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Abstract
Information-seeking dialogue systems, includ-
ing knowledge identification and response gen-
eration, aim to respond to users with fluent, co-
herent, and informative answers based on users’
needs. This paper discusses our proposed ap-
proach, Docalog, for the DialDoc-22 (Multi-
Doc2Dial) shared task. Docalog identifies the
most relevant knowledge in the associated docu-
ment, in a multi-document setting. Docalog, is
a three-stage pipeline consisting of (1) a docu-
ment retriever model (DR. TEIT), (2) an answer
span prediction model, and (3) an ultimate span
picker deciding on the most likely answer span,
out of all predicted spans. In the test phase
of MultiDoc2Dial 2022, Docalog achieved f1-
scores of 36.07% and 28.44% and SacreBLEU
scores of 23.70% and 20.52%, respectively on
the MDD-SEEN and MDD-UNSEEN folds.

1 Introduction

Introducing a machine-generated dialogue with a
human level of intelligence has been consistently
among dreams of artificial intelligence with a
vast number of applications in different domains,
ranging from entertainment (Baena-Perez et al.,
2020) to healthcare systems (Montenegro et al.,
2019; Bharti et al., 2020). In such a system,
the machine has to (i) understand the flow of
conversation, (ii) raise informative questions,
and (iii) answer problems in different domains
of interest, and in some cases it has to act as an
all-knowing agent (Dazeley et al., 2021). Recent
advances in NLP have made this dream closer
to reality. In the last decade, the success of the
neural language model in language understanding
and generation has encouraged more and more
contributions from both academia and industry in
the area of conversational artificial intelligence (Fu
et al., 2020).

∗ Equal contribution
§ Corresponding authors

The major efforts in conversational artificial
intelligence can be categorized into three sub-
areas (Zaib et al., 2021): (i) chat-oriented
systems, where the aim is to engage the users
through a natural and fluent conversation (Nio
et al., 2014), the examples are Alexa1, Siri2, or
Cortana3; (ii) task-oriented systems, which are
designed for a particular action, such as reserving
a restaurant or planning an event by understanding
the conversation (Yan et al., 2017); and (iii) QA
dialog systems attempting to answer the user
exploiting information deducted from a collection
of seen documents or a knowledge base, for
instance CoQA (Reddy et al., 2019), QuAC (Choi
et al., 2018). Our work in this paper also falls in
the third category.

In this system paper, we present our work on the
DialDoc Shared Task 2022 centered on developing
a QA dialogue system. A common approach
to this problem comprises two subtasks of (i)
knowledge identification (KI) to retrieve the
knowledge from the documents and (ii) response
generation (RG) to generate an answer based
on the retrieved knowledge (Feng et al., 2020b;
Kim et al., 2021). The multi-document scenario,
meaning that the related documents have to be
retrieved before the answer generation, is the main
distinction between the DialDoc Shared Tasks in
2021 and 2022. To tackle this problem, we propose
a three-stage pipeline, called Docalog, consisting
of (1) document retriever model (DR. TEIT), (2)
an answer span prediction model, a state-of-the-art
transformer-based model taking single documents
(DR. TEIT results) as input and outputting the
answer span for every input document, and (3) an
ultimate span picker deciding on the most likely
answer span, out of all predicted spans in the

1https://developer.amazon.com/en-US/alexa
2https://www.apple.com/uk/siri/
3https://www.microsoft.com/en-us/cortana
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step (2). In Multidoc2dial 2022 challenge, during
the test phase, DocAlog achieved an f1-score
of 36.07% and a SacreBLEU of 23.70% on the
MDD-SEEN, and an f1-score of 28.44% and a
SacreBLEU of 20.52% on the MDD-UNSEEN.

2 Related Work

The main focus of DialDoc shared tasks has been
on developing task-oriented information-seeking
dialogue systems, an important setting in the
domain of conversational AI (Feng et al., 2021).
Some of the performing models in this domain
have been CAiRE (Xu et al., 2021), SCIRDT (Li
et al., 2021), and RWTH (Daheim et al., 2021).
The proposed approaches of CAiRE and SCIRDT
utilize additional data for the augmentation of
pre-trained language models in span detection, and
RWTH (Daheim et al., 2021) model uses neural
retrievers for obtaining the most relevant document
passages.

In a broader context, the major work in
document-grounded dialogue modeling can be
divided into the following categories: (i) QA in an
unstructured content, e.g., CoQA (Reddy et al.,
2019), QuAC (Choi et al., 2018), ShARC (Saeidi
et al., 2018), DoQA (Campos et al., 2020), and
Doc2Dial (Feng et al., 2020b) (ii) QA in a
semi-structured content, such as tables or lists, e.g.,
SQA (Iyyer et al., 2017), and HybridQA (Chen
et al., 2020) and thirdly (iii) QA in a multimedia
content (images and videos with associated textual
descriptions), e.g., RecipeQA (Yagcioglu et al.,
2018), PsTuts-VQA (Colas et al., 2020), and
MIMOQA (Singh et al., 2021).

3 Materials and Models

3.1 MultiDoc2Dial Shared Task Dataset
Training material used in this shared task is derived
from the MultiDoc2Dial, a new dataset constructed
based on Doc2Dial dataset V1.0.1 (Feng et al.,
2020b). It contains a collection of documents
and conversations exchanged between the user(s)
and an agent grounded in the associated documents.

3.2 Model
The three-stage workflow of Docalog is depicted
in Figure 1. Firstly, DR. TEIT predicts the N

best documents based on the user input (qt), and
a query history of the respective user (q1:(t−1)).
Afterward, the span prediction model finds
matching spans for a given query for each of the N
best documents in the step before. Eventually, the
ultimate span picker selects the most related span
among predicted spans using a combination of the
cosine similarity between the query and the span
embeddings, as well as char-level TF-IDF-based
cosine similarity between the query and the span
vectors.

3.2.1 Document Retriever
In our retrieval model to encode the texts, we use
a pre-trained language-agnostic BERT sentence
embedding (LaBSE) (Feng et al., 2020a). One of
our contributions here is to include the dialogue
history in our document retriever model. We also
found that the title tokens and their synonyms are
extremely useful in document-changing dialogues,
i.e., questions changing the context document
during the conversation.

Our document retriever model, Document Re-
triever with Title Embedding and IDF on Texts
(DR. TEIT), uses two scoring measures and aggre-
gates them through a hyper-parameter in a convex
combination (Eq. 1).

λSTE + (1− λ)STI , (1)

where STE is the title embedding based on the
similarity between the sequence of query and the
history (q1..t) and the document titles. STI is a
character n-gram (2 ≤ n ≤ 8) similarity score
calculated between the aggregation of the query
and the history (q1..t) and the document texts using
TF-IDF-based cosine similarity (Figure 1-c).

3.2.2 Span Predictor
Our span predictor is a RoBERTa language
model (Zhuang et al., 2021) fine-tuned to predict
the start and the end positions of the answer span,
similar to CAiRE (Xu et al., 2021), one of the best
performing models in DialDoc-2021. To model the
history of questions, we append the last two history
turns to the current question, as also proposed
in (Ohsugi et al., 2019), and feed it to the model as
part of the current question.
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Figure 1: Docalog model architecture and the overview diagram: a) a standalone answer span prediction model.
b) our three-stage model consists of (i) Dr. TEIT retriever model connected to the (ii) the span prediction model,
and (iii) an aggregator which works as an ultimate span-picker deciding on the most likely span of the answer, out
of all predicted spans. c) A detailed view of Dr. TEIT, the retriever architecture.

Prior to training our model on the DialDoc
2022 dataset, to gain more global knowledge in
question answering, the span predictor of Docalog
undergoes a pre-training phase on several CQA
datasets such as CoQA (Reddy et al., 2019),
QuAC (Choi et al., 2018), DoQA (Campos et al.,
2020), and Doc2Dial (Feng et al., 2020b). Next,
we fine-tune this model on the MultiDoc2Dial
dataset using the grounding documents for each
question. In this fine-tuning stage, we consider the
task as a single-document question answering task.
Therefore, at each training step, we only feed the
model with the grounding document. The reason
behind having a standalone span prediction model
is to prevent the propagation of the retrieval error
in the training phase.

3.2.3 Ultimate Span Picker

As discussed, the span detector provides the most-
likely spans for each of the N best documents by
the retriever. Since the answer-span probabilities
are not comparable across documents, we need to
rank the top-N identified spans searching for the ul-
timate answer. Therefore, similar to our document
retriever, we use a convex combination between
the embedding-based and character-level-based co-

sine similarities of the query and the detected spans
through a hyper-parameter α that can be tuned on
a validation set:

αSSE + (1− α)SSI , (2)

where SSE is the span embedding similarity and
SSI is character-level TF-IDF similarity.

To summarize the workflow of Docalog, (1) a
document retriever model using both embedding
and character-level information retrieves the N
most relevant documents to the current question.
Based on the validation data we choose the
hyper-parameter N in a way that we ensure
selecting the answer document. (2) Using a trained
span detector model, for each N document we
detect the answer spans. (3) We use another
document retriever model, this time to select the
best-detected span, and the ultimate answer to the
question is the post-processed version of this final
span.

3.2.4 Experimental Settings
For the span prediction, we use a large RoBERTa
language model 4 (Liu et al., 2019). During the
training and the prediction phase, we feed the

4https://github.com/huggingface/transformers
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Phase Model F1U SacreBLEU METEOR RougeL F1G EMG

MDD-SEEN (Dev)

baseline 36.23% 21.41% 34.16% 34.01% 44.90% 28.64%
Docalog@1 36.84% 21.80% 36.67% 34.44% 49.18% 36.18%
Docalog@2 34.99% 23.30% 33.81% 32.89% 46.62% 35.1%
Docalog@3 35.19% 22.73 % 35.20% 33.56% 48.39% 35.67%

MDD-UNSEEN (Dev)

baseline 18.66% 5.99% 16.40% 16.95% - -
Docalog@1 26.12% 17.72% 25.52% 24.47% 33.36% 13.42%
Docalog@2 24.75% 15.07% 24.59% 22.76% 29.64% 9.59%
Docalog@3 22.37% 14.21% 23.68% 21.02% 25.31% 7.75%

MDD-SEEN (Test)

baseline 35.85% 22.26% 34.28% 33.82% - -
Docalog@1 36.07% 23.70% 35.67% 34.44% 48.11% 34.19%
Docalog@2 33.41% 20.30% 33.52% 31.74% 44.11% 29.34%
Docalog@3 29.90% 16.81% 30.25% 28.13% 39.33% 24.50%

MDD-UNSEEN (Test)

baseline 19.26% 6.32% 16.77% 17.16% - -
Docalog@1 28.44% 20.52% 27.54% 26.57% 35.41% 15.87%
Docalog@2 28.43% 20.51% 27.54% 26.57% 35.41% 15.87%
Docalog@3 28.40% 20.51% 27.54% 26.57% 35.41% 15.87%

Table 1: Docalog results on Multidoc2dial 2022 challenge. Docalog@k indicates our method when working on
the best k documents retrieved by the document retriever for the span detection and providing the final answer.

documents to the model with a stride size of 128
tokens. We pre-train our span-prediction model for
1 epoch on the CQA datasets and then fine-tuning
was done on the MultiDoc2Dial dataset for 3
epochs. Our pre-training lasted around 13 hours
and our fine-tuning step 15 hours, both of which
were processed on a GeForce RTX 3070 GPU with
12GB memory.

Availablity: Our implementation of Docalog is
available at github 5.

4 Results

Document Retriever: in our experiments, Dr.
TEIT achieved a Precision@5 of 86% and a Mean
Reciprocal Rank (MRR) of 0.72 indicating that on
average, the hit is among the first two retrieved
documents and it would be more than sufficient to
take top-5 documents to the next step, i.e., span
detection.

Docalog Results: In our final model, we combine
DR. TEIT, as the retriever with our span predictor
model. The comprehensive report of Docalog is
provided in Table 1. We obtained the best F1 score
of 36.07% with Docalog@1, suggesting that the
ultimate span picker needs further improvements.

5https://github.com/Sharif-SLPL-NLP/Docalog-2022

5 Conclusions

We proposed Docalog, a solution for the DialDoc-
22 challenge. Docalog is a three-stage pipeline
consisting of (1) a document retriever model (DR.
TEIT), (2) an answer span prediction model, and
(3) an ultimate span picker deciding on the most
likely answer span, out of all predicted spans.
Our experiments show that combining contextu-
alized embedding information with character-level
similarities between the answer and the question
history can effectively help in the prediction of
the ultimate answer. In the test phase of Multi-
Doc2Dial 2022, Docalog achieved f1-scores of
36.07% and 28.44% and SacreBLEU scores of
23.70% and 20.52%, respectively on the MDD-
SEEN and MDD-UNSEEN folds.
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