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Abstract

MultiDoc2Dial presents an important challenge
on modeling dialogues grounded with multiple
documents. This paper proposes a pipeline sys-
tem of "retrieve, re-rank, and generate", where
each component is individually optimized. This
enables the passage re-ranker and response gen-
erator to fully exploit training with ground-
truth data. Furthermore, we use a deep cross-
encoder trained with localized hard negative
passages from the retriever. For the response
generator, we use grounding span prediction
as an auxiliary task to be jointly trained with
the main task of response generation. We also
adopt a passage dropout and regularization tech-
nique to improve response generation perfor-
mance. Experimental results indicate that the
system clearly surpasses the competitive base-
line and our team CPII-NLP ranked 1st among
the public submissions on ALL four leader-
boards based on the sum of F1, SacreBLEU,
METEOR and RougeL scores.

1 Introduction

The task of developing information-seeking dia-
logue systems has seen many recent research ad-
vancements. The goal is to answer users’ ques-
tions grounded on documents in a conversational
manner. MultiDoc2Dial1 is a realistic task pro-
posed by Feng et al. (2021) to model goal-oriented
information-seeking dialogues that are grounded on
multiple documents and participants are required
to generate appropriate responses towards users’ ut-
terances according to the documents. To facilitate
this task, the authors also propose a new dataset
that contains dialogues grounded in multiple doc-
uments from four domains. Unlike previous work
that mostly describe document-grounded dialogue
modeling as a machine reading comprehension task
based on one particular document or passage, the

*Contributed equally.
†Corresponding author.
1https://doc2dial.github.io/multidoc2dial/

MultiDoc2Dial involves multiple topics within a
conversation, hence it is grounded on different doc-
uments. The task contains two sub-tasks: Ground-
ing Span Prediction aims to find the most relevant
span from multiple documents for the next agent
response, and Agent Response Generation gener-
ates the next agent response. This paper focuses on
our work in to the second sub-task, and presents
three major findings and contributions:

• In order to fully leverage the ground-truth
training data, we propose to individually op-
timize the retriever, re-ranker, and response
generator.

• We propose to adopt a deep cross-encoded
re-ranker that is trained with localized hard
negatives sampled from the retriever results.

• We propose to use grounding span prediction
as an auxiliary task for the generator and use
passage dropout as a regularization technique
to improve the generation performance.

Experimental results indicate that our proposed
system achieves a performance with marked im-
provement over the strong baseline.

2 Related Work

Open-domain Question Answering systems have
evolved to adopt the popular “Retriever-Reader
(Generator)” architecture since DrQA (Chen et al.,
2017). Previous work (Lee et al., 2019, Guu et al.,
2020) adopt end-to-end training strategy to jointly
learn the retriever and reader with question-answer
pairs. Retrieval-augmented Generation (RAG)
(Lewis et al., 2020b) uses Dense Passage Retriever
(DPR) (Karpukhin et al., 2020) as the retriever to
extract multiple documents related to the query and
feed them into a BART (Lewis et al., 2020a) gen-
erator for answer generation. Izacard and Grave
(2021) proposed the Fusion-in-Decoder method
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which processes passages individually in the en-
coder but jointly in the decoder, surpassing the
performance of RAG.

Other work like QuAC (Choi et al., 2018),
ShARC (Saeidi et al., 2018) and CoQA (Reddy
et al., 2019) focus on the machine reading com-
prehension task, which assumes that the associated
document is given. In particular, Feng et al. (2020)
proposed the Doc2Dial task ,which aims to extract
the related span from the given documents for gen-
erating the corresponding answer.

3 Task Description

The MultiDoc2Dial task aims to generate an ap-
propriate response R based on an input query Q
(the current user turn uT and the concatenated di-
alogue history {uT−1

1 } := u1, u2, ..., uT−1) and
a collection of passages {Pi}Mi=1. The passages
are extracted from documents based on document
structural information indicated by markup tags
in the original HTML file. The organizer splits
the MultiDoc2Dial data into train, validation, de-
velopment and test set, and results on the latter
two are evaluated through the leaderboard2. The
validation, development and test set contain two
settings: seen and unseen, which is categorized
based on whether there are dialogues grounded on
the documents seen/unseen during training. We
leave detailed dataset description in Appendix A.

4 Methodology

We propose a pipeline system of "retrieve, re-rank,
and generate". Following previous work in Lewis
et al. (2020b); Feng et al. (2021), we adopt DPR
(Karpukhin et al., 2020) as the retriever (§4.1) to
efficiently filter out irrelevant passages and narrow
the search space. We then refine the retrieval results
with a deep cross-encoder (§4.2) trained with lo-
calized negatives (Gao et al., 2021). We introduce
a passage dropout and regularization technique to
enhance the robustness of the generator (§4.3) and
use the grounding span prediction as an auxiliary
task. Further more, pipeline training is adopted
where each component is individually optimized to
fully utilize the supervision. Experimental results
(§5.3) also indicate the effectiveness and merits of
the training strategy, which we observed to be a
key factor for the performance gain.

2https://eval.ai/web/challenges/challenge-
page/1437/leaderboard

Figure 1: Training process of our generator.

4.1 Passage Retrieval

Following Feng et al. (2021), we adopt DPR
(Karpukhin et al., 2020) as the retriever with a
representation-based bi-encoder, that is, a dialogue
query encoder q(·) and a passage context encoder
p(·). Given an input query Q and a collection of
passages {Pi}Mi=1, we extract the query encoding
as q(Q) and the passage encoding as p(Pi). The
similarity is defined as the dot product of the two
vectors ⟨q(Q), p(Pi)⟩ and the model is trained to
optimize the negative log likelihood of the posi-
tive passage among L in-batch and hard negatives.
We then pre-compute the representations of all pas-
sages and index them offline. Maximum Inner
Product Search (MIPS) with Faiss (Johnson et al.,
2017) is adopted to retrieve the top-K passages
during inference.

4.2 Passage Re-ranking

To re-rank the passages retrieved by DPR, we use a
BERT-based cross-encoder that exploits localized
negatives sampled from DPR results (Gao et al.,
2021). This means that the construction of the
training set for the re-ranker is based on the top
negative passages retrieved by the DPR. Specifi-
cally, given a query Q, its corresponding ground
truth passage P+, and its top-N negative passages
{P−

j }Nj=1 retrieved by DPR, we first calculate a
deep distance function for each positive and nega-
tive passage against the query:

dist(Q,P) = vT cls(BERT(concat(Q,P))),
(1)

where v represents a trainable vector, cls extracts
the [CLS] vector from BERT. Consequently, such
a distance function is deeply cross-encoded, as we
feed the concatenation of the query and the passage
into the model instead of encoding them individu-
ally with a representation-based bi-encoder (Feng
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et al., 2021). We then apply a contrastive loss:

Lc = − log
exp(dist(Q,P+))∑

P∈P± exp(dist(Q,P))
, (2)

where P± represents P+ ∪ {P−
i }Ni=1. Here, it is

important to condition the gradient on the negative
passages to learn to recognize the positive passage
from hard negatives retrieved by the DPR. 3

Ensemble We create an ensemble of three pre-
trained models (Dietterich, 2000), namely, BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
and ELECTRA (Clark et al., 2020) for re-ranking.
We first calculate their distance function with Equa-
tion 1, with the output scores denoted as OB , OR,
and OE . We define the final scores O as the
weighted summation of the above three scores:

O = αOB + βOR + γOE , (3)

where α, β, and γ represent the weight hyper-
parameters for each model.

4.3 Response Generation
For response generation, we leverage the pre-
trained sequence-to-sequence model BARTlarge

(Lewis et al., 2020a), where the encoder is fed the
concatenation of a query and a passage [Q,P], and
the decoder is then required to generate the cor-
responding response R. We use the ground truth
passage as P for training. The training process can
be summarized as follows:

Joint Training with Grounding Prediction The
grounding span in a passage is the supporting ev-
idence for the response, which can provide help-
ful information for response generation. There-
fore, we take grounding span prediction as the
auxiliary task and apply multi-task learning for
model training. Specifically, the passage is first en-
coded into a sequence of hidden representations
hi = Encoder([Q,P]), i ∈ {1, ..., |P|}. Then
a classifier outputs the probability of the i-th to-
ken of P to lie within the grounding span as
P (yi|Q,P) = sigmoid(MLP(hi)). We define
this task’s training objective as:

LG = −
|P|∑

i=1

logP (yi|Q,P). (4)

3Feng et al. (2021) found that there exists passages that are
similar to one another in the dataset. Therefore, it is intuitively
important to distinguish these hard negative passages from
the ground truth passage. Empirically, we also found that
excluding hard negative passages from the training process
hampers the re-ranking performance.

Passage Dropout and Regularization Prelim-
inary experiments indicate that the generator is
prone to overfit to some passages quoted frequently
in the train set, which may cause generalization
errors when applied to previously unseen pas-
sages. Hence, we apply passage dropout to en-
hance the robustness of the generator. In details,
for a training sample ([Q,P],R), a consecutive
span with a specified length (of 25% in our experi-
ments) in P is randomly selected and then dropped,
which produces P ′. It is noteworthy that passage
dropout is required to avoid truncating content of
grounding spans.4 Furthermore, we repeat passage
dropout twice for each sample in a batch, and ob-
tain ([Q,P ′],R) as well as ([Q,P ′′],R). Since
the grounding span in a passage serves as the or-
acle for response generation, the two modified in-
puts should have similar prediction distribution,
denoted as P (ri|Q,P ′, r<i) and P (ri|Q,P ′′, r<i),
where ri is the i-th token of R. Hence, inspired
by Liang et al. (2021), we propose to regularize
the predictions from different passage dropouts
by minimizing the bidirectional Kullback-Leibler
(KL) divergence between these two different output
distributions as LKL:

∑

i

(KL(P (ri|Q,P ′, r<i)∥P (ri|Q,P ′′, r<i))

+ KL(P (ri|Q,P ′′, r<i)∥P (ri|Q,P ′, r<i))).
(5)

We define the training objective for response R as
the basic negative log-likelihood:

LNLL = −
∑

i

(logP (ri|Q,P ′, r<i)

+ logP (ri|Q,P ′′, r<i)). (6)

With passage dropout, the learning objective of
grounding prediction (Eq.4) is updated for P ′ and
P ′′. Then we have the final training objective:

L =
1

2
LKL + LNLL + LG. (7)

4.4 Inference
After the re-ranker returns the top-5 passages corre-
sponding to the query Q, we filter out the passages
with a low re-ranking score (Eq.3), namely, the
ones that have a score gap of over 0.3 comparing to
the top-1. Then the remaining passages are concate-
nated as a single passage P . Finally the generator

4If the selected span overlaps with a grounding span, this
sampling is discarded and another span would be sampled.
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seen Val Dev Test
F1 S-BLEU ROUGE F1 S-BLEU ROUGE F1 S-BLEU ROUGE

RAG 36.64 23.24 35.23 36.23∗ 21.41∗ 34.01∗ 35.85∗ 22.26∗ 33.82∗
Ours 47.29 34.29 46.04 50.14 34.99 47.91 52.06 37.41 50.19

unseen Val Dev Test
F1 S-BLEU ROUGE F1 S-BLEU ROUGE F1 S-BLEU ROUGE

RAG 13.68 4.46 13.19 18.66∗ 5.99∗ 16.95∗ 19.26∗ 6.32∗ 17.16∗
Ours 36.74 24.20 35.49 36.39 26.33 34.71 34.65 27.57 34.49

Table 1: Comparison between the baseline and the proposed framework on the validation, development and test set.
The scores with * are cited from the leaderboard. S-BLEU represents SacreBLEU.

predicts a response R given the input [Q,P].5 We
employ beam-search (beam width=5) during de-
coding.

5 Experiments and Results

We evaluate the passage retrieval results with recall
(R) and mean reciprocal rank (MRR). We report re-
sponse generation performance based on F1, Exact
Match (EM) (Rajpurkar et al., 2016), SacreBLEU
(S-BLEU; Post, 2018), and RougeL (Lin, 2004).

5.1 Main Results

Table 1 shows the results we obtain for each data
split, each including the seen and unseen settings.
RAG (Lewis et al., 2020b) is the baseline adopted
by the organizer, and we reproduce it with a more
aggressive setting (e.g., a greater input length and
beam size), in order to have a fair comparison with
the proposed approach. Our generator is a single
model. Table 1 shows that the proposed approach
consistently outperforms the baseline with signif-
icant gaps. We argue that the improvement is de-
rived from (1) high-quality retrieval, (2) stronger
generator and (3) pipeline-based training, which
will be discussed in the following sections.

5.2 Retrieval Results

Since the passage supervision of the development
and test data is unavailable and the leaderboards do
not provide the retrieval scores, we analyze the pas-
sage retrieval performance on the validation set6

as shown in Table 2. The baseline adopts DPR
(Karpukhin et al., 2020) as retriever, and we eval-
uate both the official and our reproduced versions.

5Grounding Prediction and passage dropout are not imple-
mented in the inference phrase.

6We evaluate on a cleaned validation set where repeated
queries are removed, resulting in 4181 unique instances (cf.
4201 originally) and 121 unique instances (cf. 121 originally)
in the seen and unseen settings respectively.

Method seen unseen

MRR@5 R@1 R@5 MRR@5 R@1 R@5

Official DPR* 0.487 0.379 0.656 0.277 0.207 0.405
Reproduced DPR 0.548 0.445 0.714 0.328 0.248 0.471

BERT B 0.719 0.643 0.834 0.615 0.529 0.752
ELECTRA E 0.719 0.640 0.837 0.582 0.521 0.694
RoBERTa R 0.748 0.683 0.849 0.641 0.562 0.760

E(B,R) 0.754 0.689 0.855 0.664 0.603 0.769
E(E,R) 0.756 0.689 0.858 0.643 0.595 0.719
E(B,E,R) 0.760 0.696 0.858 0.666 0.620 0.744

Table 2: Retrieval performance on the MultiDoc2Dial
validation set. All models are fine-tuned using the train-
ing set only. * indicates the model trained on the offi-
cial pre-processed data; others are trained on our pre-
processed version. E(·) denotes ensemble.

Introducing the re-ranker gave marked improve-
ment for all three pre-trained models, especially
when applied to the unseen passages. In particular,
RoBERTa achieves 53.5% and 126.6% improve-
ment over the Reproduced DPR at R@1 on the seen
and unseen settings respectively. The ensemble of
different re-rankers brings further improvement –
E(B,E,R) exceeds the best single re-ranker by
around 0.01 across all metrics on the seen data. Fur-
thermore, improved retrieval directly enhances the
final task results. Besides a more powerful genera-
tor, the large gap between RAG and our approach
on the unseen Val data in Table 1 may also be at-
tributed to the great performance gain on passage
retrieval, from 0.248 to 0.62 on R@1.

5.3 Ablation Study on the Generator

Table 3 shows that each component in our approach
contributes to improvement. Passage dropout and
regularization bring notable performance gains for
the unseen setting. This demonstrates robustness in
the generator, which is important in practical use.

To investigate the merits of pipeline training on
generation, we separate the BARTlarge generator
from other parts in the reproduced RAG. We in-
put queries combined with the passages returned
by the re-reranker for inference. The first and sec-
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Method seen unseen

F1 EM S-BLEU F1 EM S-BLEU

BART in the RAG 43.77 6.36 30.91 31.92 2.48 21.25

BART 45.91 7.02 32.36 32.93 2.48 20.73

+ multi-task training 46.51 6.67 32.90 33.61 2.48 21.37

+ passage dropout 47.05 7.38 32.82 34.27 4.13 21.94

+ regularization 47.29 7.31 34.29 36.74 4.96 24.20

Table 3: Ablation analysis of the generators based on the
validation set. BART in the RAG denotes the generator
in the fully-trained RAG. The same retrieval is used in
all cases. S-BLEU represents SacreBLEU.

ond rows of Table 3 show that the BART in the
RAG gained some improvement through better re-
trieval, but remains inferior to the BART trained in
a pipeline fashion. This is mainly attributed by the
fact that under the end-to-end training framework
of the RAG, the generator could receive some dete-
riorated query-passage pairs during training, if the
retriever can not successfully return gold passages
to the generator. Contrarily, pipeline training for
the generator can make full use of training data.

6 Conclusion

This paper presents a pipeline system of "retrieve,
re-rank, and generate" for the MultiDoc2Dial chal-
lenge. The advantage is that each of the three com-
ponents can fully exploit the ground-truth training
data. We apply a deep cross-encoder architecture
where we create a training set using localized hard
negatives sampled from the retriever results. We
adopt grounding span prediction as an auxiliary
task to be jointly trained with the response genera-
tor. We also apply passage dropout and regulariza-
tion to improve response generation performance.
Experimental results indicate that the proposed sys-
tem improves over a strong, competitive baseline
and our team got 1st place on ALL four leader-
boards.
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Split Setting Instance Num Passage Num

Train seen 21451 3820

Validation seen 4201 3820
unseen 121 963

Development seen 199 3820
unseen 417 963

Test seen 661 3820
unseen 126 963

Table 4: Data statistics of different splits. We split a
single conversation into multiple instances of the train
and validation set.

A Dataset Description

MultiDoc2Dial contains 4796 conversations with
an average of 14 turns grounded in 488 documents
from four domains. After splitting, the number
of passages in the seen set is M = 4110 for the
official data pre-processing and M = 3820 for
our processed data to remove duplicate passages.
Similarly, the number of passages in the unseen set
is M = 963. Table 4 shows the statistics of dataset
in different splits.

B Implementation Details

Our implementations of DPR, BERT, RoBERTa,
ELECTRA, and BART are based on the Transform-
ers library (Wolf et al., 2019). All the models are
trained on an RTX 3090 GPU with 24GB VRAM.

Retriever We train the retriever on our pre-
processed MultiDoc2Dial data with an effec-
tive batch size of 16 following Facebook DPR
(Karpukhin et al., 2020) and the corresponding re-
sults are shown in Table 2 named as Reproduced
DPR. The Official DPR in Table 2 is fine-tuned
with a batch size 128 by the organizer.

Re-ranker Three public pre-trained language
models are ensembled, namely, deepset/bert-
large-uncased-whole-word-masking-squad27,
deepset/roberta-large-squad28 and deepset/electra-
base-squad29. We train the models with a batch
size 1 for LARGE (gradient accumulation=4) and
4 for BASE. We use 6 epochs, a learning rate of
1e-5 and weight decay of 0.01. The maximum
length of query, i.e., the concatenated dialogue
history {uT−1

1 } and the current user turn uT is set
as 128. Following Feng et al. (2021), the query is

7https://huggingface.co/deepset/bert-large-uncased-
whole-word-masking-squad2

8https://huggingface.co/deepset/roberta-large-squad2
9https://huggingface.co/deepset/electra-base-squad2

constructed using reverse conversation order as
uT [SEP ]agent : uT−1||user : uT−2||...||user :
u1 and truncated from the tail by the tokenizers.
The number of localized negatives in training
is 7, sampled from Top-N (N=50) returned
negative passages from retriever. During inference,
re-ranker re-scores Top-K (K=100) returned
passage candidates from retriever and selects the
Top-5 passages for generator.
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