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Abstract

Online Social Network has let people connect
and interact with each other. It does, however,
also provide a platform for online abusers to
propagate abusive content. The majority of
these abusive remarks are written in a multi-
lingual style, which allows them to easily slip
past internet inspection. This paper presents a
system developed for the Shared Task on Abu-
sive Comment Detection (Misogyny, Misandry,
Homophobia, Transphobic, Xenophobia, Coun-
terSpeech, Hope Speech) in Tamil Dravidi-
anLangTech@ACL 2022 to detect the abu-
sive category of each comment. We approach
the task with three methodologies - Machine
Learning, Deep Learning and Transformer-
based modeling, for two sets of data - Tamil
and Tamil+English language dataset. The
dataset used in our system can be accessed
from the competition on CodaLab. For Ma-
chine Learning, eight algorithms were imple-
mented, among which Random Forest gave the
best result with Tamil+English dataset, with
a weighted average F1-score of 0.78. For
Deep Learning, Bi-Directional LSTM gave
best result with pre-trained word embeddings.
In Transformer-based modeling, we used In-
dicBERT and mBERT with fine-tuning, among
which mBERT gave the best result for Tamil
dataset with a weighted average F1-score of
0.7.

1 Introduction

The usage of the Internet and social media has
increased exponentially over the previous two
decades, allowing people to connect and interact
with each other (Priyadharshini et al., 2021; Ku-
maresan et al., 2021). This has resulted in a num-
ber of favourable outcomes such as monitoring
pandemic trends, empowering patients and enhanc-
ing public communication through social media,
amongst others (Cornelius et al., 2020; Househ
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et al., 2014; Picazo-Vela et al., 2012). At the same
time, it has also brought with it hazards and neg-
ative consequences, one of which is the use of
abusive language on others (Chakravarthi, 2020;
Chakravarthi and Muralidaran, 2021).

The rapid spread of abusive content on social
networking has become a major source of concern
for government organisations. It is very difficult
to identify abuse over online social network due to
the massive volume of content generated through
social media in different online platforms (Sampath
et al., 2022; Ravikiran et al., 2022; Chakravarthi
et al., 2022; Bharathi et al., 2022). It becomes a
bigger problem when most of the communication
is in multilingual style (Priyadharshini et al., 2020;
Chakravarthi et al., 2021a,b). Hence, there is in-
creasing interest in the use of automated methods
for detecting online social abuse (Priyadharshini
et al., 2022). It is becoming a major area of research
to find solutions with powerful algorithmic systems
to curb the growth of abusive content online. One
possible way of achieving such a system is by us-
ing state-of-the-art Natural Language Processing
(NLP) techniques, which can analyse, comprehend
and interpret the meaning of the natural language
data.

In addition, the detection of abusive language on-
line is harder for some languages like Tamil due to
the presence of code-mixed (Barman et al., 2014)
and code-switched (Poplack, 2001) data. Code-
switching is when in a single discourse, a person
switches between two or more languages or lan-
guage varieties/dialects (B and A, 2021b,a). It
refers to using elements from more than one lan-
guage in a way that is consistent with the syntax,
morphology, and phonology of each language or
dialect. Code-mixing is the hybridization of two
languages (for example, parkear, which uses an En-
glish root word and Spanish morphology), which
refers to the migration from one language to an-
other. Many such language pairs have a hybrid
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name.
Tamil is a member of the southern branch of

the Dravidian languages, a group of about 26 lan-
guages indigenous to the Indian subcontinent. It
is also classed as a member of the Tamil lan-
guage family, which contains the languages of
around 35 ethno-linguistic groups, including the Ir-
ula and Yerukula languages (Anita and Subalalitha,
2019b,a; Subalalitha and Poovammal, 2018; Subal-
alitha, 2019). Malayalam is Tamil’s closest signifi-
cant cousin; the two began splitting during the 9th
century AD. Although several variations between
Tamil and Malayalam indicate a pre-historic break
of the western dialect, the process of separating
into a different language, Malayalam, did not oc-
cur until the 13th or 14th century (Sakuntharaj and
Mahesan, 2021, 2017, 2016; Thavareesan and Mah-
esan, 2019, 2020a,b, 2021). Tanglish is an example
which is Tamil+English. In this task, we are given
two datasets: One with a Tamil meaning written in
English but the content is a combination of Tamil
and English. The other is a Tamil+English dataset
(Tanglish) which is written in Tamil and English
with content in Tamil and English as well. There
are also known challenges in the development of
computational systems in Tamil because of the lack
of linguistic resources (Magueresse et al., 2020).
In this paper, we present computational systems
for the automated detection of abusive language
using the two different data sets containing Tamil
and Tamil+English.

2 Related work

In this section, we review the various method-
ologies and systems previously implemented for
similar tasks in under-resourced languages like
Tamil. Hope speech is annotated Equality, Diver-
sity and Inclusion (HopeEDI) (Chakravarthi, 2020).
They also created several baselines to standard the
dataset. (Chakravarthi and Muralidaran, 2021) re-
ports on the shared task of hope speech detection
for Tamil, English and Malyalam languages. They
presents the dataset used in the shared task and
also surveys various competing approaches devel-
oped for the shared task and their corresponding
results. (Mandalam and Sharma, 2021) presents
the methodologies implemented while classifying
Dravidian Tamil and Malayalam code-mixed com-
ments according to their polarity and uses LSTM
architecture. (Sai and Sharma, 2021; Li, 2021;
Que, 2021) use XLM-RoBERTa for offensive lan-

guage identification. Novel approach of selective
translation and transliteration have been used to im-
prove the performance of multilingual transformer
networks such as XLMRoBERTa and mBERT by
fine-tuning and ensembling. Online messaging has
become one of the most popular methods of com-
munication with instances of online/digital bully-
ing. The challenge of detecting objectionable lan-
guage in YouTube comments from the Dravidian
languages of Tamil, Malayalam, and Kannada is
viewed as a multi-class classification problem (An-
drew, 2021). Several Machine Learning algorithms
have been trained for the task at hand after being
exposed to language-specific pre-processing.

3 Dataset

The dataset for the current study is taken from
the competition 1 which consists of YouTube
comments in Tamil and Tamil-English languages
annotated for Misogyny, homophobia, transpho-
bic, xenophobia, counter-speech, hope-speech and
misandry (and None-of-the-above) (Priyadharshini
et al., 2022). Table 1 shows the count of comments
for both the datasets under each split. Table 2 gives
the class-distribution of each abusive category for
both the datasets.

4 Proposed Technique

Raw texts are inaccessible to Machine Learning
(ML) and Deep Learning (DL) algorithms. To train
the models for classification, feature extraction is
necessary. To extract features in ML approaches,
the TF-IDF representation is used. For DL models,
we use fastText word embeddings feature extrac-
tion strategies (Joulin et al., 2016). fastText em-
bedding uses a pre-trained embedding matrix for
Tamil language (Grave et al., 2018). To study the
results and come up with the best model possible,
we follow three approaches - Machine Learning,
Deep Learning and Transformer-based.

As it can be clearly seen from Table 1, both the
datasets contain class imbalance. Class imbalance
is a problem in machine learning when there are
great differences in the class-distribution of the
dataset. It is seen as a problem when a dataset is
biased towards a class in the dataset. If this problem
persists, any algorithm trained on the same data will
again be biased towards the same class. To resolve

1https://competitions.codalab.org/
competitions/36403
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Class Tamil+English Tamil
Train-set 5948 2238
Validation-set 1488 560
Test-set 1857 699

Table 1: Number of comments across both the datasets in each of the three splits.

Class Tamil+English Tamil
Misandry 1048 550
Counter-speech 443 185
Xenophobia 367 124
Hope-Speech 266 97
Misogyny 261 149
Homophobia 213 43
Transphobic 197 8
None-of-the-above 4639 1642

Table 2: Class-distribution across both datasets.

the issue of class imbalance, we practice various
approaches:

Changing the performance metric: Since accu-
racy is not always the best metric to use on imbal-
anced datasets, we use F1-score instead to evaluate
the models.

Using a penalized algorithm (cost-sensitive train-
ing): This algorithm also handles class imbalance
which can be achieved by using ’balanced’ as a
parameter while computing class weights.

Changing the algorithms: This is why we have
used a wide variety of algorithms to get a bigger
picture of which models suit the dataset and the
classification problem better.

Table 3 provides the details about tuning
the hyperparameters in our system both for
Tamil+English and Tamil datasets.

To study the results and come up with the best
model possible, we follow three approaches - Ma-
chine Learning, Deep Learning and Transformer-
based, described in the sub-sections below.

4.1 Approach A: Machine Learning/
Non-Neural Network approaches

To start with, we implemented various Machine
Learning algorithms which include Logistic Re-
gression (LR), Random Forest (RF), K-nearest
neighbors (KNN), Decision Tree, Support Vec-
tor Machine (SVM), Gradient Boosting, Adap-
tive Boosting (AdaBoost), and Ensemble (Husain,
2020). We have used ML algorithms only for
Tamil+English dataset due to the poor performance

of ML models on Tamil written text (Tamil dataset).

4.2 Approach B: Recurrent Neural Network
approaches

To improve the performance of ML models, we
dive into deep learning algorithms. Here, we have
implemented DL approach for both the datasets.
We use two models of Bi-directional LSTM -
BiLSTM-M1 and BiLSTM-M2 (Chiu and Nichols,
2015). BiLSTM-M1 is a mix of bidirectional
LSTM architecture that uses a convolution and a
max-pooling layer to extract a new feature vec-
tor from the per-character feature vectors for each
word. These vectors are concatenated for each
word and sent to the BiLSTM network, which sub-
sequently feeds the output layers. BiLSTM-M2
is an advanced BiLSTM-M1 where we adopted
pre-trained word embeddings since BiLSTM and
fastText produced better results for classification
tasks.

4.3 Approach C: Transformer-based
approaches

In natural language processing, the Transformer
is a unique design that seeks to solve sequence-
to-sequence tasks while also resolving long-range
dependencies. It does not use sequence-aligned
RNNs or convolution to compute representations
of its input and output, instead relying solely on
self-attention.

Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2018) is a
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Parameters Values
Learning rate 1x10−3

Batch Size 32
Epochs 25
Validation Split 0.2

Table 3: Hyperparameters used in our system.

Model name P R F1
RF 0.91 0.71 0.78
Gradient Boosting 0.85 0.71 0.76
SVM 0.78 0.72 0.75
KNN 0.85 0.68 0.75
AdaBoost 0.86 0.69 0.74
LR 0.71 0.71 0.71
Decision Tree 0.72 0.66 0.68
Ensemble 0.71 0.72 0.68
BiLSTM-M1 0.71 0.68 0.7
BiLSTM-M2 0.64 0.61 0.62
IndicBERT 0.55 0.67 0.60

Table 4: Metric evaluation for Tamil+English dataset.

Model name P R F1
BiLSTM-M1 0.63 0.55 0.58
BiLSTM-M2 0.74 0.67 0.7
mBERT 0.64 0.7 0.7

Table 5: Metric evaluation for Tamil dataset.

transformer language model with a variable num-
ber of encoder layers and self-attention capabilities.

We again use two BERT models - mBERT (bert-
base-multilingual-cased) and IndicBERT

We follow fine-tuning for Transformer models
and use pre-trained BERT, bert-base-multilingual-
cased (Devlin et al., 2018) and IndicBert classi-
fication models (Kakwani et al., 2020) that have
been trained on 104 languages and 12 Indian lan-
guages respectively, including Tamil, from the
largest Wikipedia.

5 Results and Discussion

We ran 8 Machine Learning algorithms, 2
Deep Learning and 1 Transformer model on the
Tamil+English dataset. For the Tamil dataset, we
used 2 Deep Learning and 1 Transformer model.

For the Tamil+English dataset, the best perfor-
mance was of Random Forest with macro average
F1-score of 0.32 and weighted average F1-score
of 0.78. For the Tamil dataset, the best model was

BiLSTM-M2 with macro average F1-score of 0.39
and weighted average F1-score of 0.70.

For Tamil, performance improved from
switching BiLSTM-M2 to mBERT. And for
Tamil+English, the best performer was BiLSTM-
M1, followed by BiLSTM-M2 and then IndicBERT
and mBERT.

Table 4 and Table 5 show the result of our mod-
els across both the datasets. For Tamil language,
ML models performed best when DL models were
originally expected to perform better. The exten-
sive use of multilingual language in the text could
be a reason for the poor performance of DL. Pre-
trained word embeddings could not deliver higher
performance due to the lack of feature mapping be-
tween the words. As a result, DL models might not
be able to uncover sufficient relational relationships
among the features, and perform poorly.

6 Conclusions and Future Work

In this paper, we presented approaches for the auto-
mated detection of abusive comments in Tamil. We
used various models to do a comparative study to
see which model performed better with the dataset
given in the shared task. We found that Deep
Learning and Transformer models outperformed
Machine Learning models with Tamil data whereas
Machine Learning models achieved better results
than Deep Learning and Transformer-based for
Tamil+English data. We did not apply contextual-
ized embeddings (such as ELMO, FLAIR) which
may improve the performance of the system. Im-
plementation of Contextualised embeddings using
language modelling with deep learning is the future
work to explore.
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