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Abstract

Large pre-trained models are usually fine-tuned
on downstream task data, and tested on unseen
data. When the train and test data come from
different domains, the model is likely to strug-
gle, as it is not adapted to the test domain. We
propose a new approach for domain adaptation
(DA), using neuron-level interventions: We
modify the representation of each test example
in specific neurons, resulting in a counterfac-
tual example from the source domain, which
the model is more familiar with. The modi-
fied example is then fed back into the model.
While most other DA methods are applied dur-
ing training time, ours is applied during infer-
ence only, making it more efficient and appli-
cable. Our experiments show that our method
improves performance on unseen domains. 1

1 Introduction
A common assumption in NLP, and in machine
learning in general, is that the training set and the
test set are sampled from the same underlying distri-
bution. However, this assumption does not always
hold in real-world applications since test data may
arrive from many (target) domains, often not seen
during training. Indeed, when applied to such un-
seen target domains, the trained model typically
encounters significant degradation in performance.

DA algorithms aim to address this challenge by
improving models’ generalization to new domains,
and algorithms for various DA scenarios have been
developed (Daume III and Marcu, 2006; Reichart
and Rappoport, 2007; Ben-David et al., 2007; Schn-
abel and Schütze, 2014). This work focuses on
unsupervised domain adaptation (UDA), the most
explored DA setup in recent years, which assumes
access to labeled data from the source domain and
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1Our code is available at https://github.com/
technion-cs-nlp/idani.

unlabeled data from both source and target domains.
Algorithms for this setup typically use the target
domain knowledge during training, attempting to
bridge the gap between domains through represen-
tation learning (Blitzer et al., 2007; Ganin et al.,
2016; Ziser and Reichart, 2018; Han and Eisenstein,
2019; David et al., 2020). Recently, Ben-David
et al. (2021) and Volk et al. (2022) introduced an
approach for inference-time DA, assuming no prior
knowledge regarding the test domains but still mod-
ifying the training process to their gain.

In contrast to this line of work, we assume a
more realistic scenario, in which the model was
already trained on a source domain, and encoun-
ters unlabeled data from the target domain during
inference time.

Given an example from a target domain, we
would have liked to change it to a source domain
example, so that the model would be more likely
to perform well on it. Since this is difficult to
achieve, we aim to change its representation in
a fine-grained manner, such that we modify only
information about the domain of the representa-
tion, without hurting other information. To do so,
we take inspiration from work analyzing language
models, which showed that linguistic properties are
localized in certain neurons (dimensions in model
representations) (Dalvi et al., 2019; Durrani et al.,
2020; Torroba Hennigen et al., 2020; Antverg and
Belinkov, 2022; Sajjad et al., 2021). We first rank
the neurons by their importance for identifying the
domain (source or target) of each example. Then,
we modify target-domain representations only in
the highest-ranked neurons, to change their domain
to the source domain. Since the model was trained
on examples from the source domain, we expect
it to perform better on the modified representa-
tions. We name this method as Inference-time Do-
main Adaptation via Neuron-level Interventions
(IDANI).

We follow a large body of previous work, testing
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Figure 1: The language model—which was trained on some source domain, e.g., airline—creates a representation
(CLS) for the review. Since the review is from a domain on which it was not trained, the model’s classifier
mistakenly classifies it as negative (bottom). In IDANI (top), the representation is fed into a neuron-ranking method.
The k-highest ranked neurons are modified by an intervention, to change the domain of the review, and the new
representation is fed into the classifier, which correctly classifies it as positive.

IDANI on a variety of well known DA benchmarks,
for a total of two text classification tasks (sentiment
analysis, natural language inference) and one se-
quence tagging task (aspect identification), across
52 source–target domain pairs. We demonstrate
that IDANI can improve results in many of these
cases, with some significant gains.

2 Method

Given a model M with a classification module f
and hidden dimensionality d, which was fine-tuned
on data from a source domain Ds = {Xs}, we
receive unlabeled task data Dt = {Xt} from a
target domain for inference. As s ̸= t, M ’s per-
formance is likely to deteriorate when processing
Xt compared to Xs. Thus, we would like to make
the representation of Xt more similar to that of Xs

(regardless of the labels). To do so, we apply the
IDANI intervention method:

1. We process Xs and Xt through M , produc-
ing representations Hs, Ht ⊆ Rd. We also
compute v̄s and v̄t, the element-wise mean
representations of Xs and Xt.

2. We apply existing ranking methods to rank the
representation’s neurons by their relevance for
domain information, i.e., the highest-ranked
neuron holds the most information about the
representation’s domain (§ 2.1).2

2Following previous work (Antverg and Belinkov, 2022),
our method assumes that neurons with the same index carry

3. For each ht ∈ Ht, we would ideally like to
have hs, its source domain counterpart. Since
hs is impossible to get, we create a counterfac-
tual h̃s that simulates it by modifying ht only
in the k-highest ranked neurons {n1, ..., nk},
such that ∀i ∈ {1, ..., k},

h̃sni
= htni

+ αni(v̄
s
ni

− v̄tni
) (1)

To allow stronger intervention on neurons that
are ranked higher, we scale the intervention
with α ∈ Rd, a log-scaled sorted coefficients
vector in the range [0, β] such that αn1 = β
and αnd

= 0, where β is a hyperparame-
ter (Antverg and Belinkov, 2022). We denote
the new set of representations as H̃s.

4. Representations from H̃s are fed into the clas-
sifier f—without re-training f—to predict the
labels. Since H̃s is more similar to Hs than
Ht is to Hs, we expect performance to im-
prove. That is, for some scoring metric γ, we
expect to have γ(f(H̃s)) > γ(f(Ht)).

The process is illustrated in Fig. 1.

2.1 Ranking Methods

We consider two ranking methods for ranking the
representations’ neurons (step 2):

similar information. While this is not necessarily true, we
perform extrinsic (Table 1) and intrinsic evaluations (Table 2)
that support this assumption.
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LINEAR (Dalvi et al., 2019) This method trains
a linear classifier on Hs and Ht to learn to pre-
dict the domain, using standard cross-entropy loss
regularized by elastic net regularization (Zou and
Hastie, 2005). Then, it uses the classifier’s weights
to rank the neurons according to their importance
for domain information. Intuitively, neurons with
a higher magnitude of absolute weights should be
more important for predicting the domain.

PROBELESS The second ranking method is a
simple one and does not rely on an external probe,
and thus is very fast to obtain: it only depends on
computing the mean representation of each domain
(v̄s and v̄t), and sorting the difference between
them. For each neuron i ∈ {1, ..., d}, we calculate
the absolute difference between the means:

ri = |v̄si − v̄ti | (2)

and obtain a ranking by arg-sorting r, i.e., the first
neuron in the ranking corresponds to the highest
value in r. Antverg and Belinkov (2022) showed
that for interventions for morphology information,
this method outperforms LINEAR and another rank-
ing method (Torroba Hennigen et al., 2020).

3 Experiments

3.1 Datasets
We experiment with two text classification tasks:
sentiment analysis (classifying reviews to positive
or negative (Blitzer et al., 2007)) and natural lan-
guage inference (NLI; classifying whether two sen-
tences entail or contradict each other (Bowman
et al., 2015)), and a sequence tagging task: as-
pect prediction (identifying aspect terms within
reviews (Hu and Liu, 2004; Toprak et al., 2010;
Pontiki et al., 2014)). For each task, the model is
trained on a single source domain and tested on dif-
ferent target domains. We explore a low-resource
scenario, thus we use 2000–3000 examples from
the source domain to form the training set.3 For
test, we use equivalent size data from the corre-
sponding target domain. Further data details are in
Appendix A.

3.2 Experiments
For each task and pair of source and target do-
mains, we fine-tune a pre-trained BERT-base-cased
model (Devlin et al., 2019) on the training set of

3For development data we split our training set in a ratio
of 80:20, where the smaller portion is used for development.

the source domain and evaluate its in-domain per-
formance on the dev set of the source domain.4

We intervene on representations from the last layer
of the model: word representations for the aspect
prediction task, and CLS token representation for
the other tasks. We then test the model’s out-of-
distribution (OOD) performance on the test set of
the target domain, for different k (number of mod-
ified neurons) and β (magnitude of the interven-
tion) values: We perform grid search where k is
in the range [0, d] (d = 768) and β is in the range
[1, 10]. We experiment with both ranking methods
described in § 2.1.

We consider the model’s performance at k = 0
as its initial (unchanged) OOD performance (INIT),
and report the difference between initial perfor-
mance and performance using IDANI, with either
PROBELESS (∆P ) or LINEAR (∆L) rankings. A
limitation of IDANI (which we further discuss
later) is the inability to choose the best β and k
for each domain pair. Following Antverg and Be-
linkov (2022) we report results for β = 8, k = 50
(∆8,50), as well as oracle results (the best perfor-
mance across all values, ∆O). We consider the
model’s performance when fine-tuned on the target
domain as an upper bound (UB). For all pairs, we
repeat experiments using 5 different random seeds,
and report mean INIT, ∆8,50, ∆O and UB across
seeds, alongside the standard error of the mean.

Since we assume that the model is exposed to
target domain data only during inference, we can-
not experiment with UDA methods, as they require
access to the data during training. Furthermore,
experimenting with inference-time DA approaches
(Ben-David et al., 2021; Volk et al., 2022) is also
not possible since they assume multiple source do-
mains for training.

4 Results

Overall, we have 52 source to target domain adapta-
tion experiments. Table 1 aggregates results across
all experiments in three different categories: experi-
ments where we can be confident that we improved
the initial performance (i.e., the mean result across
seeds is greater than the standard error), damaged
it (mean lower than the negative standard error) or
did not significantly affect it. Detailed results per
each source–target domain pair are in Appendix B.

4For all experimented models, we define a maximum se-
quence length value of 256 and use a training batch size of
16.
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Improved Damaged Neither AVG ∆

∆P
8,50 21 9 22 0.25

∆L
8,50 23 7 22 0.25
∆P

O 51 0 1 1.77
∆L

O 50 0 2 0.93

Table 1: Number of experiments in which IDANI im-
proved, damaged, or did not significantly affect the
initial performance. ∆P and ∆L refer to PROBELESS
and LINEAR respectively, while ∆8,50 and ∆O refer to
β = 8, k = 50 and oracle values.

As seen, IDANI provides decent performance,
improving results much more than damaging even
with default hyperparameters (∆P

8,50 and ∆L
8,50).

With oracle hyperparameters (∆P
O and ∆L

O) it im-
proves performance in almost all experiments.

Some of these gains are quite impressive: In
the aspect prediction task, we gain 18.8 and 14.4
F1 points when adapting the Restaurants source
domain to the target domains Laptops and Service,
respectively. In other domain pairs, the gain is
marginal. On average we gain 4 points with ∆P

O.
In sentiment analysis, the airline domain (A) is

quite different from the others, leading to lower
INIT (initial performance) scores when it is the
source domain. Adapting from A using IDANI
results in a gain of up to 4.9 accuracy points. When
other domains are used as source domains, we see
mostly marginal gains, as the upper bound is closer
to the initial performance, leaving less room for
improvement in this task (UB − INIT is low).

In NLI, it seems harder to improve: the room for
improvement is lower (3.3 F1 points on average),
which may imply that domain information is not
crucial for this task. Still, we do see some signif-
icant gains, e.g., an improvement of 2 F1 points
when adapting from Slate to the Telephone domain.

Generally, across all tasks and domain pairs,
PROBELESS provides better performance than LIN-
EAR as ∆P

O > ∆L
O in 47 of the 52 experiments

(Appendix B). This is in line with the insights
from Antverg and Belinkov (2022), who observed
that PROBELESS was better than LINEAR when
used for intervening on morphological attributes.

4.1 Qualitative Analysis
To analyze the benefits of IDANI, for each word in
the dataset we record the change in results when
classifying sentences containing the word (senti-
ment analysis) or when classifying the word itself
(aspect prediction). We report the words with the
greatest improvement in Table 2. When switching

Figure 2: Results for different k values, using β = 8.

from the Airline domain to the DVD domain in
the sentiment analysis task, those are mostly words
that sound negative in an airline context, but may
not imply a sentiment towards a movie (terrorist,
kidnapped). In the aspect prediction task, those
are mostly target domain related terms that are not
likely to appear in the source domain.

4.2 Default β and k are Not Optimal

While the potential for performance improvement
with PROBELESS is high, the selection of β =
8, k = 50 turns out as non optimal, as ∆P

8,50 is well
below ∆P

O across our experiments. This is also true
for ∆L

8,50 compared to ∆L
O, but to a lesser degree.

Fig. 2 shows that a milder intervention—lower
k value—would have been more ideal for the Air-
line → DVD scenario. Modifying too many neu-
rons probably affects other encoded information—
besides domain information—damaging the task
performance. Thus, we might lean towards smaller
k values. However, this is not always the case:
Fig. 2 also shows that for the Restaurant → Service
scenario in the aspect prediction task, PROBELESS’
performance reaches a saturation point around the
value of k = 100 neurons. Thus there is no ideal
value of k across all domain pairs. A similar phe-
nomenon with β is shown in Appendix C.

Therefore, hyperparameters should be task- and
domain-dependent, but it is unclear how to define
them for each domain pair. Yet, in most real-world
cases some labeled data should be available or
could be manually created. In such cases, the best
approach would be to grid-search over the hyper-
parameters on the available labeled data, and use
the selected values for the (unlabeled) test data.
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Airline → DVD (Sentiment) immortal, insanely, terrorist, crossing, obsessive, buzz, kidnapped
Laptops → Restaurant (Aspect) Food, soup, selection, sushi, food, atmosphere, menu, staff
Restaurant → Laptops (Aspect) time, user, slot, speed, MAC, Acer, system, size, SSD, design

Table 2: Words that are part of sentences for which accuracy has improved the most (sentiment analysis), and words
for which F1 score has improved the most (aspect prediction), using IDANI.

5 Conclusion

In this work, we demonstrated the ability to lever-
age neuron-intervention methods to improve OOD
performance. We showed that in some cases,
IDANI can significantly help models to adapt to
new domains. IDANI performs best with oracle
hyperparameters, but even with the default ones
we see overall positive results. We showed that
IDANI indeed focuses on domain-related informa-
tion, as the gains come mostly from domain-related
information, such as domain-specific aspect terms.
Importantly, IDANI is applied only during infer-
ence, unlike most other DA methods.
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A Data Details

We test IDANI on three different tasks: sentiment
analysis, natural language inference, and aspect
prediction. Further details of the training, develop-
ment, and test sets of each domain are provided in
Table 3.

Sentiment Analysis We follow a large body of
prior DA work to focus on the task of binary senti-
ment classification. We experiment with the four
legacy product review domains of Blitzer et al.
(2007): Books (B), DVDs (D), Electronic items
(E) and Kitchen appliances (K). We also experi-
ment in a more challenging setup, considering an
airline review dataset (A) (Nguyen, 2015; Ziser and
Reichart, 2018). This setup is more challenging
because of the differences between the product and
service domains.

Natural Language Inference (Williams et al.,
2018) This corpus is an extension of the SNLI
dataset (Bowman et al., 2015). Each example con-
sists of a pair of sentences, a premise and a hy-
pothesis. The relationship between the two may
be entailment, contradiction, or neutral. The cor-
pus includes data from 10 domains: 5 are matched,
with training, development and test sets, and 5 are
mismatched, without a training set. Following Ben-
David et al. (2021), we experiment only with the
five matched domains: Fiction (F), Government
(G), Slate (SL), Telephone (TL) and Travel (TR).

Since the test sets of the MNLI dataset are not
publicly available, we use the original development
sets as our test sets for each target domain, while
source domains use these sets for development. Fol-
lowing prior work (Ben-David et al., 2021; Volk
et al., 2022) we explore a low-resource supervised
scenario, which emphasizes the need for a DA al-
gorithm. Thus, we randomly downsample each
of the training sets by a factor of 30, resulting in
2,000–3,000 examples per set.

Aspect Prediction The aspect prediction dataset
is based on aspect-based sentiment analysis
(ABSA) corpora from four domains: Device (D),
Laptops (L), Restaurant (R), and Service (SE).
The D data consists of reviews from Toprak et al.
(2010), the SE data includes web service reviews
(Hu and Liu, 2004), and the L and R domains con-
sist of reviews from the SemEval-2014 ABSA chal-
lenge (Pontiki et al., 2014). The task is to identify
aspect terms within reviews. For example, given

Sentiment Classification

Domain Training (src) Dev (src) Test (trg)

Airline (A) 1, 700 300 2, 000
Books (B) 1, 700 300 2, 000
DVD (D) 1, 700 300 2, 000
Electronics (E) 1, 700 300 2, 000
Kitchen (K) 1, 700 300 2, 000

MNLI

Domain Training (src) Dev (src) Test (trg)

Fiction (F) 2, 547 1, 972 1, 972
Government (G) 2, 541 1, 944 1, 944
Slate (SL) 2, 605 1, 954 1, 954
Telephone(TL) 2, 754 1, 965 1, 965
Travel (TR) 2, 541 1, 975 1, 975

Aspect

Domain Training (src) Dev (src) Test (trg)

Device (D) 2, 302 255 1, 279
Laptops (L) 2, 726 303 800
Restaurants (R) 3, 487 388 800
Service(SE) 1, 343 149 747

Table 3: The number of examples in each domain of
our four tasks. We denote the examples used when a
domain is the source domain (src), and when it is the
target domain (trg).

a sentence “The price is reasonable, although the
service is poor”, both “price” and “service” should
be identified as aspect terms.

We follow the training and test splits defined by
Gong et al. (2020) for the D and SE domains, while
the splits for the L and R domains are taken from
the SemEval-2014 ABSA challenge. To establish
our development set, we randomly sample 10% out
of the training data.

B Detailed Results

Results for all domain pairs are shown in Tables 4, 5
and 6. As described in § 4, IDANI can potentially
significantly improve performance, shown by the
results of ∆P

O. Current hyperparameter values do
not fulfill this entire potential, but still improve
performance in most cases (∆P

8,50).

C Performance for different β

While our default hyperparameter values, β = 8
and k = 50 improve performance in most cases,
they are not optimal for all cases. Fig. 3 shows
that when k = 50, the optimal β value for the
Airline → DVD case is 5, whereas for Restaurants
→ Service it is actually better to use a greater β.
Thus, it is not possible to find one value that would
be optimal for all cases.
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A → B A → D A → E A → K B → A B → D B → E

INIT 77.4± 1.3 75.5± 2.2 85.2± 1.0 84.9± 0.9 83.7± 0.7 87.9± 0.3 90.4± 0.2
UB 88.0± 0.5 89.2± 0.5 92.4± 0.4 92.4± 0.2 88.0± 0.1 89.2± 0.5 92.4± 0.4
∆P

8,50 −4.4± 4.8 −2.2± 5.4 −1.2± 2.4 −1.5± 1.9 0.5± 0.1 0.1± 0.1 −0.0± 0.0
∆L

8,50 2.0± 1.0 2.1± 1.0 1.3± 0.4 1.1± 0.5 0.2± 0.1 0.1± 0.0 −0.0± 0.0
∆P

O 3.0± 1.3 4.9± 1.8 2.3± 0.8 2.3± 1.0 0.9± 0.2 0.3± 0.1 0.1± 0.0
∆L

O 2.9± 1.3 4.2± 1.8 2.3± 0.8 2.2± 0.9 0.3± 0.1 0.1± 0.0 0.0± 0.0

B → K D → A D → B D → E D → K E → A E → B

INIT 87.8± 0.4 81.5± 0.3 89.4± 0.3 90.3± 0.2 88.1± 0.5 86.3± 0.4 86.8± 0.4
UB 92.4± 0.2 88.0± 0.1 88.0± 0.5 92.4± 0.4 92.4± 0.2 88.0± 0.1 88.0± 0.5
∆P

8,50 0.1± 0.0 0.8± 0.2 0.1± 0.1 −0.0± 0.1 0.8± 0.3 0.0± 0.0 0.6± 0.2
∆L

8,50 0.1± 0.0 0.5± 0.1 0.1± 0.0 0.1± 0.0 0.2± 0.1 0.0± 0.0 0.1± 0.1
∆P

O 0.4± 0.1 1.4± 0.3 0.3± 0.1 0.3± 0.1 1.4± 0.5 0.2± 0.0 1.0± 0.3
∆L

O 0.2± 0.0 0.8± 0.1 0.2± 0.1 0.1± 0.0 0.5± 0.2 0.1± 0.0 0.3± 0.1

E → D E → K K → A K → B K → D K → E AVG

INIT 86.5± 0.2 93.2± 0.3 83.9± 0.4 87.0± 0.2 86.4± 0.1 92.2± 0.2 86.2± 0.7
UB 89.2± 0.5 92.4± 0.4 88.0± 0.1 88.0± 0.5 89.2± 0.5 92.4± 0.2 90.0± 0.4
∆P

8,50 0.2± 0.1 0.2± 0.2 0.7± 0.2 0.1± 0.1 0.2± 0.1 0.1± 0.0 −0.2± 1.7
∆L

8,50 −0.1± 0.1 −0.0± 0.0 0.1± 0.1 0.1± 0.0 0.0± 0.0 0.0± 0.0 0.4± 0.4
∆P

O 0.4± 0.1 0.4± 0.2 1.2± 0.3 0.2± 0.0 0.5± 0.0 0.2± 0.0 1.1± 0.6
∆L

O 0.1± 0.0 0.2± 0.1 0.5± 0.2 0.1± 0.0 0.2± 0.0 0.0± 0.0 0.8± 0.6

Table 4: Sentiment analysis results (accuracy).

F → G F → SL F → TL F → TR G → F G → SL G → TL

INIT 70.2± 0.8 63.7± 0.8 67.4± 1.3 65.6± 0.8 59.9± 0.8 62.1± 0.5 64.9± 0.9
UB 73.8± 0.4 62.6± 0.9 68.3± 0.4 69.9± 0.3 67.6± 0.9 62.6± 0.9 68.3± 0.4
∆P

8,50 0.5± 0.5 0.4± 0.4 0.1± 0.4 −0.2± 0.4 0.8± 0.2 −0.2± 0.2 0.4± 0.3
∆L

8,50 0.1± 0.2 0.0± 0.1 0.3± 0.2 0.1± 0.1 0.7± 0.4 −0.2± 0.1 0.1± 0.1
∆P

O 1.2± 0.4 0.9± 0.3 0.9± 0.3 0.7± 0.2 1.8± 0.6 0.4± 0.1 1.2± 0.2
∆L

O 0.6± 0.2 0.6± 0.2 0.8± 0.3 0.5± 0.2 1.5± 0.5 0.2± 0.0 0.9± 0.2

G → TR SL → F SL → G SL → TL SL → TR TL → F TL → G

INIT 68.8± 0.2 62.0± 1.6 71.1± 1.4 63.7± 1.2 67.0± 1.2 63.6± 0.5 69.7± 0.4
UB 69.9± 0.3 67.6± 0.9 73.8± 0.4 68.3± 0.4 69.9± 0.3 67.6± 0.9 73.8± 0.4
∆P

8,50 −0.0± 0.1 0.8± 0.4 −0.5± 0.2 1.1± 0.4 −0.1± 0.1 −0.6± 0.3 −1.1± 0.6
∆L

8,50 −0.1± 0.1 0.4± 0.2 0.1± 0.1 0.7± 0.1 0.1± 0.2 0.2± 0.1 −0.2± 0.1
∆P

O 0.5± 0.1 1.5± 0.4 0.3± 0.1 2.0± 0.5 0.5± 0.1 0.7± 0.2 0.7± 0.2
∆L

O 0.2± 0.1 1.4± 0.4 0.3± 0.1 1.4± 0.2 0.6± 0.1 0.6± 0.1 0.3± 0.0

TL → SL TL → TR TR → F TR → G TR → SL TR → TL AVG

INIT 61.6± 0.5 64.9± 0.5 60.0± 1.0 71.5± 0.7 61.3± 0.6 63.3± 1.1 65.1± 0.9
UB 62.6± 0.9 69.9± 0.3 67.6± 0.9 73.8± 0.4 62.6± 0.9 68.3± 0.4 68.4± 0.7
∆P

8,50 −0.3± 0.4 −0.5± 0.4 −0.1± 0.5 −0.1± 0.2 0.1± 0.2 0.4± 0.3 0.0± 0.4
∆L

8,50 0.5± 0.2 −0.4± 0.3 0.3± 0.5 0.3± 0.3 0.0± 0.1 0.3± 0.3 0.2± 0.2
∆P

O 1.2± 0.1 0.7± 0.1 1.7± 0.4 0.7± 0.2 0.8± 0.2 1.2± 0.3 1.0± 0.3
∆L

O 1.1± 0.2 0.6± 0.1 1.0± 0.4 0.7± 0.2 0.6± 0.2 0.8± 0.3 0.7± 0.2

Table 5: MNLI results (macro-F1).
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D → L D → R D → S L → D L → R L → S R → D

INIT 50.9± 0.8 36.9± 1.1 40.5± 0.9 47.6± 0.2 35.3± 0.8 36.3± 0.5 46.2± 0.9
UB 85.5± 0.3 83.4± 0.2 81.2± 0.2 67.1± 0.5 83.4± 0.2 81.2± 0.2 67.1± 0.5
∆P

8,50 −1.2± 0.6 −3.0± 1.2 −2.2± 1.0 0.9± 0.1 3.6± 0.7 1.0± 0.3 1.3± 0.3
∆L

8,50 −0.2± 0.1 −0.4± 0.3 −0.1± 0.2 0.2± 0.1 0.3± 0.2 0.2± 0.1 0.1± 0.1
∆P

O 0.3± 0.2 0.6± 0.3 0.2± 0.2 1.4± 0.1 6.7± 1.0 1.9± 0.4 2.1± 0.5
∆L

O 0.2± 0.1 0.3± 0.2 0.4± 0.1 0.7± 0.0 1.5± 0.3 0.5± 0.2 0.7± 0.2

R → L R → S S → D S → L S → R AVG

INIT 44.1± 1.1 33.2± 0.9 49.1± 0.3 44.9± 0.5 55.6± 0.6 43.4± 0.8
UB 85.5± 0.3 81.2± 0.2 67.1± 0.5 85.5± 0.3 83.4± 0.2 79.3± 0.4
∆P

8,50 9.5± 0.8 11.2± 0.7 0.6± 0.2 −2.1± 0.4 −4.2± 0.7 1.3± 0.7
∆L

8,50 2.2± 0.5 2.4± 0.6 0.0± 0.1 −0.5± 0.2 −0.7± 0.4 0.3± 0.3
∆P

O 14.4± 0.9 18.8± 0.9 0.9± 0.2 0.3± 0.2 0.3± 0.2 4.0± 0.5
∆L

O 5.7± 0.9 6.8± 0.7 0.3± 0.1 0.2± 0.1 0.2± 0.1 1.5± 0.4

Table 6: Aspect prediction results (binary-F1).

Figure 3: Results for different β values, using k = 50.
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