on the F1 score on the vali-
dation set. For the generative model, we choose the
best configuration based on the perplexity on the
validation set. In the end, we set the learning rate
of Electra-base as 3e− 5 and that of Bart-large as
1e− 5. The warm-up step is set as 20% for Electra-
base and 10% for Bart-large. The batch size is set
as 64 for Electra-base and 16 for Bart-large. For
Electra-base, we measure the validation F1 score
after finishing every 1% of the whole training steps
and stop the model when the valitaion F1 score
does not increase for 30% of the whole training
steps. For Bart-large, we measure the validation

loss every 200 steps and stop the model when the
validation loss stops decreasing for 1000 steps. All
models are trained once on 8 Nvidia V100 GPUs
and the random seed is set as 42.
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