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Abstract

This paper addresses the automatic trans-
lation of conversational content in a busi-
ness context, for example support chat dia-
logues. While such use cases share charac-
teristics with other informal machine trans-
lation scenarios, translation requirements
with respect to technical and business-
related expressions are high. To succeed
in such scenarios, we experimented with
curating dedicated training and test data,
injecting noise to improve robustness, and
applying sentence weighting schemes to
carefully manage the influence of the dif-
ferent corpora. We show that our approach
improves the performance of our models
on conversational content for all 18 in-
vestigated language pairs while preserv-
ing translation quality on other domains –
an indispensable requirement to integrate
these developments into our MT engines at
SAP.

1 Introduction

At SAP we build machine translation systems
to cope with a huge translation volume, cover-
ing product localization and translation of docu-
mentation, training materials or support instruc-
tions for up to 85 languages. We usually train
mixed-domain neural machine translation (MT)
engines, whose training input consists of a mul-
titude of data sources including the contents of the
company-internal translation memories from vari-
ous domains. The resulting MT systems produce
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high-quality technical translations but have diffi-
culties generating appropriate output for conversa-
tional content, required for multilingual chatbots
or product support chats. For an enhanced user ex-
perience, it becomes more and more important that
our customers can communicate in the language of
their choice. Therefore, we started a project to im-
prove translation quality for business-related con-
versations. This includes better translations, but
also more robustness towards typos and poor input
quality. We focus on methods that allow for im-
provements in one area without degrading quality
in others, since we aim to deliver a single model
per language pair.

The remainder of this paper is structured as fol-
lows. Section 2 introduces the particular chal-
lenges to be addressed when training an MT sys-
tem for corporate conversational content. The
methods we explored are presented in Section 3
and experimental results on selected language
pairs can be found in Section 4. Section 5 con-
tains results on 18 language pairs of major interest
at SAP using the final experimental configuration.
We point out open research questions in Section 6.
Related problems and approaches are highlighted
in Section 7 before we summarize our findings in
Section 8.

2 Challenges

Our baseline MT system is built on large amounts
of technical documents and UI-style training data
with the consequence that it performs unsatisfac-
torily in business conversations, where the content
is technical, but style is conversational. An exam-
ple conversation is given in Table 1 (column Orig-
inal Conversation in English). It contains a variety
of features that are common in conversational con-
tent, with major challenges posed by incomplete or



Agent Original Conversation in English Baseline MT Improved MT

User hello anyone Bonjour à tous Bonjour à tous
User why my gdm is not working pourquoi mon gdm ne fonctionne

pas
Pourquoi mon gdm ne marche pas
?

User it says .service file is not there cela indique que le fichier .service
n’existe pas.

Ça dit que le fichier .service n’est
pas là

Support what are you doing exactly que faites-vous exactement Que faites-vous exactement ?
Support where is it exactly où c’est exactement Où est-ce exactement ?
Support i didnt evn see the question.. i didnt voir la question... Je n’ai même pas vu la question.
User i have dsl connection my isp pro-

vides me and i got device not man-
aed so i edit.conf file of nm

i a dsl connexion mon isp me four-
nit et i get device not manaed so i
edit .conf file of nm

J’ai une connexion dsl que mon
isp me fournit et je n’ai pas
géré l’appareil donc je modifie le
fichier .conf de nm

User yeah it is oui, Oui, c’est ça
Support id leave it alone. et laissez-le tranquille. Je le laisse tranquille.
User i thinking to filter that port i penser à filtrer ce port Je pense filtrer ce port.
Support i never noticed it being open to the

network. just to localhost
i n’a jamais remarqué qu’elle était
ouverte au réseau. Il s’agit sim-
plement d’un hôte local

Je n’ai jamais remarqué qu’il était
ouvert au réseau. Juste à local-
host

User ok OK OK
Support so you m ay be worried about noth-

ing
Vous vous inquiétez donc de ne
rien voir

Donc tu es toujours inquiet pour
rien.

Support seems its not really an security is-
sue and it makes loookups quicker

semble qu’il ne s’agit pas vrai-
ment d’un problème de sécurité et
qu’il accélère les loookups

n’est pas vraiment un problème de
sécurité et accélère les recherches

User thanks remerciements Merci

Table 1: Excerpt of an English conversation (from the Ubuntu Dialogue Corpus (Lowe et al., 2015)) translated to French using
the baseline and our improved MT model.

Phenomenon Examples

Spelling
Typos thansk, tanks, thanx
Casing cpu, i, aws
Spacing ofcourse, any one, Id o
Lack of punctuation Hi are you there
Conversational word forms dunno, gotcha, doin’
Conversational variants hey, hey hi, hiya, howdy

Abbreviations
Word/phrase abbreviations plz, thx, np, omg, ttyl
Letter/number homophones u r, I c, c u, u 2, some1

Paralinguistic features
Emoticons :D ;-) :(
Emotional expressions uh, hmm, oh, ah, whoa
Emphasis - duplication no no no, oh noooo
Emphasis - typography it’s URGENT, It broke

*EVERYTHING*!
Expletives damn!, crap, sh*t

Table 2: Typical phenomena in conversational data.

ungrammatical sentences and high contextual de-
pendency. Conversational expressions (hello any-
one, thanks) and syntactic structures such as ques-
tions and utterances in first and second person sin-
gular are typical of conversational style. Techni-
cal documents do not provide a good coverage of
these phenomena. Support chats, moreover, ex-
hibit other challenging phenomena that are sum-
marized in Table 2 based on initial exploration of
in-domain data. While most of the listed linguis-
tic issues could be corrected, paralinguistic phe-
nomena that are a kind of textual equivalent to

verbal prosodic features or facial expressions are
more difficult. Emphasis expressed by word or let-
ter duplication or typography are highly language-
specific and cannot be easily transferred. Even
emoticons are not used in the same way across lan-
guages.

3 Methods

In this section, we describe the methods we inves-
tigated to address some of these challenges.

3.1 High-quality Parallel Data

The most straightforward way to improve trans-
lation quality of conversational content would be
adding appropriate training data. However, bilin-
gual data in this domain is hard to find. Even
largely conversational datasets, such as OpenSub-
titles (Lison and Tiedemann, 2016) are not well
suited for this purpose, as business conversations
are highly technical.

Thus, we manually select and translate appropri-
ate sentences to enrich our available training data
with conversational style segments (Section 2). To
collect suitable source segments, we draw on dif-
ferent resources such as support dialogues and ex-
pressions used for intents in our chatbots. But
the most valuable resource is the Ubuntu Dia-
logue Corpus (UDC) (Lowe et al., 2015), a pub-



licly available dataset that contains almost one
million two-person conversations extracted from
Ubuntu technical support chat logs between 2004
and 2015. We create a list of utterances and their
frequency from the UDC that helps us extract the
following:

• Utterances that cover greetings, agreement,
affirmations, refusal, uncertainty, wishes, re-
grets, hold-on expressions, thanks and re-
sponses to them, etc.

• Utterances starting with WH words and in-
verted questions (Are you, Do you, Does that,
etc.), frequent in support dialogues but under-
represented in technical documentation.

• Utterances that contain the pronouns “I” and
“you” to improve first- and second-person
coverage.

• Frequent single word utterances, as they are
especially problematic.

We mainly focus on short expressions that do
not contain vocabulary specific to the UDC. The
resulting list of approximately 10,000 English seg-
ments is then normalized, since it contains too
many variants of the same expression, differing
only in spelling, punctuation, and casing that
would increase translation costs without resulting
in more varied training data. The final corpus
consists of 7,000 segments that we have manually
translated by our professional translators into the
required target languages. Source variations are
later created using the methods described in Sec-
tion 3.4.

3.2 Domain Adaptation

We define as domain adaptation the task of opti-
mizing a natural language processing system’s pa-
rameters towards improved quality on a specific
text domain. A text domain typically exhibits par-
ticular charateristics wrt. aspects such as genre,
topic, style, terminology, and so on. Domain adap-
tation for MT is an established field of study (Chu
and Wang, 2018), with fine-tuning nowadays be-
ing one of the prevalent paradigms for neural MT
models (Freitag and Al-Onaizan, 2016; Huck et
al., 2017). In fine-tuning, training of a generic MT
model is continued using in-domain data. The pit-
falls of this method are overfitting and quality loss
on out-of-domain data (Huck et al., 2015; Thomp-
son et al., 2019). We found that sentence weighting
(Chen et al., 2017; Rieß et al., 2021; Wang et al.,

2017) suits our purpose of adapting towards con-
versational content better while at the same time
not sacrificing translation quality on other text do-
mains, thus keeping overall system performance
stable. We apply a straightforward up-weighting
technique by giving higher instance weights to
subsections of the training set which contain con-
versational content. Experimental results on this
will be reported in Section 4.3.

3.3 Error-sensitive Back-translation Scoring

The amount of conversational training data for MT
models can be increased by employing synthetic
bitext from back-translation (Huck et al., 2011;
Schwenk, 2008; Sennrich et al., 2016a). We back-
translate the UDC dataset with the aim of bene-
fiting conversational style and vocabulary cover-
age without harming grammaticality and spelling
of MT output. To that end, we first clean the
dataset using in-house scripts, resulting in 4.6 mil-
lion English sentences. We then machine-translate
the English sentences into the source languages of
the models which we intend to improve, using our
existing engines for back-translation in the reverse
direction. Experiments are thus only carried out
on language directions with English target (Sec-
tion 4.6).

We assume that grammatical and correctly
spelled input sentences result in better back-
translations, which in turn will lead to better per-
formance of the final model. Furthermore, we re-
quire the final model to produce grammatical sen-
tences despite the training references containing
user-generated text. We therefore use Acrolinx1

to measure the acceptability of a segment in terms
of grammaticality and spelling. Acrolinx is AI-
powered software that improves the quality and
impact of enterprise content. Using a customized
version of Acrolinx specialized for the techni-
cal support domain, we extract grammaticality,
spelling, and clarity scores for every sentence and
aggregate them into a sentence-level acceptability
score. We further include sentence length into each
sentence-level score since exploratory analysis has
shown that longer sentences tend to achieve lower
Acrolinx scores. The sentence-level scores will be
used in Section 4.6 to either filter or weight the
back-translated UDC training data.

1https://www.acrolinx.com/



3.4 Noise Injection

To improve and assess model robustness beyond
the addition of conversational style segments, we
inject noise into the in-domain subsets of training
and test data. We replicate some typical chat phe-
nomena (Table 2) by injecting noise in the form
of (1.) typos, (2.) common chat variants and word
forms, (3.) lowercasing and (4.) punctuation re-
moval on the source side only. The required lan-
guage data for typo injection and generation of
chat variants (described below) is only available
in English, restricting experiments to language di-
rections with English source. Table 3 gives an
overview of all generated variants. They are gener-
ated from the unmodified source data, except vari-
ants of conversational data (Section 3.1), which are
based on the normalized dataset.

For typo generation we apply an approach sim-
ilar to Shah and de Melo (2020) and compute
a model of real-world typos based on a collec-
tion of character-level typos found in individual
tokens. Typos are grouped into four categories:
insertion (ex.: threre), deletion (ex.: particu ar),
substitution (ex.: favulous) and transposition (ex.:
corcect). For each error category and each char-
acter, we calculate probability distributions based
on corpus occurrences. They constitute a statisti-
cal model of typos in the English language which
we refer to as the typo model. For details on the
computation of the probabilities, please see Shah
and de Melo (2020).

For every token in a source sentence, we sam-
ple from a token corruption probability (c) to de-
termine whether any noise will be injected. If a
token is chosen for noise injection, we iterate over
its characters and decide according to a typo prob-
ability (t) whether an error will be inserted at the
current character. Using the typo model as a noise
function, we sample from the calculated probabil-
ity distributions to generate one of the four types
of errors.

We inject spelling errors using two approaches.
Simply applying the typo model and method as
described above results in the artificial variants.
Additionally, we inject typos and further filter
the generated errors by checking corrupted tokens
against token-level typo lists. This yields the real
variants which are modified with real-world typos
only.

Table 4 contains the hyperparameters used to
generate three different misspelling levels for both

Variant

1 Low real typo injection
2 Medium real typo injection
3 High real typo injection
4 Low artificial typo injection
5 Medium artificial typo injection
6 High artificial typo injection
7 Colloquial replacements
8 Lowercasing
9 Punctuation removal

10 Lowercasing and punctuation removal

Table 3: List of generated source-side variants for a single
dataset.

artificial real

c t c t

Low 0.2 0.025 1.0 0.1
Medium 0.3 0.05 1.0 0.2
High 0.5 0.075 1.0 0.3

Table 4: Token corruption probability (c) and typo probabil-
ity (t) for injecting noise using the typo model.

approaches. They are based on preliminary ex-
periments and settings reported by Shah and de
Melo (2020). The parameters for the real approach
were chosen such that, after the restrictive filtering
step, the level of noise was comparable to that of
the corresponding artificial variant. Comparability
was assessed via the distribution of typos per sen-
tence and manual checks of the resulting variants.
We thus obtain a total of six variants from injecting
typos for a single dataset (Table 3, rows 1–6).

Additionally, we create a variant of the dataset
where we replace standard language with typical
conversational expressions, abbreviations and ho-
mophones (Table 3, row 7) using an in-house ex-
pression mapping. For example, “thanks” is re-
placed with “thx”, “give me” turns into “gimme”,
“are you” becomes “r u” etc.

Lastly, we generate three additional variants of
the data by lowercasing it and/or removing punc-
tuation (Table 3, rows 8–10).

4 Experiments

We now empirically evaluate the methods intro-
duced in Section 3, with the goal of improving
MT quality on conversational content. We focus
on conducting detailed experiments and presenting
results for two language pairs per method, one be-
ing rather close languages, the other rather distant.
These are English to French and Japanese (en–fr,
en–ja) for up-weighting and noise injection, and
Italian and Japanese to English (it–en, ja–en) for



back-translation. In Section 5 we will demonstrate
that our main findings generalize to other language
pairs.

4.1 Experimental Setup

For training we use large amounts of company-
internal parallel data that mostly consists of doc-
umentation, training materials, UI strings and sup-
port instructions. We also utilize some publicly
available datasets. The training data amounts to
about 25 M parallel segments per language pair.
The data is tokenized using a simple tokenization
scheme based on whitespace and punctuation, then
segmented into subwords using byte-pair encoding
(Sennrich et al., 2016b).

We make use of the Marian toolkit (Junczys-
Dowmunt et al., 2018) for this investigation. For
all our experiments, we use a Transformer network
in the standard base configuration (Vaswani et al.,
2017) and train it on the training data of the cor-
responding language pair. The early stopping cri-
terion is computed on a dedicated validation set of
4,000 parallel segments.

4.2 Test Corpora

Targeted changes to MT systems require mean-
ingful test sets to guide experimentation and to
measure improvement. As it is hard to find pub-
licly available test data that reflects the technical
support dialogue content we are interested in, we
created new test sets consisting of customer sup-
port dialogues and some dialogues taken from the
UDC. In contrast to the conversational training
data, we kept the dialogue structure for the test data
and selected a total of 21 dialogues, consisting of
about 1,000 sentences, that were also translated by
professional translators after normalization.

To measure performance on noisy input, we
created ten variations of the normalized English
source text of the support dialogues using the noise
injection techniques introduced in Section 3.4, see
Table 3. While we analyzed scores on the individ-
ual test set variants in the experimental phase, we
will only present results on all variants combined
here. Obviously, the impact of the methods on the
individual test set variants differs but as we intend
to cover different phenomena, the combined score
also helps to select the best overall configuration.

We use three groups of test data for in-domain
and out-of-domain testing in this study:

en–fr en–ja

Weight CHRF2 BLEU CHRF2 BLEU

1 59.4 36.3 41.1 34.1
5 59.5 36.3 41.9 34.8

10 59.8 36.9 42.1 35.2
20 59.9 37.0 42.2 35.6
30 59.9 37.2 42.1 35.2
40 60.0 36.9 42.3 35.4
50 59.8 36.9 42.3 35.5

Table 5: CHRF2 and BLEU scores on the conversational test
set with different weighting of the in-domain corpus. Best
results are highlighted in bold.

Conversational comprises the original and nor-
malized support dialogue test sets, their ten
variants (Table 3) and two additional related
publicly available test sets.

Corporate refers to a set of about 10 test sets with
diverse SAP-internal content.

Generic groups together public test sets from
news, Wikipedia, UN and EU sources.

Each of these groups contains about 10,000–
15,000 test segments, amounting to a total of about
40,000 per language pair. We evaluate using case-
sensitive CHRF2 (Popović, 2016) and BLEU (Pap-
ineni et al., 2002) and, in view of its better corre-
lation with human judgment (Mathur et al., 2020),
rely on CHRF2 for system choice. We report scores
averaged over all test sets per group.

4.3 Sentence Weighting Experiments

The amount of conversational training data we
have at our disposal is tiny compared to the rest
of the training data. It corresponds to 0.02% for
en–fr and to 0.06% for en–ja. Our first target is to
effectively use the new in-domain training data de-
scribed in Section 3.1 to adapt the model to the tar-
get domain of conversational content. We thus fo-
cus initially on conversational test sets, results on
out-of-domain test data are reported in Section 4.5.

Instead of fine-tuning, we use sentence weight-
ing, giving the in-domain training data more
weight, see Section 3.2. We explore the up-
weighting factor empirically (Table 5). A weight
of 1 constitutes the baseline. Increasing the weight
multiplier yields a small but steady improvement.
A factor of 40 delivers the best performance for
en–fr and is almost equal to the best CHRF2 for en–
ja. For the purpose of applying a common weight
setting across language pairs, we keep the factor of
40 fixed for subsequent experiments.



Typos Lc. Punct. Colloq.

Level Corpus real art.

0 None – – – – –
1 Conv. ✓ – ✓ ✓ ✓
2 Conv. ✓ ✓ ✓ ✓ ✓

3 Conv. ✓ ✓ ✓ ✓ ✓
Tatoeba ✓ ✓ (low) ✓ ✓ –

Table 6: Configurations of the different noise levels used in
noise injection experiments. Conv. denotes the conversational
corpus; Lc., Punct. and Colloq. refer to the lowercased, punc-
tuation and colloquial variants; art. abbreviates artificial.

en–fr en–ja

Level CHRF2 BLEU CHRF2 BLEU

0 60.0 36.9 42.3 35.4
1 60.7 37.9 42.5 36.3
2 60.8 38.3 42.8 36.8
3 61.4 38.6 43.4 36.9

3 + Tatoeba 3x 61.5 39.1 43.5 37.4

Table 7: Results of the noise injection experiments. The
conversational corpus has a fixed weight multiplier of 40x.
Tatoeba 3x indicates addition of the Tatoeba corpus with a 3x
weight multiplier. Best results are highlighted in bold.

4.4 Noise Injection Experiments
As described in Section 3.4, noisy variants are in-
jected into the training and test data on the English
source only. The target remains in its original form
so that the model learns to correct and translate
at the same time. We categorize the noise injec-
tion experiments into three levels (Table 6) where
we successively add more misspelled or wrongly
cased data to the source of the training data. The
additional noisy data is weighted with a factor of 1.
Besides the newly created conversational dataset
we also involve the Tatoeba corpus (Tiedemann,
2020) that was already part of our training data and
is rich in conversational expressions.

The results on the conversational test sets com-
bined are shown in Table 7. As the test sets cover
different noise variants, we see a nice improvement
with the highest noise level 3, and conclude that
we gain in robustness of our MT system. Finally,
we also up-weight the original Tatoeba corpus by
a factor of 3. This gives an additional small, but
consistent improvement on the conversational test
data. Thus we select this configuration for further
trainings and evaluations.

4.5 Out-of-domain Performance
As we want to integrate the selected configuration
into a mixed-domain “one-size-fits-all” model, we
need to make sure that the overall system quality
remains stable. To check whether up-weighting or

noise injection harms translation quality on non-
conversational test data, we measure the perfor-
mance of the systems that perform best on con-
versational test data on all other test sets, grouped
into corporate and generic test sets, as explained
in Section 4.2. The results are reported in Ta-
ble 8. They show clear improvements on the con-
versational test sets of over 2.0 CHRF2 points and
around 3.0 BLEU points for both en–fr and en–
ja. Furthermore, the improvements do not lead to
degradations on other test sets. These findings sup-
port the claim that the quality on all other test sets
stayed quite stable.

4.6 Error-sensitive Back-translation Scoring
Experiments

For language pairs targeting English, we experi-
ment with adding different configurations of the
UDC to the training data of the baseline systems:

Full adds the entire back-translated UDC to the
training data of the baseline.

Filter adds only those pairs from the UDC where
the source segment’s acceptability score ex-
ceeds a set threshold.

Weight adds the entire UDC, but assigns a weight
between 0.2 and 1 to all segments based on
their acceptability score.

The filtering threshold was set based on manual
exploration of resulting filtered corpora for a small
development set of UDC sentences. The filtered
UDC dataset contains roughly 840,000 parallel
sentences. For the weighting approach, we decide
to down-weight noisy segments rather than up-
weight correct segments due to the user-generated
nature of the dataset. Table 9 shows the number of
UDC sentences per weight.

Table 10 contains the CHRF2 and BLEU scores
on all test sets for it–en and ja–en. Adding the
entire UDC data (full) improves performance for
both language pairs on in-domain test data. This
indicates that the back-translations are of sufficient
quality to provide training signals despite the do-
main mismatch of the translation system used to
obtain them. For generic test sets, performance re-
mains stable, while there is a slight drop in quality
on corporate test sets.

Comparing the filtering method (filter) with full,
it performs similarly on generic and corporate test
sets but does not achieve the same performance in-
crease on the conversational test sets. It should be
noted that filtering results in less than 20% of the



CHRF2 BLEU

Language pair Test domain Baseline Final version Baseline Final version

en–fr
conversational 59.4 61.5 36.3 39.1
generic 67.0 67.0 43.1 43.1
corporate 81.5 81.4 63.8 63.7

en–ja
conversational 41.1 43.5 34.1 37.4
generic 33.9 34.5 35.8 36.3
corporate 67.8 68.0 69.8 70.0

Table 8: Results on all test sets when adding the noise-injected and up-weighted conversa-
tional training data to the baselines.

Weight # segments

0.2 3,636
0.4 123,185
0.6 727,263
0.8 2,073,784
1.0 1,622,266

Table 9: Number of seg-
ments by weight for the
weight experiment.

CHRF2 BLEU

Language pair Test domain Baseline full filter weight Baseline full filter weight

it–en
conversational 64.3 65.7 65.1 65.5 41.9 43.6 42.8 43.4
generic 65.9 66.0 65.9 65.9 43.1 43.5 43.4 43.4
corporate 80.8 80.5 80.6 80.8 63.2 62.8 62.9 63.1

ja–en
conversational 45.6 46.3 45.9 46.3 20.5 21.2 20.7 21.1
generic 51.8 51.9 51.9 51.9 22.3 22.3 22.4 22.1
corporate 74.9 74.9 74.9 74.9 51.2 51.1 51.4 51.2

Table 10: Results on all test sets when adding back-translated UDC data to the training data of the baselines. Best results are
highlighted in bold.

UDC being added to the training data. However,
further experiments with larger subsets of UDC
data have also not outperformed the full model.

Weighting the UDC data (weight) leads to in-
domain improvements comparable to full. Addi-
tionally, adding the weighted UDC to the training
data does not compromise performance in other
domains. This may be on account of the down-
weighting of ungrammatical segments, enabling
the weighting model to learn from conversational
data while preserving output quality.

5 From Experiments to Production

The experimental results from Section 4 motivated
us to use the same data assembling techniques and
configurations for other language pairs that had not
been previously tested. For the translation direc-
tions with English source, Table 11 lists the lan-
guage pairs and shows the gain in case-sensitive
CHRF2 and BLEU for the three groups of test sets
(see Section 4.2). Base constitutes the baseline, to
which New adds up-weighted parallel data noise-
injected using the best configuration found in Sec-
tion 4. Note that the scores for en–fr and en–
ja are slightly different from those in Table 8 as
the overall setup and training data composition of
the experimental and final systems are not exactly
identical. Across all language pairs there is con-
siderable improvement on the conversational test
sets, while on the other domains (corporate and
generic) the performance remains stable on aver-

age, according to both automatic metrics. Thus,
our approach works similarly well for the other
seven language pairs as for English to French and
English to Japanese, showing that we can deliver
high-quality business conversation MT broadly for
many languages without compromising translation
quality of other text types.

The results of adding the back-translated UDC
data with error-sensitive weight factors for systems
translating into English are shown in Table 12. Al-
though the impact is less pronounced than for the
other language direction, it is consistent and visi-
ble. It is quite surprising that the large amount of
back-translated data is not harming the translation
quality in other domains.

To illustrate the differences, we refer back to Ta-
ble 1, comparing the French MT output after the
quality improvements with the baseline engine’s
output on the English example dialogue. The ex-
ample demonstrates that robustness to typos has
improved, and that punctuation is placed correctly.
Fewer words remain untranslated and the MT out-
put is more fluent.

6 Outlook

Although we see nice improvements, the trans-
lation quality in technical business conversations
could be further improved. We point out the main
open issues in this section, leaving them for future
work and calling for new methods to address them.



CHRF2 BLEU

Test domain Base New Base New

en–de
conversational 55.3 57.1 29.4 31.5
generic 66.2 66.4 40.4 40.7
corporate 77.1 76.9 53.6 53.6

en–es
conversational 65.4 68.0 44.0 47.3
generic 70.0 70.0 48.4 48.5
corporate 81.6 81.6 64.4 64.3

en–fr
conversational 58.8 61.7 35.7 39.0
generic 67.2 67.2 43.4 43.4
corporate 81.8 81.8 64.2 64.3

en–it
conversational 59.3 63.0 34.6 39.1
generic 67.2 67.4 42.0 42.1
corporate 81.9 81.5 62.9 62.1

en–ja
conversational 41.6 43.9 34.2 37.5
generic 33.8 34.2 35.3 36.1
corporate 70.5 71.0 72.1 72.5

en–ko
conversational 44.1 46.3 20.2 22.5
generic 65.9 65.2 44.0 43.1
corporate 72.9 72.5 57.2 56.7

en–pt
conversational 68.5 71.5 46.4 51.0
generic 69.6 69.9 45.5 46.1
corporate 84.3 84.3 68.3 68.3

en–ru
conversational 50.3 52.9 27.5 29.9
generic 64.9 65.0 38.8 38.9
corporate 76.2 76.3 54.8 54.9

en–zh
conversational 48.9 49.0 35.3 37.5
generic 42.6 43.3 45.6 46.2
corporate 70.9 71.8 72.1 73.0

Table 11: CHRF2 and BLEU scores on test sets from all do-
mains for the translation directions with English source.

CHRF2 BLEU

Test domain Base New Base New

de–en
conversational 60.1 60.7 36.1 36.6
generic 67.0 67.6 44.1 44.7
corporate 81.7 81.5 65.4 65.0

es–en
conversational 67.2 68.3 45.0 46.5
generic 69.2 69.8 46.3 47.2
corporate 81.0 80.9 63.8 63.4

fr–en
conversational 62.5 63.2 39.7 40.8
generic 67.7 67.4 44.8 44.5
corporate 79.3 78.2 61.1 59.2

it–en
conversational 63.5 65.1 40.8 43.1
generic 67.1 67.9 44.0 45.2
corporate 82.6 82.5 66.2 65.9

ja–en
conversational 44.1 45.7 19.1 20.5
generic 53.5 54.8 23.8 24.7
corporate 74.5 75.2 50.9 51.9

ko–en
conversational 50.8 52.8 24.2 26.3
generic 57.7 57.9 33.4 33.6
corporate 75.8 76.1 52.9 53.8

pt–en
conversational 69.5 70.6 47.8 49.4
generic 72.3 72.9 50.5 51.5
corporate 84.6 84.7 69.6 69.6

ru–en
conversational 56.5 57.5 32.8 33.8
generic 64.9 64.9 39.0 39.0
corporate 75.9 75.8 55.7 55.2

zh–en
conversational 52.4 53.6 27.0 28.5
generic 60.3 60.5 31.9 32.2
corporate 78.9 79.1 57.5 57.7

Table 12: CHRF2 and BLEU scores on test sets from all do-
mains for the translation directions with English target.

In order to enhance robustness with respect to
misspellings, casing, chat-typical conversational
forms, or abbreviations, a normalization step in
preprocessing could be investigated (Chitrapriya et
al., 2018; Clark and Araki, 2011). This would sup-
port subsequent MT. However, text normalization
or automatic spelling correction (Peitz et al., 2013)
is highly text-type specific and prone to over-
generation when applied to non-conversational
text, especially for technical documentation with
lots of acronyms and technical abbreviations. This
is one of the reasons why we decided for the noise
injection approach targeted at conversational con-
tent only.

Chat language includes other specific phenom-
ena which we did not specifically address in this
work, one of them being capitalization for em-
phasis, which could be tackled, e.g., using a fac-
tored representation for source and target (Garcı́a-
Martı́nez et al., 2016; Niehues et al., 2016; Wilken
and Matusov, 2019). Another frequent phe-
nomenon is emoticons, where one would need to
decide whether they should just be copied over, or

whether they also need to be localized to the target
language. For expletives in conversations, appli-
cable methods largely depend on the expectations
in specific use cases, i.e., should a swearword be
translated to its counterpart in the target language,
should it be removed, or masked with asterisks?

Our MT model operates on the sentence level,
and we treat each utterance as one sentence. How-
ever, in chat conversations, sentences are some-
times spread over multiple utterances, meaning the
source is actually over-segmented, leading to poor
translation quality. This could be improved by a
different segmentation paradigm, and/or by an MT
model that takes dialogue context beyond the sen-
tence level into account (Liang et al., 2021). The
latter should also improve the coherent use of pro-
nouns and verbal forms within a dialogue.

Levels of politeness and their expression in con-
versations differ between cultures and languages.
Accordingly, this also poses challenges for MT, es-
pecially when the target language has more fine-
grained distinctions than the source language.



7 Related Work

Our work has focused on four methods: (1.) In-
tegrating parallel high-quality conversational con-
tent into the training corpus, (2.) creating synthetic
in-domain data via back-translation, (3.) data aug-
mentation to make the model more robust to noisy
input, and (4.) model adaptation towards the style
of conversational content in the business domain.
Prior work by other researchers has pursued aims
related to ours while often employing slightly dif-
ferent techniques. For instance, high-quality paral-
lel data is oftentimes identified by means of pseudo
in-domain data selection (Axelrod et al., 2011);
back-translation can be improved by sampling or
noisy synthetic data (Edunov et al., 2018); better
robustness towards noisy input may be achieved
with a stochastically corrupted subword segmen-
tation procedure (Provilkov et al., 2020); or do-
main adaptation might be feasible even in a semi-
supervised or unsupervised manner in certain sce-
narios (Dou et al., 2019; Niu et al., 2018). We are
confident that many of the existing related tech-
niques are complementary to our work and will
help further improve MT quality of conversational
content in the business domain.

8 Conclusion

We have shown that an MT model specialized in
the IT and business domains can be enhanced to
also cover conversational content well. This bal-
ancing act is highly relevant in scenarios such as
product support chats or multilingual chatbots. We
have achieved that by curating high-quality paral-
lel data to address phenomena where the model
exhibited the most devastating shortcomings. We
further add back-translated data from the dialogue
domain, inject typos, punctuation and capitaliza-
tion variants to make the model more robust, and
carefully manage the influence of the different cor-
pora using a sentence weighting scheme. We have
demonstrated that promising results from experi-
ments involving only a few language pairs gen-
eralize well to the main languages in our produc-
tion scenario at SAP, achieving an improvement of
2.4 CHRF2 / 3.1 BLEU on average for language
pairs from English and 1.2 CHRF2 / 1.5 BLEU

for language pairs to English on our conversational
test sets, while the performance on other domains
and test sets remains stable.
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