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Abstract

This work presents the contribution from the
Text-to-Knowledge team of Ghent University
(UGent-T2K)1 to the MultiDoc2Dial shared
task on modeling dialogs grounded in multi-
ple documents. We propose a pipeline system,
comprising (1) document retrieval, (2) passage
retrieval, and (3) response generation. We engi-
neered these individual components mainly by,
for (1)-(2), combining multiple ranking models
and adding a final LambdaMART reranker, and,
for (3), by adopting a Fusion-in-Decoder (FiD)
model. We thus significantly boost the baseline
system’s performance (over +10 points for both
F1 and SacreBLEU). Further, error analysis re-
veals two major failure cases, to be addressed
in future work: (i) in case of topic shift within
the dialog, retrieval often fails to select the cor-
rect grounding document(s), and (ii) generation
sometimes fails to use the correctly retrieved
grounding passage. Our code is released at this
link.

1 Introduction

Most prior research on document-grounded dialog
systems assumes a single document for each dia-
log (Choi et al., 2018; Reddy et al., 2019; Feng
et al., 2020). There are relatively few works on
Multi-Document Grounded (MDG) dialog mod-
eling, which requires a dialog system to (i) re-
trieve grounded passages (or documents) given the
user question, and then (ii) generate responses
based on the retrieval results and dialog context.
Real-world applications (e.g., administration ques-
tion answering, travel booking assistance and pro-
cedural task guidance) for MDG are challenging
because of more complex user behavior in such
dialogs on diverse information sources. In partic-
ular, for (i) retrieval of grounding text passage(s)
the challenges pertain to keeping track of dialog

* These authors contributed equally to this work.
1https://ugentt2k.gitlab.io
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Figure 1: Our proposed pipeline dialog system.

state, topic shift (e.g., switching from driving li-
cense requirements to car insurance), vocabulary
mismatch, vague question formulation, etc. Fur-
thermore, (ii) response generation needs to appro-
priately phrase the answer to fit in a human(-like)
dialog rather than simply copying a source docu-
ment snippet.

We leverage the recently released dialog dataset,
MultiDoc2Dial (Feng et al., 2021), to tackle afore-
mentioned challenges. We build a pipeline sys-
tem (Fig. 1) comprising (1) a document retriever,
(2) a passage retriever, and (3) an answer generator
fusing multiple grounding input passages. Given
the dialog context (i.e., the dialog history and user
question), a document retriever searches given sup-
porting documents to select the top-m related ones.
Subsequently, these full documents are segmented
into shorter passages ranked by a passage retriever.
For these retrieval components (1)-(2), we use an
ensemble approach — combining BM25, cosine
similarity, etc.; for passage retrieval, we included
Dense Passage Retrieval (DPR; Karpukhin et al.,
2020) — followed by a reranking step using Lam-
baMART (Burges, 2010). The top-k passages are
fused with the dialog context by a response gen-
erator to produce knowledge-grounded responses,
based on Fusion in Decoder (FiD; Izacard and
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Grave, 2021).
We contribute with: (i) a multi-stage pipeline

system comprising first the grounding text retrieval
stages, split further into document and subsequent
passage retrieval components (both using a mul-
ti- feature ensemble system), and second an an-
swer generation model fusing information from
multiple passages; (ii) experiments demonstrat-
ing that our pipeline system outperforms the base-
line method by a large margin (over +10 points
for both F1 and SacreBLEU); (iii) insightful er-
ror analysis, suggesting that the main shortcom-
ings of the current system include failures of
(a) the retrieval stages in case of topic shifts by
the user, and (b) the answer generation stage to
identify the correct grounding passage among its
inputs. Our codes are released at https://github.
com/YiweiJiang2015/ugent-t2k-dialdoc

2 Task Definition

The MultiDoc2Dial shared task comprises two sub-
tasks: in the seen-domain (referenced by subscript
S), the system can rely on training data comprising
both exemplary dialogs as well as the correspond-
ing document set from the domains it will be tested
on, whereas in the unseen-domain (referenced by
U ) no related dialogs nor documents have been
seen by the system before.

In general, for both subtasks, a system first re-
trieves relevant documents from a document pool
(DS or DU ) given the dialog context, i.e., a user’s
question Qi (i is the turn number) and the full con-
versation history Q<i. Current state-of-the-art so-
lutions split long documents into passages (PS or
PU ) to facilitate more fine-grained location of the
grounding information. Second, the grounding in-
formation G (span(s) or passage(s)) for Qi has to
be identified within the passages of retrieved doc-
uments. The MultiDoc2Dial dataset was curated
such that G for each question can be exactly found
within one document, while the full dialog’s an-
swers jointly may span multiple documents, thus
requiring a model to decide when to switch to a
different document. (Note that, depending on how
exactly a document is split into shorter passages, G
may extend over more than one passage.) Third, a
generation model takes as input G and Q≤i to gen-
erate responses whose meaningfulness and coher-
ence are rated using automatic metrics (i.e., F1_U,
SacreBLEU, Rouge-L and Meteor).

3 Model

The next subsections detail the aforementioned
components (1)-(3) of our pipeline system.

3.1 Document Retrieval

The input to our document retrieval model is a
user’s dialog question Q and the output is a set of
m documents {d1, d2, . . . , dm} selected from the
document pool D. For each question, we rank all
the documents by computing the similarity scores.
We utilize various scoring modules as input to the
LambdaMART reranker (Burges, 2010). Our scor-
ing modules include: (i) different BM25 (Trotman
et al., 2014) configurations, (ii) cosine similarity be-
tween dense representations on both word-level and
passage-level, and (iii) off-the-shelf term-matching
techniques provided by Terrier (Macdonald et al.,
2012).

3.2 Passage Retrieval

Given the top-m documents returned by the docu-
ment retriever, a passage retriever ranks passages
belonging to these documents. More specifically,
we follow the baseline’s segmentation of a docu-
ment into passages, ensuring a fair performance
comparison between our passage retriever and the
baseline. The same scoring modules for the docu-
ment retrieval are applied on the passage level, with
additional similarity features computed by DPR
(Karpukhin et al., 2020)

3.3 Response Generation

We choose FiD (Izacard and Grave, 2021) as our
generation model, which can be trained indepen-
dently from the retrieval module. FiD was orig-
inally proposed for the open-book question an-
swering problem (Kwiatkowski et al., 2019; Joshi
et al., 2017) and showed great power in incor-
porating knowledge from multiple passages. It
is built on top of a transformer-based seq2seq
model. We employ BART (Lewis et al., 2020a)
as the pretrained weights of FiD instead of T5
as in (Izacard and Grave, 2021), since fine-tuning
BART is computationally more affordable in our
case. The FiD’s encoder takes as input a ques-
tion and a list of top-k ranked passages formatted
as ((Q,P1), (Q,P2)...(Q,Pk)). Each pair (Q,P )
is encoded individually. Concatenation of the k
encodings is used as the memory accessed by the
decoder for the cross-attention operation. The train-

116

https://github.com/YiweiJiang2015/ugent-t2k-dialdoc
https://github.com/YiweiJiang2015/ugent-t2k-dialdoc


ing objective is the cross-entropy loss between gen-
erated sequences and gold responses.

4 Experiments and Analysis

4.1 Dataset

We evaluate our pipeline system on the Multi-
Doc2Dial dataset, containing 4,796 conversations
grounded in 488 documents. In the dialog data,
each conversation covers at least one topic from
four domains (see Appendix B.2). It is challeng-
ing to retrieve the grounding information when
users shift their topic (i.e., implicitly referring to
another document) during a dialog. In total, there
are 61,078 turns, including 29,746 user questions
that are split into 21,451, 4,201 and 4,094 for train,
dev and test sets respectively.

4.2 Baseline System

The baseline system uses the Retrieval Augmented
Generation (RAG; Lewis et al., 2020b) model com-
posed of two neural modules: DPR for passage
retrieval and BART for response generation. First,
a pre-trained DPR is finetuned on the passage re-
trieval task built from MultiDoc2Dial dataset. Sec-
ond, RAG is finetuned to generate responses for
MultiDoc2Dial dialogs by inserting the finetuned
DPR weights and freezing DPR’s context encoder.

4.3 Retrieval and Generation Results

We present experiment results for the document re-
triever, passage retriever and generator separately.
Ablation studies of the document retriever focus
on analysing the contributions of different features.
We validate the effectiveness of first using the doc-
ument retriever, to boost the passage retriever’s
performance. Results of response generation ex-
periments show that there is an optimal number
of passages input to the FiD model. We also dis-
cuss FiD’s inefficiency in recognizing grounding
knowledge among multiple passage inputs.

4.3.1 Retriever
Document retrieval — Table 1 presents our results
for the document retrieval. The first row shows a
simple BM25 with the same configuration as of-
ficial baseline but on document level. BM25tuned
indicates BM25 with additional preprocessing and
postprocessing over its input features and output
rankings (see Section B.1 for details). BM25title
is another BM25, solely trained on document ti-
tles and subtitles. The reason for this choice is to

Model R@1 R@5 R@10 R@25

BM25 (baseline) 46.6 67.7 74.3 82.3
BM25tuned 57.8 84.2 89.6 95.8
BM25title 46.5 73.2 82.2 91.6
Word emb. 36.4 60.4 70.1 82.9
Passage emb. 34.9 61.9 71.3 84.5
DPH 49.3 77.2 85.9 94.1

BM25tuned
+ BM25title 62.0 87.8 93.0 97.3
+ Terrier 62.5 88.9 93.5 97.5
+ embeddings 66.3 91.1 95.2 97.9

LambdaMART 65.9 92.3 96.1 98.7

Table 1: Recall scores for document retrieval on dev set.

distinguish the importance of the title words from
other words, as the title provides a strong signal for
document retrieval. In addition, to capture seman-
tic relatedness and to address the word-mismatch
problem between questions and documents, we
compute word-level and passage-level embeddings
to retrieve relevant documents. For word-level (de-
noted by ‘Word emb.’), we simply average word
vectors to obtain question and document represen-
tations, then using TF-IDF weighting and principal
component removal (Arora et al., 2017) followed
by cosine similarity. For passage-level (denoted by
‘Passage emb.’), we use a pre-trained model2 to em-
bed a document’s passages and use the highest pas-
sage score to rank the document. Macdonald et al.
(2012) offer various term-matching approaches for
text retrieval. The best performing model in our
experiment is DPH (Amati, 2006).

In the second block of Table 1, we combine var-
ious ranking methods in an ensemble using rank
fusion, simply summing the various scores.

We first aggregate scores from BM25tuned and
BM25title. The next row presents adding the com-
bination of 13 term-matching techniques borrowed
from the Terrier IR framework.3 Finally, we add the
embedding scores into the ensemble model, which
significantly boosts the performance (increasing
R@1 from 62.5 to 66.3), indicating the complemen-
tarity of the various ranking criteria. Finally, in-
stead of naively summing all scores, we employ the
LambdaMART algorithm, which yields the highest
recall scores (except for R@1).
Passage retrieval — Table 2 compares our passage

2msmarco-bert-base-dot-v5: available at https://bit.
ly/3ID92fF

3http://terrier.org/ — Note that due to our limited time
budget for the challenge, we did not properly analyze the
contribution of the various Terrier features; therefore some of
them may be unnecessary.
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Model m R@1 R@5 R@10 R@15

BM25 (baseline) 488 19.6 41.9 50.8 -
DPR (baseline) 488 49.0 72.3 80.0 -

DPRtop1 doc 1 55.6 71.6 73.0 73.1
DPRtop5 docs 5 49.2 72.0 80.6 84.1
DPRtop10 docs 10 47.8 69.8 77.9 82.4
DPRtop30 docs 30 46.6 67.8 75.3 80.1
LambdaMART 30 57.0 82.1 88.3 91.4

Table 2: Recall scores for passage retrieval on dev set.
Baseline scores come from (Feng et al., 2021). m de-
notes the number of top documents that are used for
passage retrieval.

retrieval results to that of the baseline (Feng et al.,
2021). To validate whether the document retrieval
stage helps to limit the search space of passage
retrieval, we perform a simple test that uses DPR
to only rank passages from the top-m documents.
Restricting the DPR to retrieve passages only from
the top-1 document increases R@1 from 49.0 to
55.6 while it hurts R@10 (dropping from 80.0 to
73.0). By increasing m, R@10 improves at the cost
of lowering R@1 as we expose the DPR to more
passages that are similar to the dialog question. The
maximum performance (R@15 = 91.4) is attained
by LambdaMART on passages from the top-30
documents.4

Error analysis — We noted that the document re-
triever fails on 42 cases out of 4201 (i.e., R@30 =
99.0). We identified 4 major error types: (i) topic
shift (22 cases), where grounding information hops
from one document to another; (ii) vague ques-
tion formulation (12 cases), where user questions
are unclear and require the agent to ask follow-up
questions for clarification; (iii) annotation errors
(4 cases) due to some meaningless utterances;
(iv) hard examples (4 cases) where our retriever
totally failed.

4.3.2 Response Generator
Generation models are trained and evaluated on our
LambdaMART retriever’s output, ranking passages
from the top-30 documents. The number of pre-
ceding dialog turns from the history (that are fed
as input for the generator, see Fig. 1) is fixed at 5,
which is the length leading to the best performance
on the dev set in our preliminary experiments. Each
turn is prefixed by a role indicator, i.e., 〈AGENT〉
and 〈USER〉. A separator 〈CONTEXT〉 is inserted
between the question and passage text. See Ap-
pendix C for hyperparameter details. The evalua-

4We select 30 documents, because at the document level,
we find R@30 = 99.

tion metrics are calculated by the official shared
task script. Our experiments study the impact of
the number of passages in the generator’s input and
establish upper bounds of its performance. In addi-
tion, we introduce “knowledge misrecognition rate”
to quantify limitations of our generation model (see
further).

Upper-bound Tests — We perform three types of
upper-bound tests as shown in Table 3: (i) only the
grounding passage is provided to the FiD model
(for both of train and dev sets) to generate a
response (row 3); (ii) only the grounding span
(phrases or sentences within the grounding passage)
is input to the FiD model for generation (row 4);
(iii) use the grounding span as the response to be
evaluated against the gold one (row 5). Scores in
Table 3 demonstrates a notable gap (78.33 w.r.t.
total score) between the baseline (row 4) and an
upper-bound model (row 1). It is noteworthy that
directly using the grounding span as the response
yields better performance (224.66) than inputting
it to FiD (214.1), implying that a span-extraction
model might get higher scores than the current
generation one. However, while extracting correct
spans provides users the needed information, it
cannot satisfy the pragmatic requirements of a con-
versation (e.g., greetings at the beginning, yes/no
prefix before giving the details). Thus, we choose
a generation model as it has greater power in gen-
erating more coherent phrases at potential cost of
losing partial information.

Impact of the Number of Passages Np — Intu-
itively, the more passages are fed as input to FiD,
the higher is the chance for FiD to capture the
grounding information. Yet, it then also becomes
harder to recognize the correct passage. We thus
hypothesize that there should be an optimal num-
ber of passages Np for which FiD to attains the
best performance, without being distracted by too
much information. Figure 2 shows that all perfor-
mance metrics slightly drop when Np exceeds 15
(even though they mostly recover once Np ≥ 30).
The performance of the best model (Np = 15)
on the dev set is listed in row 5 of Table 3, with
F1_U = 42.98 and SacreBLEU = 27.05.

Knowledge misrecognition — Comparing our sys-
tem results to the upper bounds (see row 1 in Ta-
ble 3), we note there is still considerable room
for improvement. To identify where our generation
model fails, we scrutinize generated responses sam-
pled from inference results on dev set of our best
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Retriever Model F1_U SacreBLEU Meteor ROUGE_L Total

1 Perfect- FiD + Grounding passage 51.99 37.97 47.60 50.20 187.76
2 Retriever FiD + Grounding span 58.03 43.56 55.31 57.20 214.10
3 Grounding span as response 61.00 47.37 60.09 56.18 224.66

4 DPR Baseline (RAG) 32.62 18.97 27.22 30.61 109.43
5 LambdaMART FiD + LambdaMART 42.89 27.05 42.69 40.51 153.15

Table 3: Generation performance of the baseline and our FiD-BART-base model (seen-domain task; on dev set).
Row 1-3 list the upper-bound performance. A perfect-retriever assumes that the grounding passage is always ranked
as the top 1. Row 4-5 use realistic retrievers. The baseline scores are our reproduction results.
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Figure 2: Impact of the number of passages (Np ≥ 1)
on generation metrics. (seen-domain task; FiD-BART-
base model; on dev set)

system (Np = 15). An interesting observation is
that the FiD model may behave poorly even when
the grounding passage is retrieved among the top-
15 results presented to the generator: FiD cannot
always recognize the grounding passage among its
multiple inputs. We propose to quantify this with
“knowledge misrecognition rate” µ, calculated as
the fraction of low-quality responses among all
cases where the correct passage is included in the
retrieved ones as fed as input to the generator. For
example, using SacreBLEU, a low value thereof
(e.g., <10) suggests that the model did not actually
use elements from the ground truth passage in gen-
erating the response. Thus, using SacreBLEU < 10
as an indication of a “low-quality” response, we
find that the misrecognition rate of our best system
is µ = 50.3% on the dev set. This means that over
half of the correct retrieval results are lost in the
generation phase. The high rate also implies that
the FiD model alone lacks the necessary inductive
bias to identify the grounded information among
multiple passages. We consider this as a key ele-
ment in designing future versions of the response
generation component.
Leaderboard Submission — Our submission re-
sults on the test sets (including test-dev and test-

test) are listed in Table 4. For the unseen-domain
task, inference was performed by the model trained
on seen-domain data as a test of our system’s zero-
shot ability. Besides the FiD-BART-base model, we
also train a FiD-BART-large model, which achieves
our best scores. For the seen-domain task, our
best model outperforms the baseline by 11.05 and
10.07 for F1_U and SacreBLEU. For the unseen-
domain task, these two metrics are improved by
14.10 and 14.88. As a result, our UGent-T2K team
was ranked second and third for the seen-domain
and unseen-domain tasks respectively.

5 Conclusion

We propose a pipeline system for dialogs grounded
in multiple documents. Our system consists of a
document retriever, a passage retriever and a multi-
passage-fusing generator. The retriever is designed
to limit the passage search space by first ranking
documents, which proves to enhance the passage
retrieval performance considerably for the Multi-
Doc2Dial shared task. Compared to the baseline
RAG model, our multi-passage-fusing generator
achieves better knowledge-grounded answer gen-
eration. Based on error analysis of our current
system, future work will focus on the topic shift
issue for conversational retrieval and investigate
the knowledge misrecognition problem for dialog
generation.
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Task Model F1_U SacreBLEU Meteor ROUGE_L Total

Baseline 35.85 22.26 34.28 33.82 126.21
seen-domain FiD-BART-base 42.51 28.52 42.8 40.3 153.13

FiD-BART-large 46.90 32.23 47.96 44.89 171.98

Baseline 19.26 6.32 16.77 17.16 59.52
unseen-domain FiD-BART-base 29.35 19.87 29.57 27.84 106.64

FiD-BART-large 33.36 21.20 33.57 31.47 119.60

Table 4: Submission results on the leaderboard (on test-test set).
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Appendices

A Passage segmentation

The current version of the MultiDoc2Dial dataset
provides 488 documents in which we found 56
duplicate documents5. The baseline relies on a

5The full list of duplicates can be found in https://bit.
ly/376TxPX
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structure-wise segmentation method. More specifi-
cally, in a document html file, a header tagged by
<h1> or <h2> and its children nodes are treated
as a passage prefixed by its hierarchical titles. We
note that some passages produced in this way are
too short (424 passages are shorter than 20 tokens,
e.g., headers with empty content below) or too long
(24 passages longer than 1,000 tokens) as shown in
Fig. 3(a), not to mention those repetitive passages
due to document duplicates. Given that common
transformer-based generation models takes input
up to 512 tokens, such length distribution either
wastes a generation model’s capacity when short
passages are padded or loses a significant portion of
information when long passages are truncated. To
eliminate these extreme cases, three measures are
taken based on our cleaned document set: (i) We
remove the 56 duplicate documents. (ii) For each
of the remaining documents, we first split it us-
ing the structure-wise method, calling the results
“sections” to differentiate from the baseline’s “pas-
sages”. If a section has fewer than 150 tokens, it
is directly added to the final passage list. If not, it
will be further split into passages using a flexible
sliding window which allows for a passage with
tokens fewer than the window size in order to not
break sentences.6 (iii) Next, a passage with fewer
than 60 tokens is merged with its following pas-
sage — except if it appears at the end of a section,
in which case it will be appended to its preceding
one. Figure 3(b) depicts the passage length distri-
bution using our segmentation method. The long
tail problem of the baseline is largely resolved. As
Table 5 shows, our new segmentation method re-
duces the total number of passages from 4,110 to
3,734 while it increases the average passage length
from 130.4 to 154.1.

Passage- avg length avg length
Segmentation #passages (tokenizer) (white space)

Baseline 4,110 130.4 105.4
Ours 3,734 154.1 132.5

Table 5: Total number of passages and average pas-
sage length produced by the baseline method and ours.
“tokenizer” and “white space” denote using the BART
tokenizer and splitting words by white space respec-
tively.

6Window size ≤ 150, stride = 50. Since we rely on Spacy
to extract sentences, some of them may be broken depending
on Spacy model’s decision.
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Figure 3: Passage length histograms of baseline and
our passage segmentation. The length is the number
of tokens processed by the BART tokenizer. (a) Base-
line passages. The x-axis is truncated to 1,000 to make
smaller value bins more clear. (b) Our passages after
removing duplicate documents and merging short pas-
sages. No passage is omitted.

B Experiments

This section reports (i) the ablation study of BM25
for document retrieval revealing how different fea-
tures affect the retrieval performance; (ii) domain
classification that enhances document retrieval;
(iii) passage retrieval experiments based on our
new segmentation method.

B.1 Ablation study of BM25 for document
retrieval

Table 6 presents our results for BM25tuned on doc-
ument retrieval. The first row shows the simple
BM25 model without any preprocessing on inputs
(question and documents). The next four rows re-
spectively represent: lower casing inputs, removing
stop-words, removing punctuation, and stemming,
which greatly improve the performance (over +10
points for R@25). We obtained slight improvement
with a domain classifier that predicts the conversa-
tion domain (see Appendix B.2). We also observed
that using n-grams (n= 1,2,3) features instead of
unigrams brings a further improvement with addi-
tional 3.2 points of R@25.

B.2 Domain Classifier

In the training data of MultiDoc2Dial , the ground-
ing documents were crawled from 4 U.S. govern-
ment websites,7 covering 4 domains: Social Secu-
rity Administration, U.S. Department of Veterans

7ssa.gov, va.gov, dmv.ny.gov, studentaid.gov
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Model R@1 R@5 R@10 R@25

BM25 45.6 66.3 73.3 81.4
+ lowering 46.6 67.7 74.3 82.3
+ stop-removal 50.2 74.3 82.2 90.2
+ punk-removal 52.4 77.5 84.4 92.5
+ stemming 50.3 75.9 83.7 91.6
+ domain-scores 50.7 76.6 84.5 92.6
+ n-grams 57.8 84.2 89.6 95.8

Table 6: BM25tuned recall scores for document retrieval
on dev set.

Affairs, Department of Motor Vehicles (New York
State) and Federal Student Aid, which are respec-
tively noted as ssa, va, dmv and student. We
applied the idea proposed by Han et al. (2021) to
further improve BM25 performance by training a
domain classifier, i.e., finetuning the RoBERTa-
large model (Liu et al., 2019) to predict a domain
label for a given dialog. The domain scores are
multiplied to BM25 after which a weighted com-
bination between the initial BM25 and the new
scores is used to create the final ranked list. In
our experiments, we simply assume equal weights
(0.5) for the two scores. Table 7 presents different
classifiers’ accuracy for seen-domain prediction.

Model Accuracy

SVM (Cortes and Vapnik, 1995) 96.7
Bert-large (Devlin et al., 2019) 97.0
Roberta-large (Liu et al., 2019) 98.2

Table 7: Domain classifier accuracy on dev set.

B.3 Retrieval based on new segmentation

Table 8 presents the passage retrieval results based
on our passage segmentation. We experiment with
three models: DPR ranking all the passages, DPR
ranking only the passages within top-m documents
and the LambdaMART model based on top-30 doc-
uments. Restricting DPR’s search space within
the top-5 documents increases R@15 from 80.1 to
87.1, which further grows to 90.4 with the Lamb-
daMART model.

C Hyperparameters

FiD was finetuned from pretrained BART weights
with the following hyperparameter settings:

batch_size=4
total_epochs=15
max_source_length=400
max_target_length=64

Model m R@1 R@5 R@10 R@15

DPR 3,734 46.3 68.2 76.0 80.1
DPRtop1 doc 1 52.9 70.8 73.2 73.6
DPRtop5 docs 5 47.2 74.0 83.0 86.9
DPRtop10 docs 10 45.9 71.8 81.0 85.3
DPRtop30 docs 30 45.2 70.1 78.8 83.1
LambdaMART 30 48.0 80.0 87.4 90.4

Table 8: Recall scores for passage retrieval on dev set.
The passage set is produced by the method described in
Appendix A.

label_smoothing=0.1
optimizer=AdamW
weight_decay=0.1
adam_epsilon=1e-08
max_grad_norm=1.0
lr_scheduler=linear
learning_rate=5e-05
warmup_steps=500
gradient_accumulation_steps=2
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